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Abstract
Physically plausible deformable models based on continuum mechanics have been a hot topic in computer
graphics for decades, and many models have been proposed to improve performance speed and stability.
However, most of the existing models focus on isotropic materials, while elastic objects with complex anisotropic
properties are less studied. Based on the observation that a large group of objects have specific internal structures
(fibers) that determine their anisotropic behavior, we propose a fiber incorporated corotational FEM model that
can approximate longitudinally anisotropic deformation. First, a fiber orientation field is used to establish local
frames for each element; then, the orientation information is combined into the FEM model by adding local
transformations on element stiffness matrices. This proposed model can provide a control for directable defor-
mations, and yields realistic anisotropic deformations. Large deformations can be accommodated; meanwhile,
with pre-computation it adds no computational cost to the existing corotational FEM model during simulation.
Convincing experimental results and analytical comparisons are presented, together with an accompanying video
demonstration.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

In computer graphics, simulation of deformable objects has
been developed for nearly three decades since Terzopoulos
et al. [TPBF87] introduced elastically deformable models in
the late 1980s. Many papers have been published, and they
can be categorized into two approaches: geometrically based
deformable models and physically based deformable mod-
els.

Geometrically based deformable models are fast and con-
trollable, which well suit interactive applications such as
computer games. Typical methods such as shape match-
ing method [MHTG05], position based method [MHHR07]
and oriented particles [MC11] can produce visually plausi-
ble dynamic deformations. We refer readers to a recent re-
port [BMO∗14] for details. However, these models cannot
generate physically accurate deformations due to the lack of
physics basis.

Physically based methods are defined by continuum me-

chanics, in which mechanical behaviors are formulated by
the constitutive model of the simulated material. Well es-
tablished methods such as finite difference method, finite
volume method, boundary element method and finite ele-
ment method (FEM) have been adopted in computer graph-
ics, and for a thorough review we refer readers to a survey
paper [NMK∗06] by Nealen et al. For computation of the
continuum model, FEM is proved to be the most suitable
numerical method; it can efficiently solve partial differential
equations on irregularly discretized grid.

Although physically based models are able to yield phys-
ically authentic results, they are much more computation-
ally intensive; and in some cases, the prohibitive execu-
tion time prevents their practical applications. To reduce
the burden in computation, researchers have made a lot
of efforts to improve the stability and speed, such as the
corotational linear FEM (CLFEM) [MG04], the invert-
ible FEM [ITF04], the total Lagrangian explicit dynamics
method (TLED) [MJLW07] [Com10], and the model reduc-
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tion methods [BJ05] [CK05] [KJ12]. However, most of these
methods have only been adopted to deal with deformation of
isotropic materials.

To simulate complex deformations with anisotropic mate-
rials, an example based method [MTGG11] [KTUI12] has
been proposed. Several pre-defined deformed poses of an
object are required, which control the deformations during
dynamic simulation. In [TTL12], virtual muscle fibers are
defined for a simple soft body, whose lengths are deter-
minded by locomotion controllers; the fibers are then used
to control the locomotion of the body, which is similar to
the skeleton-driven deformation. Based on the observation
that many real-world objects are composites with a base ma-
trix material and fiber structures, a fiber reinforced model
[LHR∗12] has been proposed; 1D curves (as the fibers)
are interactively embedded into a solid object, and internal
forces are computed according to deformation energies of
both the solid and curves. These methods can produce im-
pressive deformations, but adds much more computational
cost to the existing FEM model. Meanwhile, a recent pa-
per [LBKS14] provides an intuitive and stable way for the
user to tune material parameters for orthotropic materials.

