Pacific Graphics 2023
The 31st Pacific Conference on Computer Graphics and Applications
Short Papers and Posters
Daejeon, South Korea
October 10 – 13, 2023

Conference Chairs
Michael S. Brown, York University, Canada
Wolfgang Heidrich, KAUST, South Korea
Sung-Hee Lee, KAIST, South Korea

Program Chairs
Raphaëlle Chaine, LIRIS, Université Lyon 1, CNRS, France
Zhigang Deng, University of Houston, United States
Min H. Kim, KAIST, South Korea

Local Arrangement Chairs
Seung-Hwan Baek, Postech, South Korea
Minhyuk Sung, KAIST, South Korea

Proceedings Production Editor
Dieter Fellner (TU Darmstadt & Fraunhofer IGD, Germany)

DOI: 10.2312/pg.20232022
Preface

The Pacific Graphics 2023 annual conference was held in Daejeon from October 10 to 13, 2023. The conference provides a unique opportunity for experts to present their technical contributions in computer graphics, and the full papers selected for publication in the Computer Graphics Forum journal are considered to be the most prestigious feature of the conference. Also, a selection of short papers are published in the Proceedings of Pacific Graphics 2023 and archived in the Eurographics Digital Library.

The International Program Committee (IPC) of PG2023 consisted of a group of 72 experts with a will that the committee is regularly renewed. The committee received a total of 191 full submissions, which were assigned to two IPC members as primary or secondary reviewers. We assigned up to five papers to each reviewer based on their preferences, expertise, conflicts, and automatically computed matching scores between IPC members and submitted papers. The primary and secondary reviewers in turn invited two additional tertiary reviewers on each submission.

After collecting the initial four reviews per submission, the authors had five days to consult these reviews and write a 1000-word rebuttal, addressing key questions and potential misinterpretations. Finally, all reviewers assigned to a paper read the rebuttal and all reviews and together reached an initial decision.

This year, the IPC meeting was conducted virtually through a one-week virtual asynchronous meeting and discussions between the IPC members were performed off-line by a bulletin board and other means of personal communication. Each paper had a public discussion board where IPC members contributed to discussions where they felt competent.

All papers conditionally accepted with minor revisions went through a short second review cycle, where evaluations from the primary and sometimes the secondary reviewers were taken into consideration before the final acceptance. In total, 56 papers out of the 191 full submissions were accepted with minor revisions for a 29.32 % acceptance rate, while 9 were recommended for a fast-track review process with major revisions to be considered for publication in a future issue of Computer Graphics Forum. Also, 11 papers were accepted with minor revisions for publication in the Proceedings. The papers covered a diverse range of topics, including machine learning, generative modeling, computational photography, geometry, meshes, appearance and shading, texture, rendering, 3D scans analysis, physical simulation, human animation and motion capture, simulation of clothes and crowds, editing, 3D printing, fabrication.

It is worth noting that for all submissions conflict-of-interest was managed on all levels, from reviewers, committee, advisory board, best paper committee, up to the chairs. The review process was double-blind and in case the original set of reviewers did not conclude with a decision, additional reviewers were invited to perform a full review and assist the decision process. Best papers were selected by a dedicated awards committee who selected among the top 12 papers based on overall review scores.

We would like to express our gratitude to all the members of the IPC who dedicated their time to finding tertiaries, reviewing and discussing papers, and shepherding the accepted papers undergoing the minor revision cycle. We also thank all the reviewers for providing high-quality reviews and the authors for their efforts in preparing and revising the submitted papers. We would like to thank Stefanie Behnke from Eurographics Publishing for her outstanding support even at summer time. Lastly, we appreciate the onsite conference in Deajeon, where a large part of the computer graphics community could meet face-to-face, despite some difficulties to get visa in some countries. We acknowledge the organizing team for their flexibility in these challenging times.
We are honored to present the full paper proceedings of Pacific Graphics 2023 and believe that these papers reflect the extraordinary variety of computer graphics research and its best contributions. We hope that you will find both the papers and the entire conference thought-provoking and inspiring for your future endeavors.

