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Abstract
As a low-level vision task, image enhancement is widely used in various computer vision applications. Recently, multiple meth-
ods combined with CNNs, MLP, Transformer, and the Fourier transform have achieved promising results on image enhancement
tasks. However, these methods cannot achieve a balance between accuracy and computational cost. In this paper, we formulate
the enhancement into a signal modulation problem and propose the WaveNet architecture, which performs well in various pa-
rameters and improves the feature expression using wave-like feature representation. Specifically, to better capture wave-like
feature representations, we propose to represent a pixel as a sampled value of a signal function with three wave functions
(Cosine Wave (CW), Sine Wave (SW), and Gating Wave (GW)) inspired by the Fourier transform. The amplitude and phase are
required to generate the wave-like features. The amplitude term includes the original contents of features, and the phase term
modulates the relationship between various inputs and fixed weights. To dynamically obtain the phase and the amplitude, we
build the Wave Transform Block (WTB) that adaptively generates the waves and modulates the wave superposition mode. Based
on the WTB, we establish an effective architecture WaveNet for image enhancement. Extensive experiments on six real-world
datasets show that our model achieves better quantitative and qualitative results than state-of-the-art methods. The source code
and pretrained model are available at https://github.com/DeniJsonC/WaveNet.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

Challenges for enhancing degraded images exist not only in the
real world but also in computer vision tasks. Poor photograph-
ing environments, the improper operation of the photographer,
or limitations of camera devices often produce the low-quality
photos. These degraded images apply harmful visual effects and
bad effects on other computer vision tasks. As a low-level com-
puter vision task, image enhancement provides reliable information
for downstream visual decisions. Recently, multiple approaches
[ZGM∗21,TTZ∗22,ZAK∗20,CWG∗21] based on CNNs, MLP, and
Transformer have been designed for image enhancement. These
methods perform well on benchmark datasets, but some may cause
unacceptable computational costs and weak versatility.

Different from the method that delicately designs the model to
achieve high accuracy without thinking of generalization and com-
putational cost, we aim to explore a robust architecture that can
perform well with different efficiency for image enhancement. Be-
sides, we desire to improve the representation way of features for
dynamically aggregating them according to semantic contents.
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Figure 1: Our method WaveNet achieves the best PSNR-Params
trade-off on several image enhancement datasets.

In this paper, our inspiration comes from signal processing. For
an image captured from a digital camera, we simply think that ev-
ery pixel retains the optical information independent of other pix-
els. e.g.Each pixel value has recorded a specific light intensity of
the captured optical signal. Thus, a digital image that comes from
the real world is a discrete digital matrix generated by sampling,
quantizing, and encoding a continuous optical signal set. If we can
formulate the optical signal recorded by the pixel, we can enhance
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the degraded image according to modulating the signals. Thus, we
transform the enhancement task into a signal modulation problem.

How to "present" and "modulate" the signal using learning-
based approaches is the key to our work. 1) For "presenting" sig-
nals, the Fourier transform theory provides a way of decomposing
signals into different frequency sine/cosine waves. Therefore, we
describe a pixel as a sample value of a signal with three waves
(Cosine Wave (CW), Sine Wave (SW), and Gating Wave (GW)) to
realize the wave-like feature representations. For constructing the
waves, amplitude and phase are indispensable. The amplitude part
measures the maximum intensity of a wave. The phase part repre-
sents the initial state of the wave and contains the frequency infor-
mation. 2) For "modulating" signals, we have to consider not only
a single signal modulation but also aggregating the semantic infor-
mation of signals in a region. Only when we take into account the
semantic information in local and non-local, we better modulate the
signal. e.g.An individual red pixel provides vague semantic infor-
mation. We tend to retouch it if the pixel is in an apple, or we tend to
remove it as a noise if the pixel is in a banana. Therefore, we need
to adaptively modulate these signals with the support of semantic
information. Considering above analyses of presenting and modu-
lating waves, we propose the Wave Transform Block (WTB in Fig-
ure 3) that allows for efficient and scalable spatial mixing of local
and non-local contents and dynamically learns the interaction be-
tween waves to enhance the images. Besides, to obtain high-quality
results, we use the gating mechanism to control which complemen-
tary features should flow forward and allow sub-blocks to focus
exclusively on more refinement of image attributes. Furthermore,
we build the WaveNet (in Figure 2), an effective architecture using
WTB. Section 3 discusses the proposed WaveNet in detail.

