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Abstract

Recent large-scale particle-based simulations are generating vast amounts of data posing a challenge to visual-
ization algorithms. One possibility for addressing this challenge is to map particles into a regular grid for volume
rendering, which carries the disadvantages of inefficient use of memory and undesired losses of dynamic range. As
an alternative, we propose a method to efficiently visualize these massive particle datasets using point rendering
techniques with neither loss of dynamic range nor memory overheads. In addition, a hierarchical reorganization
of the data is desired to deliver meaningful visual representations of a large number of particles in a limited num-
ber of pixels, preserving point locality and also helping achieve interactive frame rates. In this paper, we present
a framework for parallel rendering of large-scale particle data sets combining point sprites and z-ordering. The
latter is used to create a multi level representation of the data which helps improving frame rates. Performance and
scalability are evaluated on a GPU-based visualization cluster, scaling up to 128 GPUs. Results using particle
datasets of up to 32 billion particles are shown.

Categories and Subject Descriptors (according to ACM CCS): 1.3.2 [Computer Graphics]: Graphics Systems—

Distributed/network graphics

1. Introduction

Recent large-scale simulations [HMF*13] require the most
powerful supercomputers and produce vast amounts of data.
Computing these very large datasets pushes a supercomputer
to its limits, but is also challenging from the points of view
of storage, analysis, and visualization.

In simulations which generate regular grid data, volume
rendering is the primary method for visualization. In some
cases, particle-based datasets are also mapped into regular
grid volumetric representations to study density fields or
other properties. However, mapping particle data onto reg-
ular grids can result in sparse datasets, often making ineffi-
cient use of system memory. The method may be adequate
for some simulations, but it becomes inapplicable at the
largest scales. Even using methods such as Adaptive Mesh
Refinement (AMR) to mitigate data sparsity, there still are
undesired losses of dynamic range due to the discrete na-
ture of the grid, severely constraining the ability to resolve
individual particles. These shortcomings underline the ne-
cessity of finding other methodologies for visualization of
large-scale particle datasets.
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Visualizing particles directly from their spatial coordi-
nates is a more natural way of tackling the problem. A direct
particle rendering method should be efficient in its memory
usage (only particle coordinates need to be stored) as well
as accurate in terms of preserving the dynamic range pro-
duced by the simulation, since mapping particles to a dis-
crete grid is not required. In addition, it should ideally de-
liver a good visualization of the density field while also be-
ing able to resolve individual particles. These arguments pro-
vide good motivation to investigate direct particle rendering
methods. Among them, point sprites are well known in Com-
puter Graphics and are readily available in common OpenGL
implementations. Within the scope of this paper, we focus on
large-scale GPU-accelerated parallel point sprite rendering.

Most often, visualizing the data at interactive frame rates
is a crucial requirement. In these cases, and particularly for
far camera views, it is largely inefficient to fully render all
points (or polygons in case of a polygonal mesh) of a large-
scale dataset into a viewport containing a limited number
of pixels. Under these conditions, the rendering time for the
full dataset becomes impractical, while the resulting images
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are usually too crowded and do not convey useful infor-
mation. Level-Of-Detail (LOD) or sampling techniques are
commonly used to simplify, in a systematic way, the number
of elements rendered. We propose to use z-ordering [PF03],
a method used for hierarchical subsampling of regular grid
data, to reduce the number of particles rendered while pre-
serving their local properties and clustering.

We present a parallel implementation of OpenGL point
sprite rendering using a z-ordered hierarchical rearrange-
ment of particles. We present our method to read large-scale
particle datasets in parallel from storage, along with a data
reordering strategy to dynamically reduce the number of par-
ticles rendered. Next, we describe a parallel implementation
of the point sprite method, and compare it to volume render-
ing in terms of performance and image quality. Finally, we
demonstrate weak and strong scalability using a dataset of
32 billion particles on 128 GPUs.

Our main contributions are:

1. Demonstrating point sprites and z-ordering on large par-
ticle datasets of a scale not previously reported in the lit-
erature (32 billion particles).