Pacific Graphics 2023 Program Co-Chairs
Raphaëlle Chaine, LIRIS, Université Lyon 1, CNRS, France
Zhigang Deng, University of Houston, United States
Min H. Kim, KAIST, South Korea
Table of Contents

Neural Rendering

SS-SfP: Neural Inverse Rendering for Self Supervised Shape from (Mixed) Polarization 1
Ashish Tiwari and Shanmuganathan Raman

Sketch-based Modeling

SketchBodyNet: A Sketch-Driven Multi-faceted Decoder Network for 3D Human Reconstruction 11
Fei Wang, Kongzhang Tang, Hefeng Wu, Baoquan Zhao, Hao Cai, and Teng Zhou

Imaging

WaveNet: Wave-Aware Image Enhancement ... 21
Jiachen Dang, Zehao Li, Yong Zhong, and Lishun Wang

Motion Capture and Generation

Feature-Sized Sampling for Vector Line Art ... 31
Stefan Ohrhallinger, Anal Dev Parakkat, and Pooran Memari

DASKEL: An Interactive Choreographical System with Labanotation-Skeleton Translation 39
Siyuan Luo, Borou Yu, and Zeyu Wang

Image Editing and Color

Multi-Stage Degradation and Content Embedding Fusion for Blind Super-Resolution 47
Haiyang Zhang, Mengyu Jiang, and Liang Liu

Images, Vectorization, and Layouts

Automatic Vector Caricature via Face Parametrization ... 57
Koki Madono, Yannick Hold-Geoffroy, Yijun Li, Daichi Ito, Jose Echevarria, and Cameron Smith

Details and Styles on 3D Models

A Style Transfer Network of Local Geometry for 3D Mesh Stylization 65
Hongyuan Kang, Xiao Dong, Xafei Guo, Juan Cao, and Zhonggui Chen

Learning-based Reflectance

Local Positional Encoding for Multi-Layer Perceptrons ... 73
Shin Fujieda, Atsushi Yoshimura, and Takahiro Harada

Radiance and Appearance

Generalizable Dynamic Radiance Fields For Talking Head Synthesis With Few-shot 81
Rujing Dang, Shaohui Wang, and Haoqian Wang
Table of Contents

Color Harmonization on Images

Text2Mat: Generating Materials from Text ... 89
Zhen He, Jie Guo, Yan Zhang, Qinghao Tu, Mufan Chen, Yanwen Guo, Pengyu Wang, and Wei Dai

Posters

Sketch-to-Architecture: Generative AI-aided Architectural Design 99
Pengzhi Li, Baijuan Li, and Zhiheng Li

Avatar Emotion Recognition using Non-verbal Communication ... 103
Jalal Safari Bazargani, Abolghasem Sadeghi-Niaraki, and Soo-Mi Choi

TreeGCN-ED: A Tree-Structured Graph-Based Autoencoder Framework For Point Cloud Processing 105
Prajwal Singh, Ashish Tiwari, Kaustubh Sadekar, and Shanmuganathan Raman

Hand Shadow Art: A Differentiable Rendering Perspective ... 107
Aalok Gangopadhyay, Prajwal Singh, Ashish Tiwari, and Shanmuganathan Raman

Reconstructing Baseball Pitching Motions from Video .. 109
Jiwon Kim, Dongkwon Kim, and Ri Yu

A Simple Stochastic Regularization Technique for Avoiding Overfitting in Low Resource Image Classification ... 111
Ya Tu Ji, Bai Lun Wang, Qing Dao Er Ji Ren, Bao Shi, Nier E. Wu, Min Lu, Na Liu, Xu Fei Zhuang, Xuan Xuan Xu, Li Wang, Ling Jie Dai, Miao Miao Yao, and Xiao Mei Li

Multi-scale Monocular Panorama Depth Estimation ... 113
Payal Mohadikar, Chuanmao Fan, Chenxi Zhao, and Ye Duan

Combining Transformer and CNN for Super-Resolution of Animal Fiber Microscopy Images 115
Jiagen Li, Yatu Ji, Min Lu, Li Wang, Lingjie Dai, Xuanxuan Xu, Nier Wu, and Na Liu

Detection of Impurities in Wool Based on Improved YOLOV8 .. 117
Yang Liu, Yatu Ji, Qing Dao Er Ji Ren, Bao Shi, Xufei Zhuang, Miaomiao Yao, and Xiaomei Li

Progressive Graph Matching Network for Correspondences .. 119
Huihang Feng, Lupeng Liu, and Jun Xiao