In this paper, we propose a fiber incorporated FEM model
for anisotropic elastic materials. Especially, we are inter-
ested in transversely isotropic materials which are com-
monly found in fiber constructed objects, such as plant tis-
sues and muscular tissues in animals; thus, in this paper
anisotropic refers to longitudinally anisotropic except the
discussions/descriptions of related work and background.
The main advantages of our model are:

i. Rather than computing deformation energy of the em-
bedded curves as in the fiber reinforced model, we use the
directions of the curves only to define an orientation field.

ii. Instead of one spatial coordinate system, a local frame
is established for each element according to the fiber direc-
tions; element stiffness matrices and internal forces are com-
puted in these local frames. By coordinate system transfor-
mations, we can then assemble all the elements in the global
frame to achieve the anisotropic deformation.

iii. A corotational linear FEM model is used, which is
faster than nonlinear FEM models; and large deformations
can be accommodated.

iv. Additional computations in our model can be done
in pre-computation phase, thus no additional computational
cost is added to the existing FEM model during simulation.

In the following sections, we first introduce the for-
mulation of the anisotropic elasticity in Section 2. Then,
we present our fiber incorporated corotational linear FEM
model in Section 3. We show the simulation examples to
demonstrate the effectiveness of our model, and give some
comparative analysis in Section 4. Convincing real-time an-
imations can be seen in the accompanying video.

2. Formulation of Linear Anisotropic Elasticity

In continuum mechanics, the mechanical behavior of a ma-
terial is defined by constitutive equation (the stress-strain
law), which represents the relationship between stress σ and
strain ε as σ = Cε, and C is the elastic stiffness matrix. In
the three-dimensional case, it can be written in a contracted
form [TH96] as

σx
σy
σz
τxy
τyz
τzx

 =


C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26
C33 C34 C35 C36

C44 C45 C46
sym. C55 C56

C66




εx
εy
εz
γxy
γyz
γzx

 , (1)

where C is a 6× 6 symmetric matrix; σ and ε are 6×
1 column matrices; σ = (σx σy σz τxy τyz τzx)

Tand ε =

(εx εy εz γxy γyz γzx)
T, where the single-letter subscripted σ

and ε are normal stresses and normal strains respectively,
and the double-letter subscripted τ and γ are shear stresses
and shear strains respectively. Therefore, it can have as many
as 21 elastic parameters.

2.1. Transversely Isotropic Material

The number of elastic parameters can be reduced when
the material possesses certain material symmetry properties.
Isotropic materials are an extreme case which has only two
material parameters, and its mechanical response is indepen-
dent of directions in the material space.

We start with transversely isotropic materials which are
commonly seen in real world objects. This kind of materials
can be characterized by a symmetry plane and an axis or-
thogonal to this plane. In our discussions, the material sym-
metry is defined in a three-dimensional coordinate system
{x1,x2, x3}; for example, the symmetry planes includes the
x3 = 0 and any plane that contains the x3-axis. Thus, the
number of elastic parameters is reduced to five, such that

C =


C11 C12 C13 0 0 0

C22 C23 0 0 0
C33 0 0 0

C44 0 0
sym. C55 0

C66

 , (2)

where C11 =C22,C13 =C23,C55 =C66,C44 =
1
2 (C11−C12).

2.2. Continuum Elasticity

Given an elastic body Ω, its deformation can be specified
by a displacement field d = d(x). That is, a material point x
in the undeformed configuration is deformed to a point p =
x+d in the deformed configuration. For small deformations,
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the strain ε can be defined by Cauchy’s linear strain tensor,

ε =



∂

∂x 0 0
0 ∂

∂y 0

0 0 ∂

∂z
∂

∂y
∂

∂x 0

0 ∂

∂z
∂

∂y
∂

∂z 0 ∂

∂x


 u

v
w

= Ld, (3)

where L is the strain operator. The elastic strain energy can
then be defined by

U =
∫

Ω

1
2

ε
TCε dΩ. (4)

As for the dynamics of deformation, it is defined by New-
ton’s Second law,

md̈+cḋ+fint = fext , (5)

where m is the mass of a material point, d̈ the acceleration, c
the damping coefficient, ḋ the velocity, fint =

∂U
∂x the internal

force, and fext the external applied force.