Figure 1 shows that the proposed WaveNet achieves the best
trade-off between accuracy and complexity on various datasets.
For example, WaveNet-T obtains the 23.59dB on LOL dataset
[WWYL18] with only 80k parameters and outperforms MAXIM
[TTZ∗22] by 0.16 dB and IAT [CLG∗22] by 0.21dB. WaveNet-
B achieves 25.44dB compared with the previous state-of-the-art
method LLFlow [WWY∗22] and obtains 0.44dB gain in PSNR.
Besides, WaveNet also achieves strong performance on the VE-
LOL [LXY∗21], SICE [CGZ18], MIT-Adobe FiveK [BPCD11]
and SID [CCXK18] four image enhancement datasets. For high-
level vision tasks, we use face detector DSFD [LWW∗19] to eval-
uate dark face detection tasks using images enhanced by various
low-light image enhancement methods. Our WaveNet achieves the
best results on the DARK FACE dataset [YYR∗19].
Overall, our contribution could be summarized as follows:

• We propose a new way of enhancing feature representation,
dubbed wave-like feature representation. We aggregate the fea-
tures with three waves: Cosine Wave (CW), Sine Wave (SW),
and Gating Wave (GW).

• We propose the Wave Transform Block (WTB) that is capable of
aggregating local and channel information and modeling wave
interactions to enhance the original degraded image. We build
WaveNet, an effective architecture using WTB for image en-
hancement.

• Extensive experiments on popular real-world datasets show that
our WaveNet achieves SOTA results.

2. Related Work

2.1. Learning-based image enhancement

With the development of deep learning, an amount of research
which are learning-based has emerged. Since the ground-breaking
methods, LLNet [LAS17] is proposed, learning-based meth-
ods have greatly improved. Compared with traditional methods,
learning-based methods are more accurate, robust, and faster.
These methods used a variety of learning strategies. Most of them
used supervised learning, e.g. Retinex-Net [WWYL18], DeepUPE
[WZF∗19a], KinD [ZZG19a], LPNet [LLF∗20], DLN [WLSL20],
PRIEN [LFH21], and etc. In recent works, MIRNet [ZAK∗20]
presented parallel multi-resolution convolution streams for extract-
ing multi-scale features to enhance the degraded images. MAXIM
[TTZ∗22] used two MLP blocks to aggregate local and non-local
contents for image restoration. IAT [CLG∗22] presented a light-
weight network for image enhancement. Nevertheless, these works
are unable to achieve promising results on both accuracy and effi-
ciency as the proposed WaveNet.

2.2. Fourier transform

The Fourier transform is proposed to analyze thermal processes and
is widely used in various fields due to its excellent performance.
In recent years, Fourier transform has been applied in learning-
based image processing methods CirCNN [DLW∗17] substantially
reduces computational complexity and storage complexity owing
to FFT-based fast multiplication. FFC [CJM20] is based on Fourier
spectral theory and enables models to have non-local receptive
fields. Jae-Han Lee et al. [LHKK18] uses Fourier frequency do-
main analysis to estimate single-image depth. Fda [YS20] reduces
differences between source and target distributions by exchang-
ing low-frequency spectrum. GFNet [RZZ∗21] improves the effi-
ciency by using 2D FFT/IFFT to change the self-attention layer.
LaMa [SLM∗22] uses fast Fourier convolution to obtain the big-
ger receptive field. However, traditional Fourier transform in im-
age processing directly employs the algorithm globally to learn a
brute-force relationship between pixels, which may ignore the in-
formation effectiveness of different regions. The enhanced results
rely on the frequency resolution. Therefore, these works apply the
2D-FFT/2D-IFFT operations in their modules, which are limited
by strong hypothesis (signal is smooth), artificial priors, high com-
plexities O(HWC log(HWC)), and the ability to dynamically pro-
cess various inputs. In contrast, the proposed WaveNet utilizes a
learning-based method that decomposes pixels into different waves
and outperforms these methods in complexities O(HWC2), accu-
racy, and efficiency, which are important for model effectiveness.