2. Scaling both methods on a large GPU-based parallel vi-
sualization and analysis resource (128 GPUs) without re-
quiring out-of-core processing or offline indexing of the
data.

3. Applying the combination of points sprites and
z-ordering to render ultra-high resolution images
(6144x3072 pixels) of large-scale particle data without
losses of dynamic range.

2. Related Work

As identified in the previous section, Point-Based Rendering
(PBR) has some advantages over volume rendering in terms
of efficient use of memory and dynamic range. Similarly,
Goswami et. al [GEM™13] point out some of the advan-
tages of PBR versus polygonal mesh rendering: (i) points are
more efficient than triangles in regions where triangles may
project to individual pixels; and (ii) points provide a more
compact representation than triangles since there is no mesh
connectivity required. In their work, an out-of-core method
for rendering massive point clouds using multi-way kd-trees
is presented. Parallel rendering is implemented using the
Equalizer framework [EQU] with either sort-first or sort-last
strategies. OpenGL points are used as rendering primitives
on up to six parallel rendering nodes and data sizes scale up
to 368 million points. Additional work focusing on efficient
rendering of large point clouds from LIDAR can be found
in [KBKO8] and [PNS*11].

A multi-resolution hierarchy with level-of-detail selection
is presented in [FSWQ9],. Particles are rendered as points
and expanded using the geometry shader to a screen-aligned
face. Data consisting of 10 billion (2160%) particles from the
Millennium Simulation Project are used and experiments are

run on a single GPU. Similarly, a method for high-quality
particle rendering with point sprites on GPUs is presented
in [GSGPO6]. Results are shown for up to 2.8 million par-
ticles on a single GPU. Rivi et. al [RGD*14] discuss a re-
design of Splotch, a rendering algorithm for particle-based
datasets from astronomical data or computer simulations.
CUDA kernels have been incorporated for parallel render-
ing. Results are shown for 400 million particles of a GAD-
GET simulation on a single GPU. Finally, [LMC04] shows
results for 16 million (256%) particles using seven rendering
nodes on the Hewlett-Packard Sepia parallel rendering clus-
ter.

Paraview [AGLOS5] is a well-known tool for parallel analy-
sis and visualization. Use of Paraview for interactive analysis
and visualization of large cosmological N-body simulations
is discussed in [WHA* 11]. The paper presents contributions
to the Paraview code such as a particle reader for "cosmo"
and "GADGET" formats, as well as a halo finder using the
friends-of-friends algorithm. The data readers use a topolog-
ically rectangular 3D spatial decomposition, where each par-
allel process will obtain all of the particles in its assigned
subspace. Data is read as an unstructured point data set in
VTK and rendered in parallel. A Paraview visualization of
a one billion particle simulation is presented, as well as a
test analysis on a simulation using 16 million (256°) parti-
cles in 256° and 1024> simulation grids. Statistical sampling
techniques to reduce the size of large particle datasets for in-
situ analysis and visualization are discussed in [WAF*11].
This implementation was tested in Paraview with 8 billion
(2048%) particles. Another example of Paraview used for vi-
sualization of cosmological data is presented in [NJBO7],
with two million SPH particles and two million dark mat-
ter particles per time-step from a GADGET simulation. The
particle data is interpolated into a 128% element regular grid
and imported into Paraview for visualization as isosurfaces.