Finite element method solves this continuum problem by
discretizing the continuous body into a finite amount of
small elements, and the mechanical quantities are obtained
by interpolation of the values on the nodes using shape func-
tions.

3. Fiber Incorporated FEM Model

3.1. Accomodation of Large Deformation with a
Corotational Linear FEM Model

We propose to incorporate a fiber orientation field into the
CLFEM model [MG04] that can deal with larger deforma-
tions than a linear model. We describe the key formula for
implementing the CLFEM in this section; in the next section,
we show how to incorporate the fiber orientation information
with the CLFEM to simulate the dynamics of anisotropic
elastic materials. Note that most of the discussions encom-
pass a single tetrahedron element, in which a quantity is su-
perscripted by ’e’.

In our algorithm, a tetrahedral mesh is utilized. For a
tetrahedron element, the displacement of the four nodes
is denoted by a 12× 1 vector ue = (u0

T,u1
T,u2

T,u3
T)T,

where ui = (ui, vi, wi)
T. Thus the displacement field in the

element can be computed by

d(x) =
3

∑
i=0

Ni (x)ue = Nue, (6)

where Ni (x) are the linear shape functions, and thus N is a
3× 12 matrix as a interpolation operator. The elastic strain
energy in Equation 4 can be derived from Equations 3 and 6
as

U =
∫

Ω

1
2
(
LNue)TC

(
LNue) dΩ. (7)

Thus the element internal force can be derived as

fe
int =

∂U
∂ue =

∫
Ω

(LN)TC(LN) dΩue = Keue, (8)

where Ke is the 12×12 element stiffness matrix, i.e.,

Ke = (LN)TC(LN)
∫

Ω

dΩ = (LN)TC(LN) V e, (9)

and V e is the element volume.

The linear FEM model can only be suitable for small de-
formations. In order to use the linear model for large defor-
mations, we adopt the corotational model [MG04], in which
the internal force fe

int is computed by the following equation:

fe
int = ReKe

((
Re)Tx−x0

)
, (10)

where x and x0 are the deformed and undeformed position
vector of the four nodes, and Re is a rotation matrix, which
is computed by polar decomposition of the deformation gra-
dient. With the help of the rotational transformations, the un-
realistic volume enlargement caused by large deformations
can be moderated, which can approximate nonlinear defor-
mations. As will be demonstrated in our experiments in Sec-
tion 4, large deformations in the palm tree under gravity and
dragging force can be performed well.

3.2. Accomodation of Fiber Field with the FEM Model

We now design the mechanism for a fiber incorporated FEM
model for more physically plausible anisotropic deforma-
tions. For anisotropic materials with internal fiber structures,
it is these internal fiber structures that actually control their
transversely anisotropic behaviors, and our FEM model is
formulated by utilizing such internal fiber orientation infor-
mation.

Given the fiber orientations for the simulated object, a lo-
cal frame {m1,m2,m3} is established for each tetrahedron
element: with one axis (here we use m3) coinciding with
the fiber orientation, and the other two axes lying on the
plane perpendicular to m3. We define a local orientation ma-
trix as Me=(m1,m2,m3), and denote quantities in this lo-
cal frame by a hat ’ˆ’. Here, Me plays an essential role in
our model. Note that Me is extended to a 12×12 matrix for
transformation of an element.

Instead of computing the element stiffness matrix in the
global frame, which is the case for isotropic materials, we
compute the element stiffness matrix in local frames. The
element internal force and stiffness matrix are computed by
the following procedure:

1. Compute the element stiffness matrix with transversely
isotropic elastic stiffness matrix C,

Ke = (LN)TC(LN) V e.
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2. Compute the corotated displacement vector in the local
orientation frame,

ûe = Me(
(
Re)Tx−x0).

3. Then, the element internal force in the local frame can be
computed as

f̂eint = Keûe.