3. Method

In this section, we first introduce the recent works about periodic
function applications in neural networks briefly. Secondly, we take
an overview of WaveNet shown in Figure 2. Then, we discuss the
details of our model. Finally, two main blocks of WaveNet are il-
lustrated in detail.

3.1. Preliminaries

Over the past decades, there have been some investigations about
periodic non-linearities applications. But so far, no research has
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Figure 2: (a) shows the pipeline of the WaveNet. (b) is the Wave Transform Block.

shown that periodic activation functions can robustly outperform
other activation functions. Early works used single-layer neural
networks to mimic the Fourier transform [Gal88, ZUK∗19]. Other
works explore neural networks with periodic activations for simple
classification tasks [WLC02, PHV16, SRA99] and recurrent neu-
ral networks [LZW15, KS97,CMCA97,AM97,SRA99]. Klocek et
al. [KMW∗19] used cosine activation functions for image repre-
sentation. Some works [LJ22, TSM∗20] based on implicit neural
representation (INR) scheme utilize the Fourier transform to the
super-resolution task. However, these works directly introduce pe-
riodic functions into their works without convincing insights, nor
do they show competitive performance. Unlike these works, we
propose the wave-like feature representation obtaining satisfactory
results on image enhancement.

3.2. Pipeline

The mainstream of WaveNet is shown in Figure 2(a). In Figure
2(a), for a degraded image D ∈ RH×W×3, we first apply a con-
volutional layer to extract low-level features and expand channels
Fin ∈ RH×W×C. Then, We use the Wave Transform Blocks (WTB)
to transform Fin into the signal-like features S̃n ∈ RH×W×C. n de-
notes the n-th WTB. We then add an Adaptively Selective Feature
Fusion (ASFF) block to connect the shallow feature Fin and signal-
like feature S̃n. Using ASFF aims to enhance the feature presen-
tation and weaken the impact of up-down sampling operations on
image enhancement. Finally, we apply a convolutional layer to con-
vert the signal-like features to a residual image Fout ∈ RH×W×3.
The enhanced image is obtained as Ê. The overall process is sum-
marized as:

Fout =W outHASFF(Fin, S̃n),

Ê = D⊕Fout,
(1)

where ⊕ denotes the element-wise summation, HASFF(∗) denotes
the ASFF operation. W out denotes the last convolutional layer with
filter size 3×3.

3.3. Wave Transform Block

As shown in Fig. 2(b), The WTB consists of two parts connected
through skip-connection. The first part is a Wave Filter Block
(WFB), which represents features in the wave form and allows
modeling relationships between waves dynamically. The second
part is a standard MLP layer to fuse channel information and en-
hance the transformation ability. The WTB calculation process can
be computed as:

S̃′n = HWFB(LN(S̃n−1))⊕ S̃n−1,

S̃n =W mlp(LN(S̃′n))⊕ S̃′n,
(2)

where S̃′n ∈ RH×W×C is the output of the first part, HWFB(∗) rep-
resents the WFB operation. LN(∗)stands for the Layer Normaliza-
tion. W mlp denotes the Multilayer Perceptron (MLP) with two FC
layers and one PReLU layer.