There are a number of methods that integrate volume
rendering and particle visualization. In [KAHO7], there is
a combination of volumetric fields representing interstel-
lar gas densities and unstructured point sets for dark matter
components. The particle data is encoded in an octree struc-
ture that is uploaded to GPU texture memory. In this way,
the ray tracing process for the regular grid data can also
take into account the particle data by sampling the octree
structure in texture memory. Results are presented for a 256°
structured grid and approximately 10K particles on a single
GPU. Combustion simulations producing volume and parti-
cle data are discussed in [YWG*10]. Volume rendering is
complemented with software-based particle rendering using
point sprites. The implementation scales up to 15360 cores,
1620x1280x320 volumes, and 41.1 million particles, with
image compositing dominating the total rendering time, as it
is often the case in large-scale sort-last visualization. Among
other methods combining particle and volume rendering,
there is also Particle-Based Volume Rendering (PBVR). It
was proposed by Sakamoto [SNKTO07] in 2007, and it essen-
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tially consists of sampling a 3D scalar field with particles,
and subsequently projecting these particles into the image
plane. The method was initially proposed as an alternative
to ray casting entire volumes, but it kept evolving and it has
been recently applied to render large-scale unstructured vol-
ume datasets [SMKK13].

Z-ordering, or Morton-ordering, uses space filling curves
to convert n-dimensional integer coordinates into 1-D in-
dices that can be sorted. The mapping preserves the locality
of the original coordinates (i.e close points in N-dimensional
space are also close in the sorted 1-D array.) This property
has been used to create multi-resolution representations of
regular grids [PF03] [BCH12] where the data can be ac-
cessed by ray tracing (or other methods) at different sam-
pling resolutions. An algorithm in [CK10] proposes an ex-
tension to the method to use floating point values as coordi-
nates. The algorithm is simple to implement, and there is an
open source implementation available as part of the STANN
library [STA]. The z-ordering method has also been used for
building octrees in gravitational N-body codes [BGZ12]. Fi-
nally, [LZC14] present a z-order based method for sampling
and surface reconstruction of large scale point clouds.

3. Implementation

This work has been implemented as part of vI3 [RHI*14],
a parallel GPU-based framework for large-scale data visu-
alization and analysis. v13 is modular and facilitates the de-
velopment and testing of new algorithms and methods, as
well as deploying it on varied hardware platforms. In the fol-
lowing subsections we will describe our system design, the
parallel rendering architecture of v13, the domain decompo-
sition and parallel data reading implemented, the hardware-
accelerated method used for point sprite rendering, and a z-
ordering based strategy for decomposing large-scale particle
datasets into multi-level representations.

3.1. System Design
Our design is based on the following criteria:

1. Minimizing I/O operations: data is read only when exe-
cution of the program starts ( Section 3.3 ). There are no
particle exchanges afterwards. Network communication
is used exclusively for compositing and synchronization.

2. Full utilization of the available parallelism: GPUs are
kept busy rendering particles ( Section 3.4 ) and used for
compositing.

3. Minimizing transfers to/from GPU: particle data is rear-
ranged ( Section 3.5 ) and transferred to GPU after the
initial reading from disk. No other transfers to GPU take
place after the initial transfer.

3.2. Parallel Rendering Architecture

The vI3 parallel rendering architecture consists of the fol-
lowing modules:
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Data Input: This module is responsible for reading data
efficiently from a parallel filesystem and presenting it to the
next stage in the pipeline via a common interface. There are
readers for most volumetric data formats, including VTK,
raw, HDF5, among others. As part of this work, a parallel
reader for particle data has been added to the previously ex-
isting readers.

Rendering: v13 parallelizes the rendering process by spa-
tially decomposing the 3D region of interest into smaller
equal-sized chunks (including ghost cells), and dividing
them among multiple nodes of a distributed memory com-
puter. In this work, we have implemented a parallel ren-
dering module for large-scale particle datasets using point
sprites with OpenGL and GLSL shaders, explained in Sec-
tion 3.4

Compositing: When subsets of the full dataset are ren-
dered by separate compute nodes, the result is a number of
2D images that need to be composited together into the fi-
nal image. v13 implements a number of parallel compositing
algorithms, including DirectSend and BinarySwap.

Output: Once the rendering and compositing steps are
complete, results must be displayed . v13 supports multiple
modalities, including batch mode, interactive visualization,
and streaming. For larger datasets, v13 can be run as a Mes-
sage Passing Interface (MPI) application on a GPU cluster.
In this case, large pixel count images can be streamed to
high resolution displays such as 4K monitors or tiled dis-
plays [HIO*11].