Emotion-based Interaction Technique Using User’s Voice and Facial Expressions in Virtual and Augmented Reality ... 121
Beom-Seok Ko, Ho-San Kang, Kyuhong Lee, Manuel Braunschweiler, Fabio Zünd, Robert W. Sumner, and Soo-Mi Choi

Color3d: Photorealistic Texture Mapping for 3D Mesh ... 123
Chenxi Zhao, Chuanmao Fan, Payal Mohadikar, and Ye Duan
Table of Contents

Visualization System for Analyzing Congestion Pricing Policies ... 125
SeokHwan Choi, Seongbum Seo, Sangbong Yoo, and Yun Jang

Revisiting Visualization Evaluation Using EEG and Visualization Literacy Assessment Test 127
Soobin Yim, Chanyoung Jung, Chanyoung Yoon, Sangbong Yoo, Seongwon Choi, and Yun Jang
International Program Committee

Alexa, Marc - TU Berlin
Aristidou, Andreas - University of Cyprus
Assarsson, Ulf - Chalmers University of Technology
Baek, Seung-Hwan - POSTECH
Batty, Christopher - University of Waterloo
Benes, Bedrich - Purdue University
Birsak, Michael - KAUST (King Abdullah University of Science and Technology)
Bonneel, Nicolas - CNRS / UNIV. LYON
Chen, Xuejin - University of Science and Technology of China
Cho, Sunghyun - POSTECH
Coeurjolly, David - Université de Lyon, CNRS, LIRIS
Corsini, Massimiliano - ISTI-CNR
Duchscherer, Carsten - Karlsruhe Institute of Technology
Digne, Julie - LIRIS - CNRS
Dodgson, Neil - Victoria University of Wellington
Dong, Yue - Microsoft Research Asia
Fu, Hongbo - City University of Hong Kong
Gain, James - University of Cape Town
Galin, Eric - LIRIS
Gao, Lin - Institute of Computing Technology, Chinese Academy of Sciences
Giorgi, Daniela - National Research Council of Italy - Institute of Information Science and Technologies
Gobbetti, Enrico - CRS4
Gu, Xianfeng David - State University of New York at Stony Brook
Günther, Tobias - FAU Erlangen-Nuremberg
Guo, Xiaohu - University of Texas at Dallas
He, Ying - Nanyang Technological University
Huang, Jin - Zhejiang University
Huang, Qixing - UT Austin
Jin, Aobo - University of Houston-Victoria
Jin, Xiaogang - State Key Lab of CAD&CG, Zhejiang University
Klein, Reinhard - University of Bonn
Koyama, Yuki - National Institute of Advanced Industrial Science and Technology (AIST)
Le, Binh - AMD Research
Lee, Joo Ho - Sogang University
Lee, Seunghyung - POSTECH
Li, Xin - Texas A&M University
Liu, Ligang - University of Science and Technology of China
Liu, Lingjie - University of Pennsylvania
Malpica, Sandra - Universitat Politecnica de Catalunya
Martínez, Jonàs - Inria
Matkovic, Kresimir - VRVis Research Center
Meyer, Alexandre - Université Lyon 1
Musialski, Przemyslaw - New Jersey Institute of Technology
International Program Committee

Noh, Junyong - KAIST
Ohrhallinger, Stefan - TU Wien
Parakkat, Amal Dev - Institut Polytechnique de Paris
Patane, Giuseppe - CNR-IMATI
Paulin, Lois - Adobe Research Paris
Qin, Hong - Stony Brook University (SUNY at Stony Brook)
Rohmer, Damien - Ecole Polytechnique
Rushmeier, Holly - Yale University
Schroeder, Craig - UC Riverside
Subr, Kartic - University of Edinburgh
Sun, Qi - New York University
Sung, Minhyuk - KAIST
Takayama, Kenshi - CyberAgent
Thiery, Jean-Marc - Adobe Research
Tong, Xin - Microsoft Research Asia
Tong, Yiyi - Michigan State University
Wang, Charlie C.L. - The University of Manchester
Wang, Huamin - Style3D
Wang, Rui - Zhejiang University
Wang, Wenping - University of Hong Kong
Wu, Hongzhi - Zhejiang University
Wu, Kui - LightSpeed Studios
Xu, Kai - National University of Defense Technology
Xu, Weiwei - Zhejiang University
Yan, Ling-Qi - UC Santa Barbara
Yoon, Sungeui - KAIST
Zhao, Shuang - University of California, Irvine
Zhou, Kun - Zhejiang University
External Reviewers