3.4. Wave Filter Block

In this section, we discuss the key component of our WaveNet.
First, we recall the Discrete Fourier Transform (DFT) which pro-
poses non-periodic discrete functions within the specified interval
can be split into combinations of periodic functions. Its 1D version
can be derived by:

X [k] =
M−1

∑
m=0

x[m](cos(
2π

M
km)− j sin(

2π

M
km)), (3)

where x[m] is a sequence of M complex numbers, X [k] indicates the
spectrum at frequency 2πk

M , and j represents the imaginary unit. It
is clear that the spectrum at any frequency has global information
in the frequency domain.
Drawing on the idea of 1D-DFT, we adaptively estimate the Fourier
coefficients to decompose a pixel into linear combinations of three
waves. We take an overview about the formula of signal-like maps
S̃n as follows:

S̃n = Channel-FC(C̃W n ⊕ S̃W n ⊕ G̃W n,W fc)

=W fc(C̃W n ⊕ S̃W n ⊕ G̃W n),
(4)
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Figure 3: (a) Wave Transform Block. (b) is the schematic of constructing signal-like feature maps with three waves. (c) is the figure of
constructing Cosine Wave feature maps.

where W fc indicates the Channel-FC weights. As shown in Figure
3(b), it indicates that signal-like maps S̃n includes three parts, Co-
sine Wave maps (C̃W n), Sine Wave maps (S̃W n), and Gating Wave
maps (G̃W n). C̃W n/S̃W n/G̃W n ∈ RH×W×C.

1) wave-like representation: Traditional Fourier transform ap-
plied to image processing uses the coordinate as input for 2D-FFT
calculation and remaps it into the frequency domain. It strongly re-
lies on artificial priors. e.g.The frequency component of basis func-
tions relies on the input resolution and scanning the whole picture.
In contrast, we proposed the wave-like representation employing a
neural network to transform each pixel into different components of
waves for simplicity and efficiency. We represent the intermediate
wave-like representation as follows:

C̃W ′n = An ⊗ cos(θn), Iap
n = {An,Bn},

S̃W ′n = Bn ⊗ sin(αn), Ips
n = {θn,αn},

Idc
n = {Ān, B̄n}, Idc

n /Iap
n /Ips

n ∈ RH×W×C,

(5)

where ⊗ denotes the element-wise product,C̃W ′n and S̃W ′n denote
the intermediate waves without wave aggregation. Idc

n /Iap
n /Ips

n repre-
sents the set including DC (Ān,B̄n), amplitude (An, Bn) and phase
(θn, αn) for simple expression. The Ān and B̄n denote the DC com-
ponent which indicates the original information comes from the
previous layer. An and Bn denote the amplitude term that is a real-
value feature representing the content of each wave. θn and αn de-
note the phase term that includes the current location of a wave and
frequency information. We use the wave-like feature representation
to organize in a structured way to extract deeper abstract regular-
ities in the latent space. Due to the periodicity and differentiable
invariance, SIREN [SMB∗20] also indicates that using the periodic
activation functions can speed up convergence, and periodicity in
the latent space enables smooth interpolations and manipulations
between different data points. This structured (wave-like features)
representation encourages the model to learn and generate more
coherent and realistic images.

2) Constructing wave-like feature maps : To get the wave-
like maps in Eq. 5, the DC, amplitude and phase are required.
Denote S̃n−1 containing j ( j = 1,2, . . . ,H ×W ) signals as S̃n−1

= [s̃1
n−1, s̃

2
n−1, . . . , s̃

j
n−1], where each signal s̃ j

n−1 is a C-dimension

vector. For constructing DC/amplitude/phase components, we get
them by a plain channel-FC operation, i.e.,

Idc/ap/ps j

n = Channel-FC(s̃ j
n−1,W

dc/ap/ps), (6)

where W dc/ap/ps is the weight with learnable parameters. There are
different strategies for DC, amplitude and phase estimation. The
most straightforward strategy represents these components with
fixed parameters that can be learned during training. However, this
way ignores the diversity of different input images. To dynamically
capture the particular attributes according to the input feature, we
adopt the Channel-FC in Eq. 6 to capture the particular attributes
for simplicity and model performance. There are other constructing
methods whose impact on the model performance is empirically in-
vestigated in the ablation study.