3.3. Domain Decomposition and Parallel Data Reading

The 3-dimensional spatial domain is decomposed using a re-
cursive binary partition scheme. Every MPI rank receives an
equally-sized (in terms of spatial extents) subset of the whole
domain. Due to the nature of the data generated by the sim-
ulation, the number of particles contained in those subsets
does not vary much, which helps balancing the load among
ranks.

After domain decomposition, every MPI rank owns a
bounding box delimiting the spatial boundaries of the sub-
set it has been assigned. As there is one MPI rank per GPU,
this effectively means that a GPU will be responsible of ren-
dering the subset of particles contained in its respective MPI
rank bounding box.

Since ours is currently a post-processing approach (as op-
posed to in-situ), particles are stored by the simulation in a
parallel filesystem and must be read from disk for visual-
ization. In this work, we have implemented readers for the
"cosmo" and "Generic 10" particle formats. Cosmo is a bi-
nary format for storing particle positions, velocities, particle
identification numbers and other scalar values [WHA*11].
On the other hand, Generic 1O is a format for efficient paral-
lel I/O, either using Posix or MPI I/O, implementing the con-
cepts discussed in [BFV*14]. At simulation time, every rank
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writes its subset of particles in a Generic IO data "block".
To improve /O efficiency, blocks are aggregated and written
into a discrete number of files in the parallel file system.

In practice, large-scale simulations run on thousands of
cores, resulting in thousands of MPI ranks and an equal num-
ber of data blocks on disk. Post-processing tasks, such as vi-
sualization and analysis, may run on smaller clusters with a
substantially lower number of ranks. As a result, every MPI
rank in our implementation will be responsible for not just
one, but several data blocks on disk. Once the domain de-
composition stage finishes, every rank knows the extents of
its bounding box. Afterwards, every rank obtains a list of all
the blocks available on disk an checks their extents, com-
paring them with its bounding box to determine whether the
block contains particles in the rank bounding box.A list of
blocks is created containing the blocks needed by each rank,
and finally, the blocks in the list are read in parallel from
the file system. In this way, every rank reads from disk only
the blocks containing particles in its bounding box, while the
reading is efficiently performed in parallel.

3.4. Parallel Rendering of Point Sprites

Point sprites is a well-known technique to visualize particle
systems. For a good introduction to its usage in OpenGL the
reader is referred to [SWH13] . The point sprite functionality
has been available in OpenGL since version 1.5, allowing to
draw single points that are converted to camera-facing quads
in the graphics pipeline. These quads can be textured to rep-
resent objects of interest. In our case, the objects are particles
and 2D gaussian textures are used to represent them.

We leverage the CUDA N-body simulation demo
[NHPO7], part of the Nvidia CUDA GPU Computing SDK
[CUD], where OpenGL point sprites are used to visualize
particles evolving under simulated gravitational interaction.
In our case, the technique is extended to operate in parallel
as part of the vI3 framework, with every MPI rank taking
care of all particles in its subregion of the simulation space.
Vertex Buffer Objects (VBOs) are allocated on GPU mem-
ory and the particle information is copied into them. In every
rendering cycle, the parallel renderers receive the position
and orientation of the camera and render their particle data
as point sprites, generating the resulting image in a Frame
Buffer Object (FBO), whose contents are then read back
and sent over the network to the corresponding composit-
ing nodes. v13 classes to support GLSL shaders are used to
implement fragment and vertex shaders that modify the size
of the sprites according to their distance to the camera, also
applying a Gaussian texture to them. Alpha blending is en-
abled and set to accumulate color values on the color buffer.

3.5. Z-ordering for Level-Of-Detail

Rendering a large scale dataset in its totality could be con-
sidered a brute force approach. In cases like that, all particles

are equally important and rendered no matter their location
or contribution to the formation of structures. However, it is
possible to substantially reduce the number of particles ren-
dered while still preserving the particle clustering.