4. Thus, the element internal force in the global frame can
be computed as

fe
int = ReMeTKeûe = ReK̂e

((
Re)Tx−x0

)
, (11)

where K̂e = MeTKeMe is the new element stiffness ma-
trix of our model.

By elements assembly, the matrices K̂e of all the elements
can be assembled to a global stiffness matrix K̂.

Due to the fact that Me can be pre-computed, K̂ can
also be pre-computed. Therefore, in our fiber incorporated
model, no additional computational cost is introduced dur-
ing the simulation procedure.

3.3. Implicit Time Integration for Dynamics

For the dynamics simulation, the equations of motion are
then given by a system of second-order ordinary differential
equations (the Lagrangian equation):

Mü+Du̇+fint = fext . (12)

For a tetrahedral mesh with n vertices, u ∈ R3n, u̇ and ü
are the velocity and acceleration vectors. M ∈ R3n×3nis the
mass matrix, D ∈R3n×3n the damping matrix, fint ∈R3n the
internal nodal force, and fext ∈ R3n the external force.

An implicit backward Euler integration scheme
[MSJT08] is used, for the reason that it is stable for
large time steps. The updated (time-stepping) rule is as
follows:

u̇t+1 = u̇t+hüt+1

ut+1 = ut+hu̇t+1
(13)

where h is the size of each time step.

At time (t +1), we get

u̇t+1 = u̇t+hM−1
[
fext−Du̇t+1−RK̂

(
RTxt+1−x0

)]
xt+1 = xt +hu̇t+1

Finally we can get a linear system:(
M+hD+h2RK̂RT

)
u̇t+1 =Mu̇t +h

(
fext −RK̂RTxt +RK̂x0

)
.

By solving the linear system, we can get u̇t+1, thus the sim-
ulation state (velocity and position vector) can be updated.

4. Experiments and Assessments

To assess the effectiveness of our algorithm, we construct
several dynamic simulations with objects of transversely
isotropic materials.

4.1. Impact of Fiber Field on the Elastic Stiffness

Without loss of generality, fiber orientation fields in our
models are generated by a sketch-based interface. The user is
allowed to draw a few strokes on the surface or a sliced inter-
nal surface boundary of the tetrahedral mesh, to roughly de-
fine the fiber directions. Then, a smooth interpolation is per-
formed to automatically generate a smooth fiber orientation
field on each nodes of the tetrahedral mesh (as in [TAI∗08]).
Eventually, a fiber orientation is generated for each tetrahe-
dron element with barycentric interpolation. This procedure
is illustrated with a palm tree model in Figure 1 (a) and (b).
Note that the green dots represent fixed boundary nodes, the
red lines are the strokes drawn by the user, and the generated
elements orientation field is shown in purple.

(a) drawing strokes on undeformed model (b) element fiber orientation field

Figure 1: Palm tree model: fiber field generation

As in Equation 2, five parameters can be used to define
the material property of a transversely isotropic material,
which affect the material’s resistance to normal and shear
forces. For comparison of deformation with different ma-
terial properties, we start with the matrix C of an isotropic
material such that:

C11 =C22 =C33 = λ+2µ,
C12 =C13 =C23 = λ,
C44 =C55 =C66 = µ,

where λ and µ are given Lamé coefficients (related to
Young’s modulus and Poisson’s ratio), and these two
constants determine the constitutive model of an isotropic
material. This C matrix can be changed according to
Equation 2, and should be positive-definite. Changing C33
to a larger value makes the material stiffer along the fiber
orientation. Likewise, other parameters can also be changed
to alter the material’s resistance to normal and shear forces
with respect to the local frames (Me) .
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4.2. Fibers with Heterogeneous Materials