3) Aggregating wave-like features: The intermediate waves
limit the feature structures in the latent space, which concentrates
on modeling more general and regular features. However, as we
mentioned in Sec. 1, aggregating waves in local and no-local to pro-
vide various semantic information is also essential for signal-like
feature modulation. The static vector-sum aggregation [FLS11] is
popularly employed to calculate wave superposition mode, but it
may cause high FLOPs and slow the model speed according. Be-
sides, this static calculation method may not be able to cope with
diverse inputs. As the basic operation in CNNs, convolution pro-
vides local connectivity and translation equivariance. These prop-
erties bring efficiency and generalization to dynamically aggre-
gate waves. To modulate the spatial interactions between different
waves, The proposed WaveNet uses different sizes of convolution
kernels to gather wave-like features in different sizes of regions dy-
namically, which is also taken as a learnable linear combination of
different waves to fit different local features. Thus, the wave-like
dynamical aggregation can be formulated as follows:

C̃W
agg
n =W cw(C̃W ′n),

S̃W
agg
n =W sw(S̃W ′n), (7)

where W cw and W sw are both learnable convolutional weights.
C̃W

agg
n and S̃W

agg
n are the superposition waves. In addition, we use
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Figure 4: Adaptively Selective Feature Fusion

Wave-FC to adaptively linearly combine the basis waves in Eq. 7 to
adaptively assign weights to waves and enhance the representation
capacity. Like the coefficients in Eq. 3. i.e.,

C̃W n/S̃W n = Wave-FC(Iagg
n ,Idc

n ,Θagg,Θdc)

= Θ
dcIdc

n ⊕Θ
aggIagg

n , Iagg
n = {C̃W

agg
n , S̃W

agg
n },

(8)

where Θ
dc/Θagg is the learnable coefficient map. Iagg

n ∈RH×W×C is
the wave aggregation features. As shown in Figure 3(c), we obtain
the final wave-like features after Wave-FC operation.

4) Gating Wave: Since the information of CW and SW is pe-
riodic, we design the Gating Wave (GW) for handling some non-
periodic features. We use the gating mechanism which is activated
with Tanh non-linearity to enhance the feature richness of the net-
work. The G̃W n is formulated as:

Gating(S̃n−1) = ♢(S̃n−1)⊗W gw tanh(♢(S̃n−1)),

G̃W n = Wave-FC(♢(Gating(S̃n−1), S̃n−1),Θ
gw,Θdc),

(9)

where ♢ denotes the Channel-FC in Eq. 4 for simple expression
and Θ

gw is the learnable weight to aggregate local information. The
G̃W n retains valid information from the previous layer and provides
complementary features to the next layer. The final S̃n is obtained
by Eq. 4. The whole WTB operation indicate that the output S̃n−1
from the previous WTB will be modulated by the next WTB.

3.5. Adaptively Selective Feature Fusion

The U-shape methods are proposed to balance the accuracy and
computational cost. (which is common in low-level vision tasks be-
cause of the high-resolution inputs) However, the U-shape models
may lose detail information after many up-down sampling opera-
tions. Thus, we design the ASFF to adaptively fuse shallow features
and sginal-like features. As shown in Figure 4, We use Channel-
FC to compress the signal-like maps contents and shallow features,
and capture the intra-channel interactions. Furthermore, we employ
a Softmax to generate the intra-channel attention maps. Finally,
we blend the two branch outputs with attention maps and use the
element-wise product to adaptively build the relationship between
shallow two kinds of features. In Figure 2 we can see that the out-
put from ASFF goes to a 3 × 3 convolutional layer to transform
the signal-like/linear-projection hybrid feature maps into the final
residual image Fout. Overall, benefitting from the proposed adaptive
wave-like representation, our WaveNet achieves high performance
with acceptable computation-consuming.