Level-of-Detail (LOD) is a well-known method in Com-
puter Graphics to reduce the complexity of polygonal mod-
els or other data types, specially when the view camera is far
from the object. In that case, rendering the data in full de-
tail does not result in better image quality. Moreover, perfor-
mance may also degrade due to the rendering of unnecessary
graphics primitives. To overcome these problems, distance-
based LOD defines different representations of a dataset with
a number of primitives inversely proportional to the distance
from camera to object. Similar approaches are particularly
applicable to large-scale data.

In the scope of this work, we are interested in reorganiz-
ing a large number of particles and implementing an LOD
scheme to avoid rendering the full dataset when either (i)
the camera is far from the object; or (ii) frame rate con-
straints are imposed. There are multiple approaches in the
literature where kd-trees are frequently used with the pur-
pose of reordering, classifying, or sampling large-scale par-
ticle datasets (see for example [GEM*13] and [WAF*11].)
In this paper, we propose a scheme for reordering particles
according to their spatial distribution based on the Morton
space filling curves, also known as z-ordering.
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Figure 1: Sorting in z-order a small set of particles arranged
in a 4x4 grid. The numbers in blue show the discrete coordi-
nates in the regular grid, whereas the numbers in each parti-
cle represent their order in the z-ordered sequence. Note the
characteristic Z (or, more properly, N) patterns defined by
the arrows.

Originally, z-ordering schemes were proposed for regu-
lar grid data [PF03], where a Morton key is derived from
interleaving the bits of the binary representation of integer
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point coordinates. Figure 1 shows an example of the origi-
nal approach, where the Z (or N) patterns are clearly distin-
guishable once the points have been sorted. For particle sys-
tems, though, coordinates are commonly expressed in float-
ing point representation and the original algorithm has to
be slightly modified. Connor and Kumar [CK10] describe
an algorithm for fast comparison of floating point numbers
in Morton order (i.e z-order) without computing a numeric
key. Their algorithm is implemented in the STANN [STA] li-
brary. Testing it with a simple 4x4 pattern of points within a
unit square (similar to the arrangement in Figure 1 but using
floating point coordinates), we found that the STANN imple-
mentation failed to sort some of the particles in the correct
z-ordering. For that reason, we decided to implement a z-
ordering algorithm based on conversion from float to integer
coordinates and apply the original scheme in [PF03] for reg-
ular grids, as [BGZ12] did for n-body simulations.
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Figure 2: Sorting in z-order a small set of particles with
floating point coordinates. For simplicity, a two-dimensional
system is shown. The number in each particle can be ob-
tained from the particle coordinates and shows its order in
the z-ordered sequence.

X |'Y | BinX| BinY | Shuffle Key| z-ord
0.1] 0.1 001 001 000011 | 3 0
0.3 0.1 011 001 001011 | 11 1
0.2 0.2 010 010 001100 | 12 | 2
0.3| 0.3 011 011 001111 | 15 | 3
04| 0.1 100 001 100001 | 33 | 4
0.6 0.1 110 001 101001 | 41 | 5
0.6 0.3 110 011 101101 | 45 | 6
0.7 0.2 111 010 101110 | 46 | 7

Table 1: Converting floating point coordinates of a small set
of particles to integer representation and sorting in z-order

To illustrate the method, Figure 2 presents a simplified
problem consisting of eight particles with floating point co-
ordinates in two dimensions. The particle coordinates are
shown in Table 1. Floating point coordinates are normalized,
scaled, and converted to 3 bit integer representation. In this
way, float 0.0 is mapped to binary 000, whereas float 0.7 is
mapped to 111, using the entire range of the 3 bit binary rep-
resentation. The bits in the binary coordinate representation
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are interleaved (Shuffle column), and the latter is converted
to a numeric key, with which it is possible to sort the parti-
cles. This sorted list is the z-order representation of the sys-
tem. The arrows in Figure 2 show the z-ordered sequence
from the values computed in Table 1.