Aanjaneya, Mridul
Agus, Marco
Ahuja, Chaitanya
Alexandros, Keros
Aliaga, Carlos
Argudo, Oscar
Ashtari, Amirsaman
Babaei, Vahid
Baek, Seungryul
Ballester-Ripoll, Rafael
Banterle, Francesc
Bauer, David
Berg, Astrid
Berger, Matthew
Bessmeltsev, Mikhail
Bieron, James
Boletti, Federico
Borovikov, Igor
Borsoi, Ricardo
Bosnar, Lovro
Brooks, Stephen
Bruckner, Stefan
Butler, Tara
Cammarasana, Simone
Cao, Chen
Cao, Juan
Capece, Nicola
Cha, Sihun
Chai, Zenghao
Cheema, Noshaba
Chen, He
Chen, Kang
Chen, Nengun
Chen, Peter Yichen
Chen, Renjie
Chen, Shu-Yu
Chen, Wei
Chen, Xuhui
Chen, Yingcong
Chen, Zhonggui
Chermain, Xavier
Chien, Edward
Chitalu, Floyd
Chiu, Wei-Chen
Choi, Byungkuk
Choi, Kiseok
Chu, Mengyu
Ciortan, Irina
Crespo, Miguel
Creus, Carles
Cui, Jiahao
De Benetti, Francesca
Deng, Chongyang
Deng, Qixin
Dib, Abdallah
Ding, Yu
Doloni, Dan
Dong, Qiujie
Dong, Xiao
Donini, Elena
Echevarria, Jose
Eisemann, Martin
Elek, Oskar
Eom, Haegwang
Fan, Xin
Fang, Xianyong
Faraj, Noura
Fei, Ben
Felle Olsen, Tim
Feng, Fan
Ferri, Massimo
Frboni, Basile
Fryazinov, Oleg
Fu, Qiang
Fu, Xiao-Ming
Fu, Yanwei
Gallo, Giovanni
Gandhi, Vineet
Gao, Chengying
Gao, Qingzhe
Gao, Yang
Garces, Elena
Geng, Jiahao
Gerard, Yan
Ghosh, Abhijeet
Ghosh, Anindita
Gingold, Yotam
Grosch, Thorsten
Gryaditskaya, Yulia
Gu, Shuyang
Gu, Shuyang
Guerrero, Paul
Guerrero-Vi, Julia
Guo, Jianwei
Guo, Jie
Guo, Yu
Ha, Hyunho
Habermann, Marc
Hall, Peter
Hao, Yue
He, Zewei
Heidrich, Wolfgang
Heo, Jae-Pil
Hou, Fei
Hou, Qiming
Hu, Bingyang
Hu, Ruizhen
Hu, Yiwei
Huang, Hua
Huang, Ian
Huang, Yifei
Huang, Yi-Hua
Huang, Zhiyang
Idougli, Ramzi
Jehl, Jean-Claude
Jang, Wondong
Jaspe, Alberto
Jeon, Daniel S.
Jiang, Chenfanfu
Jiang, Zhenyu
Jin, Kyounghwan
Jin, Wonjoon
Jin, Xiaogang
Jiong, Chen
Ju, Tao
Kaichun, Mo
External Reviewers