3.6. Loss Function

Given an output image Ê and a ground truth image E, we use a
signal-based loss function to guide our signal-like feature repre-

sentations. Specifically, the loss function L for WaveNet consists of
PSNR loss Lpsnr, MS-SSIM loss Lssim and Edge loss Ledge. i.e.

L = λ1 ·Lpsnr(Ê,E)+λ2 ·Lssim(Ê,E)

+λ3 ·Ledge(Ê,E),
(10)

where λ1, λ2 and λ3 are the weight coefficients used to make trade-
off for the loss function L from our experiments.

4. Experiment

In this section, we test our WaveNet on the popular real-world
benchmark datasets for image enhancement and dark face detec-
tion. Various ablation studies provided in supplemental material
demonstrate performance and effectiveness of wave-like modeling.

4.1. Dataset and Experimental Setup

The proposed WaveNet is tested on six datasets including five
low/normal real-captured datasets and one high-level applica-
tion dataset. The datasets for image enhancement include LOL
[WWYL18], VE-LOL [LXY∗21], SICE [CGZ18], SID [CCXK18]
and MIT-Adobe FiveK [BPCD11]. DARK FACE [YYR∗19] is
composed of various scenes with faces taken in the dark. Note that
we use ’epxert C’ as FiveK ground truth and the Sony subset follow-
ing the script provided by SID [CCXK18] to transfer the low-light
images from RAW to RGB for our training and testing.
Implementation Details: WaveNet is end-to-end trainable and re-
quires no pretraining on large datasets. For data augmentation, we
trained the network using random horizontal-vertical flips, rotation,
and MixUp [ZCDLP17]. We set the Adam optimizer [KB14] with
an initial learning rate of 1×10−4, which is steadily decreased
to 10−6 with the cosine annealing decay [LH16]. The values of
λ1/λ2/λ3 in Eq. 10 are 0.33/0.33/0.1. The proposed WaveNet is
trained on a single NVIDIA RTX 3090 using the PyTorch.
By varying the width and depth of the model, we build 3 mod-
els with different parameters and computational costs, denoted as
WaveNet-T, WaveNet-S, and WaveNet-B sequentially.
Metrics: To evaluate the performance of WaveNet, we adopt Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) as
the main evaluation metrics, which are classic to measure the dif-
ference between output and ground truth.

4.2. Quantitative Evaluation

Note that we obtain these results in Table 1 either from the re-
spective papers or by running the respective public code and
full-resolution testing. Low-light Image Enhancement: LOL
[WWYL18] and SID [CCXK18] include extremely dark images
with lots of noise. It is challenging to complete the low-light im-
age enhancement task on these datasets. We tested our methods
on this dataset, and the results are shown in Table 1. From Ta-
ble 1, the proposed WaveNet-B achieves 0.44/0.88 dB gain in
PSNR over the previous best model LLFlow [WWY∗22] and
Restormer [ZAK∗22] on LOL/SID. WaveNet-T is a lightweight
model. It shows promising performance of quality and efficiency.
Our WaveNet-T gains better (23.59/22.57dB) result with only 80k
parameters compared to the currently popular lightweight method
IAT [CLG∗22] and image restoration model MAXIM [TTZ∗22].
WaveNet-S provides a balance of accuracy and efficiency, which
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Table 1: Quantitative comparison on the LOL, MIT-Adobe FiveK, SID, VE-LOL and SICE in terms of Params, FLOPs, PSNR and SSIM. The
best and second-best results of the evaluated methods are highlighted and underlined.