In our implementation we use 96 bit keys per particle (32
bits per coordinate component.) The 96 bit keys are subse-
quently sorted in parallel on each node using OpenMP. Thus,
every MPI rank creates an array of particles sorted in z-order,
by which the 3-dimensional particles are arranged into a 1-
dimensional list.
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Figure 3: Rearranging the z-ordered particles from Figure 2
in a multi resolution scheme. The entire particle set is trans-
ferred to the GPU after rearrangement. Orange segments
show how successive levels are stored in consecutive posi-
tions of GPU memory.

The z-ordered array can be further rearranged to create
a progressive multi resolution representation of the data,
as shown in Figure 3. The coarsest level contains a single
particle (i.e the first particle appearing in the z-ordered ar-
ray.) Successive levels refine the resolution by increasing
the number of elements. Note, for example, how the com-
bination of levels L0 and L1 contains particles with z-order
index O and 4, which represent a good spatial sampling in
Figure 2, and is similar to the z-order method for sampling
regular grids in [PFO3].

Particles in upper levels of the multi resolution scheme ap-
pear first in the array, which can be further transferred to the
GPU in its entirety. In this way, the particles appearing first
in the GPU buffer object will correspond to the lower reso-
lution representations and are used to provide an approxima-
tion of the full distribution. In most cases, even a small per-
centage of the full dataset sorted in this way provides a very
good visual approximation of the data, requiring substan-
tially lower times for rendering. Since one of the parameters
for rendering a VBO in OpenGL is the buffer size, reordering
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(c) Ray casting a grid of 2048x2048x4096 voxels.

(d) Point sprite rendering the full particle subset.

Figure 4: Comparing image quality of ray casting and point sprite rendering. A close camera view of the dataset is shown.

the particles in the VBO according to the scheme described
above and controlling dynamically the size of the rendered
buffer results in a very simple and efficient implementation
of LOD. The full dataset can be rendered by simply specify-
ing the full size of the VBO, which contains all the reordered
particles. When a lower resolution representation is desired,
the size parameter is reduced accordingly and a subset of the
reordered dataset will be rendered (corresponding to the up-
per levels of the hierarchical representation), proportionally
reducing the rendering time.

4. Evaluation

In this section we present experimental results for evaluat-
ing our implementation using a dataset of 32 billion (3200%)
particles. Our experimental testbed consists of Tukey, a com-
puter cluster at Argonne National Laboratory. There are 96

compute nodes based on the AMD Dual Opteron 6128 pro-
cessor, with 16 cores per node. Every node also has 64 GB
RAM and two Nvidia Tesla M2070 GPUs, adding up to 6
terabytes of CPU RAM and 1.1 terabytes of GPU RAM for
the entire system. The peak GPU performance for the system
is estimated at over 98 teraflop. The nodes are connected via
a QDR Infiniband interconnect and the MPI implementation
is Mvapich2 [MVA] from Ohio State University (OSU).

We first compare ray casting volume rendering and the
point sprites method in terms of image quality, memory re-
quirements, and frame rates in subsection 4.1. Next, in sub-
section 4.2, we study the efficacy of reorganizing the parti-
cle data in a multi level layout to preserve the high density
regions as we render a fraction of the full data. Finally, in
subsection 4.3, we discuss the weak and strong scaling per-
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formance of our implementation, and demonstrate scaling to
a 32 billion particles dataset.

4.1. Comparison of Image Quality

We compare the image quality produced by ray casting vol-
ume rendering and the point sprites method. Density fields
can be captured and visualized by ray casting. However, due
to the discrete nature of the grid, multiple particles may be
mapped into a single grid point, thus the method may fail
to resolve individual particles severely impairing the results
produced by high-resolution simulations.

A subset of about 21 million particles generated by a sin-
gle rank of a large cosmological simulation was used for the
experiments in this subsection. We map the particle dataset
spanning 30x30x60 Mpc/h, for ray casting, onto regular
grids with sizes of 512x512x1024, 1024x1024x2048, and
2048x2048x4096 elements. For point sprite rendering, all
the available particles were used. Eight GPUs were used in
all cases to accommodate the largest grid size in GPU mem-
ory. It is worth noting that a single GPU can easily store the
number of particles used in this experiment for point sprite
rendering, but we decided to use eight in all cases to mini-
mize parameter variations from one method to another.