Kazhdan, Misha
Khan, Rizwan
Kim, Junho
Kim, Soomin
Kim, Youngchan
Kosinka, Jiri
Krüger, Jens
Kusupati, Uday
Kwon, Gihyun
Lachaud, Jacques-Olivier
Laehner, Zorah
Lai, Yu-Kun
Lawonn, Kai
Lee, Hyunjoon
Lee, Ji Hyun
Lee, Seokju
Lee, Yoosang
Lei, Chenyang
Lei, Jiahui
Lewin, Chris
Li, Changjian
Li, Chongyang
Li, Chen
Li, Dawei
Li, Jing
Li, Manyi
Li, Weizi
Li, Xiaoxue
Li, Zhengqin
Liang, Jingyun
Liang, Yongqing
Liang, Zhenxiao
Liao, Jing
Lin, Daqi
Lin, Jenny
Lin, Juncong
Lin, Yi
Liu, Chenxi
Liu, Fenglin
Liu, Jingyuan
Liu, Libin
Liu, Ruiyang
Liu, Shaowei
Liu, Yuan
Liu, Zheng
Lu, Changsheng
Lu, Jiaxin
Lu, Lin
Lu, Xuequan
Luo, Xiaogang
Luo, Zhongjin
Ma, Luming
Maejima, Akinobu
Maggioli, Filippo
Manfredi, Gilda
Mariotti, Octave
Martinez, Rafael
Matuszewski, Bogdan
Memari, Pooran
Memery, Sean
Meng, Nan
Menna, Fabio
Mitchell, Kenny
Mitra, Kaushik
Møller Jensen, Patrick
Moon, Bochang
MortezaPOOR, Soroosh
Moscoso Thompson, Elia
Mu, Tai-Jiang
Mullia, Krishna
Musoni, Pietro
Muthuganapathy, Ramanathan
Nam, Giljoo
Newson, Alasdair
Nguyen, Rang
Nicolet, Baptiste
Ostromoukhov, Victor
Pan, Hao
Panetta, Julian
Pang, Jiahao
Pang, Kaiyue
Patney, Anjul
Peiris, Himashi
Perche, Simon
Peytavie, Adrien
Pirk, Sören
Pjanić, Petar
Pujades, Sergi
Qian, Jing
Qiao, Yi-Ling
Raidou, Renata Georgia
Rasmuson, Svend	n
Ren, Siyu
Ren, Yingying
Rhodin, Helge
Rim, Salmi
Romanengo, Chiara
Romero, Victor
Sangkloy, Patson
Sarandi, Istvan
Schreck, Tobias
Schübler, Vincent
Seo, Kwanggyoon
Shao, Tianjia
Shi, Yifei
Shin, Hyun Joon
Shinar, Tamar
Shugrina, Maria
Silveira, Thiago
Sintorn, Erik
Skouras, Melina
Slamanig, Daniel
Son, Hyeongseok
Song, Peng
Sra, Misha
Su, Haozhe
Sun, Siqian
Sztrajman, Alejandro
Tan, Jianchao
Tang, Jingwei
Tang, Keke
Tariq, Taimoor
Trusty, Ty
Um, Kiwon
Umetani, Nobuyuki
<table>
<thead>
<tr>
<th>External Reviewers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valasek, Gábor</td>
</tr>
<tr>
<td>Van Kaick, Oliver</td>
</tr>
<tr>
<td>Wang, Beibei</td>
</tr>
<tr>
<td>Wang, Chen</td>
</tr>
<tr>
<td>Wang, Ningna</td>
</tr>
<tr>
<td>Wang, Shengfa</td>
</tr>
<tr>
<td>Wang, Tuanfeng Y.</td>
</tr>
<tr>
<td>Wang, Yue</td>
</tr>
<tr>
<td>Wang, Yufei</td>
</tr>
<tr>
<td>Wang, Yu-Shuen</td>
</tr>
<tr>
<td>Wei, Hu</td>
</tr>
<tr>
<td>Wei, Wei</td>
</tr>
<tr>
<td>Weier, Philippe</td>
</tr>
<tr>
<td>Weinmann, Michael</td>
</tr>
<tr>
<td>Weiss, Tomer</td>
</tr>
<tr>
<td>Wilkinson, Michael H.F.</td>
</tr>
<tr>
<td>Worchel, Markus</td>
</tr>
<tr>
<td>Wu, Jun</td>
</tr>
<tr>
<td>Wu, Lifan</td>
</tr>
<tr>
<td>Wurster, Skylar</td>
</tr>
<tr>
<td>Xia, Menghan</td>
</tr>
<tr>
<td>Xia, Shihong</td>
</tr>
<tr>
<td>Xiang, Jianfeng</td>
</tr>
</tbody>
</table>
Author Index