Method Efficiency LOL FiveK SID(RGB) VE-LOL(Real) SICE

Params (M) ↓ FLOPs (G) ↓ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

URetinexNet [WWZ∗22] 0.34 57 21.32 0.834 23.51 0.826 19.24 0.588 21.09 0.858 13.57 0.621
LLFlow [WWY∗22] 17.42 287 24.99 0.868 - - - - 24.15 0.895 17.78 0.742
Uformer [WCB∗22] 5.29 12 16.36 0.507 23.89 0.906 18.54 0.577 18.82 0.771 15.12 0.577
SID [CCXK18] 7.76 13.73 14.35 0.436 16.77 0.589 16.97 0.591 13.24 0.442 11.23 0.387
RetinexNet [WWYL18] 0.84 587.4 16.77 0.562 12.31 0.671 16.48 0.578 15.47 0.567 15.9 0.705
Restormer [ZAK∗22] 26.11 87.7 23.45 0.83 24.52 0.926 22.34 0.638 25.16 0.882 14.93 0.749
MIRNet [ZAK∗20] 31.79 785 24.14 0.83 23.73 0.925 20.56 0.611 20.08 0.82 16.23 0.763
IAT [CLG∗22] 0.09 1.5 23.38 0.809 - - 16.32 0.565 23.50 0.824 15.23 0.525
MBLLEN [LLWL18] 20.47 20 17.9 0.702 19.78 0.825 20.56 0.567 18.01 0.715 15.69 0.658
MAXIM [TTZ∗22] 14.14 216 23.43 0.863 24.64 0.913 22.13 0.596 22.86 0.818 16.54 0.782
KinD++ [ZGM∗21] 8.28 692 21.3 0.822 19.83 0.784 17.89 0.572 15.63 0.699 15.46 0.678
KinD [ZZG19b] 8.02 35 20.87 0.79 14.54 0.741 18.02 0.583 14.74 0.641 14.52 0.534
IPT [CWG∗21] 115.63 1,188 16.27 0.504 - - 20.68 0.566 19.80 0.813 14.53 0.561
DRBN [YWF∗20] 0.58 38 19.55 0.746 13.35 0.378 19.02 0.577 20.13 0.82 13.43 0.536
DeepUPE [WZF∗19b] 1.02 21.1 14.38 0.446 23.04 0.893 17.01 0.604 13.27 0.452 10.97 0.355
RF [KY20] 21.54 46.23 15.23 0.452 19.21 0.652 16.44 0.596 14.05 0.458 11.42 0.391
DeepLPF [MMM∗20] 1.77 5.86 15.28 0.473 20.01 0.661 16.02 0.587 14.10 0.48 11.68 0.378
Sparse [YWH∗21] 2.33 53.26 17.2 0.64 21.2 0.756 18.68 0.606 20.06 0.816 15.21 0.617
FIDE [XYYL20] 8.62 28.51 18.27 0.665 22.57 0.831 18.34 0.578 16.85 0.678 13.79 0.541
3D-LUT [ZCL∗20] 0.6 7.7 16.35 0.585 25.21 0.922 20.11 0.592 17.59 0.721 15.69 0.733

WaveNet-T(Ours) 0.08 4.49 23.59 0.839 24.62 0.933 22.57 0.673 25.64 0.876 17.38 0.784
WaveNet-S(Ours) 1.4 82.5 24.54 0.856 25.30 0.927 22.98 0.702 26.86 0.872 17.69 0.785
WaveNet-B(Ours) 14.4 162 25.44 0.864 25.34 0.924 23.15 0.726 27.21 0.899 18.86 0.795

Table 2: Quantitative comparison of mAP of face detection in the dark.

Method DSFD [LWW∗19] +MAXIM [TTZ∗22] +LLFlow [WWY∗22] +Restormer [ZAK∗22] +IAT [CLG∗22] +WaveNet(Ours)