Figure 4a shows the result of a close view of the
512x512x1024 dataset. As we can see, densities are nicely
captured, but the coarser resolution of the grid is clearly no-
ticeable and the dynamic range is negatively impacted. A
grid of 1024x1024x2048 elements in Figure 4b shows better
resolution, but the areas of higher densities start to diffuse. In
Figure 4c the grid is increased to 2048x2048x4096 elements,
increasing memory requirements by a factor of eight, with-
out significant improvement in image quality. On the other
hand, the point sprite rendered image in Figure 4d clearly
shows the higher density regions while preserving the indi-
vidual resolution of each particle. The point sprite method,
compared to ray tracing volume rendering, is also able to
nicely capture mass densities directly from particle coordi-
nates, delivering images of the highest quality. Most impor-
tantly, the method preserves the dynamic range of the simu-
lation by being able to resolve individual particles.

Data sizes, memory requirements, and frame rates ob-
tained are summarized in Table 2. Even though it is diffi-
cult to establish a strictly fair comparison due to a variety of
factors affecting performance (selection of number of sam-
ples per ray in ray casting, point size and sprite size in point
sprites), results in the table show that point sprites require a
substantially lower memory footprint and are better suited to
achieve interactive frame rates.

4.2. Image Quality with Level-Of-Detail

We evaluate the image quality obtained using by the hier-
archical reordering of particles proposed in Section 3.5. In
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Method Data Size Mem.Req. Fps
Raycast 512x512x1024 256 MB 33
Raycast 1024x1024x2048 | 2 GB 32
Raycast 2048x2048x4096 | 16 GB 2.6
PointSpr. | 21 million part. 240 MB 10.5

Table 2: Comparison of memory requirements and achiev-
able frame rates for ray casting and point sprite rendering

the scheme, particles are rearranged using z-ordering and
stored on a single GPU Vertex Buffer Object and rendered
using the OpenGL function g/DrawArrays(). This function
receives as one of its parameters the number of primitives to
be rendered and we can dynamically modulate this parame-
ter in each frame to control the number of particles sent to
the graphics pipeline.

Figure 5 shows an example of the technique applied to a
particle dataset from a cosmology simulation. The left col-
umn shows the view obtained when rendering the full buffer
size as point sprites. On the right side, 10% of the particles
are rendered for the same view.

It can be seen that reordering the particles in z-ordering
captures nicely the areas of higher densities, preserving the
underlying structure of the data even when not drawing a
large fraction of the total particles. Multiple time steps are
shown in Figure 5 to demonstrate that the method is applica-
ble to data in all stages of the simulation.

4.3. Weak and Strong Scaling

We study the weak scaling performance of our parallel point
sprite rendering implementation as we increase the number
of GPUs while preserving the average number of particles
rendered per GPU. We scale from 2 to 128 GPUs and each
GPU loads about 250 million particles, thus, scaling from
500 million particles to 32 billion particles. We study two
scenarios, where every GPU renders (i) its full subset of
about 250 million particles; and (ii) a 10% fraction of its par-
ticles using the multi resolution method described in Section
3.5. We render the data to a final image of 6144x3072 pix-
els (resolution of our tiled display). We select a camera view
such that all the particle subsets contained on each GPU con-
tribute to the final image.