To demonstrate the capability of our fiber incorporated FEM
model, a complex palm tree model made of heterogeneous
materials is simulated, i.e., the trunk and leaves have dif-
ferent material properties. In Figure 2, we show the defor-
mations of the palm tree model under gravity. Figure 2 (a)
shows the original undeformed model. As a basis for com-
parisons, Figure 2 (b) shows deformation of the whole tree
which is made of an isotropic material. Being physically
true, it bends to the ground if the material is too soft (in-
flexible to move if the material is too stiff). In Figure 2 (c),
we construct the tree model using heterogeneous materials
for the trunk and leaves. As can be seen, the heterogeneous
FEM model gets stronger support for its trunk, preventing
unnatural bending. Furthermore, in nature, a leaf is much
stiffer along its vein than in the other directions, and the tree
also exhibits a stiffer material property along its trunk. Based
on this observation, we increase the value of C33. By incor-
porating fibers into the heterogeneous model, we are able to
achieve that, and Figure 2 (d) shows a physically plausible
deformation of the palm tree. The tree now becomes stiffer
along the fibers while keeping the flexible (or soft) properties
in the other directions, as shown in Figure 2 (d).

(a) undeformed shape (b) isotropic and homegeneous

(c) iostropic and heterogeneous (d) fiber incorporated
and heterogeneous model

Figure 2: Comparisions of different FEM models in defor-
mation under gravity (See the accompanying video)

Figure 3 is for the comparison of deformations of the palm
tree under the same gravity and dragging force. The fiber
incorporated model in Figure 3 (b) exhibits strong stiffness
along the vein direction that prevents over-deformation of
the trunk which is the case in Figure 3 (a). Meanwhile, the
fiber model preserves the leaf from stretching as in Figure

3 (b), in contrast to the unnatural stretching of the leaf in
Figure 3 (a).

(a) without fiber (b) with fiber incorporated

Figure 3: Comparisons of deformation of the FEM models
under dragging force (See the accompanying video)

Besides convincing improvement of the visual results
in physically plausible deformation, the fiber incorpo-
rated FEM model only adds computational cost in pre-
computation, thus achieving the same performance as the
existing CLFEM model. In our experiments, both the palm
models with and without fibers perform at 15 fps on CPU
implementation, with 5664 tetrahedrons and 2064 nodes
(including 16 fixed nodes). (Intel Xeon E5507@2.27 MHz
CPU, NVIDIA Quadro FX 5800 GPU.)

4.3. Fibers Incorporation with Complex Topological
Structures

Figure 4: A beating heart simulation (See the accompanying
video)

Muscular tissues are typical example of the transversely
isotropic material. For example, the beating movement of the
heart is controlled by the regular periodic contraction of the
myocardium. Using the fiber guided model, we can simulate
the complex movements of the heart beating using the given
fiber orientations. To further explore the application of our
fiber incorporated FEM model for more complex topologi-
cal structures, we conduct an experiment with a heart which
possesses two chambers and contracting muscles. The dy-
namic heart contraction cycles driven by periodic external
forces along the fiber directions can be viewed in the ac-
companying video.
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5. Conclusion

We have presented a fiber incorporated FEM model to deal
with transversely isotropic materials, for objects with spe-
cific internal structures (heterogeneous tissues and fibers).
This proposed model is proven to be effective for realistic
longitudinally anisotropic deformations.

The key idea is to use a fiber orientation field to es-
tablish local element coordinate frames for FEM compu-
tation. A more flexible user interface for fiber generation
and material parameters adjustment has yet to be developed.
In specific applications, this orientation field can be gener-
ated even from Diffusion Tensor MRI (DTMRI) techniques
(e.g. [RSG07] [SWD∗09]) for more accurate mechanical and
physiological analysis. This fiber FEM model can be fur-
ther extended to simulate other kinds of anisotropy, such as
orthotropic materials in the paper [LBKS14] that suggested
using 3D uvw texture map to generate rotation matrix, given
a local frame which can represent different material plane
symmetries.

Acknowledgement We developed our C++ code based on
Vega FEM [SSB13] by Jernej Barbič. The sketch-based in-
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