Bazargani, Jalal Safari 103
Braunschweiler, Manuel 121
Cai, Hao 11
Cao, Juan 65
Chen, Mufan 89
Chen, Zhonggui 65
Choi, SeokHwan 125, 127
Choi, Soo-Mi 103, 121
Dai, Lingjie 115
Dai, Lingjie 115
Dai, Wei 89
Dang, Jiachen 21
Dang, Ruijing 81
Dong, Xiaoyu 65
Duan, Ye 113, 123
Echevarria, Jose 57
Fan, Chuanmao 113, 123
Feng, Huihang 119
Fujieda, Shin 73
Gangopadhyay, Aalok 107
Guo, Jie 89
Guo, Xufei 65
Guo, Yanwen 89
Harada, Takahiro 73
He, Zhen 89
Hold-Geoffroy, Yannick 57
Ito, Daichi 57
Jang, Yun 125, 127
Ji, Ya Tu 111
Ji, Yatu 115, 117
Jiang, Mengyu 47
Jung, Chanyoung 127
Kang, Ho-San 121
Kang, Hongyuan 65
Kim, Dongkwan 109
Kim, Jiwon 109
Ko, Beom-Seok 121
Lee, Kyuhong 121
Li, Baijuan 99
Li, Jiagen 115
Li, Pengzhi 99
Li, Xiaomei 117
Li, Xiao 113, 123
Li, Xuan 113, 123
Li, Zhiheng 99
Liu, Liang 47
Lu, Min 111, 115
Madono, Koki 57
Memari, Pooran 31
Mohadikar, Payal 113, 123
Ohrhallinger, Stefan 31
Parakkat, Amal Dev 31
Raman, Shanmuganathan 1, 105, 107
Ren, Qing Dao Er Ji 111, 117
Sadeghi-Niaraki, Abolghasem 103
Sadeghi-Niaraki, Abolghasem 103
Seo, Seongbum 125
Shi, Bao 111, 117
Singh, Prajwal 105, 107
Smith, Cameron 57
Sumner, Robert W. 121
Tiwari, Ashish 1, 105, 107
Tu, Qinghao 89
Wang, Bai Lun 111
Wang, Fei 11
Wang, Haoqian 81
Wang, Li 111, 115
Wang, Lishun 21
Wang, Pengyu 89
Wang, Shaohui 81
Wang, Zeyu 39
Wu, Hefeng 11
Wu, Nier 115
Wu, Nier E. 111
Xiao, Jun 119
Xu, Xuan 113, 115
Xu, Xuanxuan 115
Yao, Miao Miao 111
Yao, Miaomiao 117
Yim, Soobin 127
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoo, Sangbong</td>
<td>125, 127</td>
</tr>
<tr>
<td>Yoon, Chanyoung</td>
<td>127</td>
</tr>
<tr>
<td>Yoshimura, Atsushi</td>
<td>73</td>
</tr>
<tr>
<td>Yu, Borou</td>
<td>39</td>
</tr>
<tr>
<td>Yu, Ri</td>
<td>109</td>
</tr>
<tr>
<td>Zhang, Haiyang</td>
<td>47</td>
</tr>
<tr>
<td>Zhang, Yan</td>
<td>89</td>
</tr>
<tr>
<td>Zhao, Baoquan</td>
<td>11</td>
</tr>
<tr>
<td>Zhao, Chenxi</td>
<td>113, 123</td>
</tr>
<tr>
<td>Zhong, Yong</td>
<td>21</td>
</tr>
<tr>
<td>Zhou, Teng</td>
<td>11</td>
</tr>
<tr>
<td>Zhuang, Xu Fei</td>
<td>111</td>
</tr>
<tr>
<td>Zhuang, Xufei</td>
<td>117</td>
</tr>
<tr>
<td>Zünd, Fabio</td>
<td>121</td>
</tr>
</tbody>
</table>
Keynote

View- and Temporal-consistency in Generation using Diffusion Models

Niloy Mitra
University College London

Abstract

Recently, diffusion models are the best-performing 2D generative model. This is due to their ability to be trained on millions, if not billions, of images with a stable learning objective. However, adapting these models to 3D (or video) has proven to be challenging for two reasons. Firstly, obtaining a large quantity of 3D (or video) training data is much more complex than obtaining 2D images, and in practice, only tens of thousands of such training samples are available. Secondly, while extending the models to operate on 3D grids (spatial or temporal) is theoretically simple, the associated cubic growth in memory and compute complexity makes this impractical.