Figures 6a and 6b show the results of the experiments.
We plot the maximum time of all GPUs in each case. On
the left hand side of Figure 6a, there are 2 GPUs totaling
about 500 million visible particles. On the right hand side,
we scale to 128 GPUs containing a full dataset of 32 billion
particles. The chart shows good weak scaling properties - we
achieve 80% parallel efficiency at 128 GPUs with respect to
2 GPUs. It can be observed that the overall time to obtain a
6144x3072 pixel image of the full dataset takes a few sec-
onds (orange line) — resulting in non-interactive frame rates.
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(a) Early timestep, 100% particles

(b) 10% particles

(d) 10% particles

(e) Final timestep, 100% particles

(f) 10% particles

Figure 5: Image quality under varying levels of detail for different stages of the simulation. Note that the algorithm preserves
the areas of higher densities, even when discarding a significant fraction of particles

Figure 6b shows results for the same dataset under the multi
level representation provided by the z-ordering, where 10%
of the total particles are rendered without substantial loss of
image quality. In this case too, we achieve good weak scaling
with a parallel efficiency of 45% at 128GPUs. We observe an
improved total time using the level of detail with respect to
rendering the entire particle dataset, and thus, an improved
frame rate leading to better interactive performance.

Strong scaling is evaluated selecting a particle dataset
with a total of 2 billion particles, needing a minimum of 8
GPUs to fully accommodate it, and scaling the experiments
to 128 GPUs while keeping the data size fixed. Figure 7 de-
picts the results obtained for an image size of 6144x3072
pixels. Network communication time for compositing dom-
inates at scale, affecting the total frame time and the paral-
lel efficiency, which is 27% at 128GPUs (with respect to 8

(© The Eurographics Association 2015.
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Weak Scaling
250 Million Particles/GPU - 6144x3072 pixels
Parallel DirectSend Compositing
10

Time [sec.]

0.1

0.01
2 4 8 16 32 64 128
GPUs

Total ~“Network Rendering Compositing

(a) Weak scaling, 100% particles

Time [sec.]

Weak Scaling
25 Million particles/GPU - 6144x3072 pixels
Parallel DirectSend Compositing
10

0.1
0.01
2 4 8 16 32 64 128
GPUs
Total ~“Network Rendering Compositing

(b) Weak scaling, 10% particles

Figure 6: Weak scaling evaluation. Subfigure 6a shows that a full dataset of 32 billion particles can be rendered at a resolution

of 6144x3072 pixels when using 128 GPUs.

GPUs.) It is also interesting to observe that for 128 GPUs,
each GPU is responsible for about 15 million particles, a
number comparable to the 25 million particles per GPU in
the 10% weak scaling case, Figure 6b. Accordingly, all tim-
ings for 128 GPUs exhibit similar values in Figures 6b and
7 (compare values at the rightmost side of both figures).

Strong Scaling
2 Billion Particles - 6144x3072 pixels
Parallel DirectSend Compositing
10

1 \

0.1

Time [sec.]

0.01
8 16 32 64 128
GPUs

Total -<Network Rendering Compositing

Figure 7: Strong scaling from 8 to 128 GPUs. A subset of

two billion particles is used in all cases.

5. Conclusion and Future Work

In this paper we have shown multiple advantages of paral-
lel hardware-accelerated point sprite rendering for rendering
large-scale particle datasets. We have initially focused on
rendering performance and image quality, scaling to a full
dataset of 32 billion (3200%) particles. The current imple-
mentation has shown good weak and strong scalability on up
to 128 GPUs. The image quality provided by the proposed

(© The Eurographics Association 2015.

point sprite method preserves dynamic range and clearly out-
performs ray tracing volume rendering, specially for closer
views. Also, the hierarchical reordering method presented
here can be used for Level-of-Detail and preserves impor-
tant features in the data, even when rendering only a small
fraction of the original data. Our implementation can also
scale to large pixel counts, resulting in reasonable frame
rates when combined with the LOD scheme.

Future work will concentrate on interactivity and scaling
to even larger particle datasets. To improve interactivity, the
LOD proposed in this paper could be dynamically adjusted
depending on parameters such as camera distance or tar-
get frame rate. Also, there is room for optimization of the
network communication time during compositing, currently
one of the major observed bottlenecks. For interactive explo-
ration of datasets consisting of more than a trillion particles,
we will study combinations of Level-of-detail, out-of-core,
progressive reading, and other methods.
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