mAP 0.163 0.228 0.143 0.212 0.222 0.238

achieves competitive results on all datasets.
Image Enhancement: MIT-Abode FiveK [BPCD11] is a real-
world image enhancement dataset containing a wide variety of
scenes for training and testing. As shown in Table 1, our WaveNet
achieves the best and second-best scores and surpasses all the base-
lines. Our WaveNet-B achieves 0.70dB gain in PSNR at most com-
pared to the MAXIM [TTZ∗22].
Cross-dataset Evaluation: To evaluate our method’s generality
and effectiveness in real no-reference degraded images, we take
the cross-dataset validation method. e.g.Our method is trained on
the LOL dataset, and the model is directly tested on the testing
set of VE-LOL (Real Part) and SICE. From the results in Table 1
we can see that our method significantly outperforms other trained
methods in all metrics and provides a 2.05/1.08dB promotion on
VE-LOL/SICE compared with previous SOTA methods. From an-
other perspective, our WaveNet can provide a more stable and gen-
eral result without retraining.
Efficiency Analysis: It is worth noting that efficiency term are
tested on a 256×256 image. Compared with IAT [CLG∗22], which
is also a lightweight model, WaveNet-T with 12% fewer parameters
than IAT [CLG∗22] achieves better PSNR and SSIM scores on all
datasets. Compared with the previous SOTA LLFlow [WWY∗22],
WaveNet-T has 220× fewer parameters and 64× fewer FLOPs but
achieves its 94% accuracy on LOL [WWYL18] dataset. Compared
to Restormer [ZAK∗22], whose FLOPs is close to our WaveNet-
S, our WaveNet-S has 18.6× fewer parameters and faster than

it. Besides, Our WaveNet-S provides better generality in cross-
dataset validation. With acceptable computational costs, WaveNet-
B achieves the best results on all datasets in Table 1. Overall, our
WaveNet achieves the best trade-off on accuracy and efficiency.
The superiority of WaveNet implies that the proposed module WTB
has a large potential and modulating the feature representation.

4.3. Qualitative Evaluation

The qualitative comparisons of images are given in Figure 5. The
higher PSNR and SSIM values in Table 1 indicate that our meth-
ods can better restore the color and better reserve details. From
the Figure 5 we can see that our WaveNet keeps more fine details,
more natural color consistency, higher contrast, and less noise com-
pared with other methods. Specifically, it can be observed in cross-
dataset validation visual results (4th and 5th row) in Figure 5 that
Our WaveNet not only suppresses overexposure in regions of high
brightness but also enhances natural colors and details in regions
of shadows. Hence, compared with other methods, the proposed
WaveNet use waveform feature representations achieving excellent
performance in generality and qualitative evaluation.

4.4. High-level Vision Evaluation:

To validate the performance of our WaveNet in high-level vision
tasks, we use the DARK FACE dataset [YYR∗19] composed of
images with faces taken in the dark. The Dual Shot Face De-
tector (DSFD) [LWW∗19] trained on the WIDER FACE dataset
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Figure 5: Visual comparison with the state-of-the-art methods on six datasets. (Zoom in for better view)

[YLLT16] is used as the face detector. We take the last 500 im-
ages of DARK FACE [YYR∗19] training set enhanced by different
methods and feed them to the DSFD [LWW∗19]. The results shown
in Table 2 validate that our WaveNet gains the best score. The bot-
tom row in Figure 5 shows that DSFD detected the most faces using
the WaveNet-enhanced images.

5. Conclusion

This paper proposes an architecture for image enhancement tasks,
dubbed WaveNet, which aims to extract more spatial details, bet-
ter color accuracy, and a higher contrast from the original degraded
images. Inspired by signal processing, we formulate the enhance-
ment task as a sginal modulation problem. We use a learning-based
method to adaptively construct and modulate the signals come from
digital images. Specifically, we utilize the Fourier transform the-
ory to decompose a pixel into three wave functions (Cosine Wave
(CW), Sine Wave (SW), Gating Wave (GW)) for feature charac-

terization. The amplitude and phase are essential for constructing
wave-like features. Amplitude is the original real-valued feature,
and phase modulates the relationship between the varying inputs
and fixed weights in WaveNet. Specifically, we propose the Wave
Transform Block (WTB) to dynamically construct the wave-like
feature maps and modulate the wave interactions (wave superposi-
tion) locally and non-locally. Furthermore, WaveNet enhances var-
ious inputs by adaptively adjusting the amplitude and phase of each
wave in the constructed signal-like feature maps. The extensive ex-
periments on the benchmark datasets validate the effectiveness of
our WaveNet for image enhancement.
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