To address the first challenge, we have introduced a new diffusion setup that can be trained end-to-end, with only posed 2D images for supervision. Furthermore, we have tackled the second challenge by proposing an image formation model that decouples model memory from spatial memory. During this talk, I will describe results using synthetic and real data and discuss how we can extend these models to produce high-quality photorealistic outputs. I will also present a diffusion-based workflow for video data producing time-consistent stylization.

Short Biography

Niloy J. Mitra leads the Smart Geometry Processing group in the Department of Computer Science at University College London and the Adobe Research London Lab. He received his Ph.D. from Stanford University under the guidance of Leonidas Guibas. His research focuses on developing machine learning frameworks for generative models for high-quality geometric and appearance content for CG applications. Niloy’s technical contributions in the field of computer graphics have earned him numerous prestigious awards. He was awarded the Eurographics Outstanding Technical Contributions Award in 2019, the British Computer Society Roger Needham Award in 2015, and the ACM SIGGRAPH Significant New Researcher Award in 2013. Furthermore, he was elected as a fellow of Eurographics in 2021 and served as the Technical Papers Chair for SIGGRAPH in 2022. His work has also earned him a place in the SIGGRAPH Academy in 2023. Besides research, Niloy is an active DIYer and loves reading, cricket, and cooking. More information: https://geometry.cs.ucl.ac.uk
Keynote

A Decade of Advancements in Functional Maps: From Inception to Recent Breakthroughs

Maks Ovsjanikov
École Polytechnique

Abstract

In this talk, I will share the journey of Functional Maps from their introduction to the latest developments. I will first discuss the foundations of this framework, describing its key motivations and basic properties. I will then provide a brief history of how the approaches based on Functional Maps have developed over the past ten years. Finally, I will provide a brief overview of some open problems and promising directions. Throughout the talk, I will try to emphasize especially the collective efforts of researchers who have contributed and continue to contribute to the development and growth of Functional Maps over the past decade.

Short Biography

Maks Ovsjanikov is a Professor at Ecole Polytechnique in France. He works on 3D shape analysis with emphasis on deep learning techniques for shape matching and comparison. He obtained his PhD from Stanford University under the supervision of Prof. Leonidas Guibas. He has received a Eurographics Young Researcher Award, an ERC Starting Grant, a CNRS Bronze Medal (a recognition for junior researchers in France) and an ERC Consolidator Grant in 2023. His works have received 11 best paper awards or nominations at top conferences, including CVPR, ICCV, 3DV, etc., while his work on Functional Maps has received a SIGGRAPH Test-of-Time Award in 2023. More information: https://www.lix.polytechnique.fr/maks/
Keynote

Evaluating the Realism of Animated Character Motion

Carol O’Sullivan
Trinity College Dublin

Abstract

Recent years have seen great advances in character animation. The combination of data-driven and physics-based methods in particular, together with machine learning, has enabled the simulation of virtual humans that move around and interact naturally within a virtual environment. However, there is still much scope for research into methods and metrics for evaluating the realism and naturalness of such simulated animations. Furthermore, the simulation and evaluation of virtual humans interacting in Mixed Reality raises many interesting research questions. In this talk, I will present a review of relevant research to date and pose some questions for the future.

Short Biography

Carol O’Sullivan is the Professor of Visual Computing in Trinity College Dublin. From 2013-2016 she was a Senior Research Scientist at Disney Research in Los Angeles, and spent a sabbatical year as Visiting Professor in Seoul National University from 2012-2013. Prior to her PhD studies, she spent several years in industry working in Software Development. She joined TCD as a lecturer in 1997 and served as the Dean of Graduate Studies from Jul’2007 to Jul’2010. She was elected a fellow of Trinity College in 2003 and of the European Association for Computer Graphics (Eurographics) in 2007. Her research interests include graphics and perception, animation, and crowd and human simulation. She has managed a range of projects with significant budgets during that time and successfully supervised many doctoral and post-doctoral researchers. She has been a member of many editorial boards and international program committees (including ACM SIGGRAPH and Eurographics). She is currently the Editor in Chief of the ACM Transactions on Graphics and previously served as Editor in Chief for the ACM Transactions on Applied Perception from 2006-2012. Recently, she has served as the Technical Papers chair for ACM SIGGRAPH Asia 2021 and the Courses chair for SIGGRAPH Asia 2018.