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Abstract

Panorama images are widely used for scene depth estimation as they provide comprehensive scene representation. The existing
deep-learning monocular panorama depth estimation networks produce inconsistent, discontinuous, and poor-quality depth
maps. To overcome this, we propose a novel multi-scale monocular panorama depth estimation framework. We use a coarse-
to-fine depth estimation approach, where multi-scale tangent perspective images, projected from 360 images, are given to
coarse and fine encoder-decoder networks to produce multi-scale perspective depth maps, that are merged to get low and
high-resolution 360 depth maps. The coarse branch extracts holistic features that guide fine branch extracted features using
a Multi-Scale Feature Fusion (MSFF) module at the network bottleneck. The performed experiments on the Stanford2D3D
benchmark dataset show that our model outperforms the existing methods, producing consistent, smooth, structure-detailed,

and accurate depth maps.

CCS Concepts
¢ Computing methodologies — Scene understanding;

1. Introduction and Methodology

Scene understanding has been a widely researched topic. Currently,
models use a single EquiRectangular Projection (ERP) image to es-
timate depth. However, ERP image shows spherical distortion due
to which the existing models try to solve this issue but still produce
inconsistent, merging artifacts, and poor-quality depth maps. We
therefore propose a novel multi-scale monocular panorama depth
estimation model. Our model has a coarse and fine branch as shown
in Figure 1. The coarse branch focuses on learning more holis-
tic context information using low-resolution ERP images as input,
while the fine branch uses high-resolution ERP images. We project
input ERP images into multiple perspective tangent images for
both branches using gnomonic projection. These perspective im-
ages are given to the encoder-decoder network to produce perspec-
tive depth maps which are merged to get final ERP low and high-
resolution depth maps at output. Our coarse encoder takes coarse
tangent patches and their 3D geometric embedding as input. To
produce 3D geometric position embedding we use a Multi-Layer
Perceptron (MLP) network that takes tangent pixel spherical co-
ordinates (A, ®,p) on the unit sphere and patch center co-ordinates
(x',q{) as input similar to OmniFusion [LGY*22]. The encoder
output is then given to the Multi-head Self-Attention (MSA) mod-
ule to capture long-range dependencies of tangent patch features.
Like the coarse branch, we get fine-level bottleneck features from
fine branch encoder-MSA network. To overcome fine-level depth
map discrepancies that miss holistic contextual information, we
use Multi-Scale Feature Fusion (MSFF) module. This module takes
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coarse and fine-level bottleneck features and produces their atten-
tion maps using convolution layers. These learned attention maps
are multiplied with their feature maps and aggregated to produce
updated fine-level features. The updated fine-level feature now has
necessary holistic information. The coarse and updated fine-level
features at the bottleneck are then given to coarse and fine decoder
networks respectively which consist of up-sampling layers, convo-
lution layers, and skip connections from encoder network. Finally,
at the output of the decoders, we get low and high-resolution depth
maps. Similar to OmniFusion [LGY*22] we refine the estimated
depths iteratively by using depth values from previous iteration to
update geometric information for MLP networks of next iteration.
We train our network in an end-to-end manner and use BerHu loss
[LRB*16] for supervision. The final loss function is addition of
coarse and fine-depth BerHu loss, summed over all the iterations.

2. Experiments and Results

We evaluated our model performance using the Stanford2D3D
[ASZS17] benchmark dataset. Table 1. shows comparative quanti-
tative results using commonly used metrics. Figure 2. shows com-
parative qualitative results. Our model produces depth maps with
no local patch merging artifacts, more accuracy, smoothness, struc-
ture details, and sharper boundaries than OmniFusion [LGY*22].
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Figure 1: Overall pipeline of Multi-scale Monocular Panorama Depth Estimation model.

Figure 2: Qualitative results on Stanford2D3D [ASZS17] benchmark dataset, ERP image (first column), OmniFusion [LGY*22] results
(second column), Our model results (third column), and Ground truth (fourth column).

Methods AbsRel] RMSE| &1 81 L ER

FCRN [LRB*16] 0.1837 0.5774 0.7230  0.9207 0.9731
BiFuse [WYS*20] 0.1209 0.4142 0.8660  0.9580  0.9860
UniFuse [JSZ*21] 0.1114 0.3691 0.8711  0.9664  0.9882
HoHoNet [SSC21] 0.1014 0.3834 0.9054 0.9693  0.9886
OmniFusion [LGY™*22] 0.0943 0.3582 0.8999 0.9742 0.9914
Ours 0.0895 0.3423 09112  0.9759  0.9921

Table 1: Quantitative results on Stanford2D3D [ASZS17] benchmark dataset. Our model outperforms all the existing models for all metrics.
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