
Work in Progress

Temporally Stable Content-Adaptive and Spatio-Temporal Shading
Rate Assignment for Real-Time Applications

S. Stappen, J. Unterguggenberger , B. Kerbl and M. Wimmer

TU Wien, Institute of Visual Computing & Human-Centered Technology

Abstract
We propose two novel methods to improve the efficiency and quality of real-time rendering applications: Texel differential-based
content-adaptive shading (TDCAS) and spatio-temporally filtered adaptive shading (STeFAS). Utilizing Variable Rate Shading
(VRS)—a hardware feature introduced with NVIDIA’s Turing micro-architecture—and properties derived during rendering
or Temporal Anti-Aliasing (TAA), our techniques adapt the resolution to improve the performance and quality of real-time
applications. VRS enables different shading resolution for different regions of the screen during a single render pass. In contrast
to other techniques, TDCAS and STeFAS have very little overhead for computing the shading rate. STeFAS enables up to 4x
higher rendering resolutions for similar frame rates, or a performance increase of 4× at the same resolution.

1. Introduction

With NVIDIA’s Turing architecture, variable rate shading (VRS)
allows devoting more processing power to regions of the screen
that contain many details and devoting less processing power to
other regions [NVI18]. The challenge is to determine which re-
gions to shade in which resolution. We propose two techniques
for controlling the shading rate: Texel Differential based Content-
Adaptive Shading (TDCAS) and Spatio-Temporally Filtered Adap-
tive Shading (STeFAS). TDCAS uses the differentials of texture
coordinates in x- and y-direction to determine regions that could be
rendered with a lower shading rate. STeFAS utilizes the frame-to-
frame color differences to detect over- and undersampled regions
over time and adapts the shading rate accordingly. Previously un-
dersampled regions are sampled at higher rates to reduce aliasing
and improve quality. STeFAS does not depend on specific scene
properties. Hence, it is generically applicable and offers higher
quality than TDCAS while remaining almost as fast.

2. Texel Differential-Based Content-Adaptive Shading

Our content-adaptive shading algorithm strives to be generally ap-
plicable to many scenes while not introducing unnecessary aliasing.
TDCAS selects the shading rate based on texel differentials, which
are the partial derivatives in x and y direction of the texture space.
We scale the derivatives by the inverse fragment size to take the in-
fluence of the current shading rate into account and by the inverse
texture size to correlate the derivatives with texture pixel sizes. The
full formula for the texture differential value is given in Equation 1.

dt =
| ∂u

∂x |+ | ∂u
∂y |

texSize.x · f ragSize.x
+

| ∂v
∂x |+ | ∂v

∂y |
texSize.y · f ragSize.y

(1)

Texel differentials are very valuable as they convey the informa-
tion of the used mipmap-level of a texture. Larger values of texel
differentials result in higher mipmap levels being selected. De-
pending on the screen resolution and the texture resolution, with
very large texel differentials, whole textures might fall into a single
pixel. Hence, the shading rate can be reduced for regions with high
texel differentials. Very small texel differentials are an indication
of an oversampled texture and the shading rate can therefore be re-
duced. Texel differential values between these two maxima can be
sampled at the usual shading rate or higher shading rates. We use
a shading-rate palette with ascending values, the higher the index
the higher the shading rate. The transformation function deriving
the index into the so defined shading-rate palette consists of three
basic operations. First, the differentials are shifted from the range
[0,1] to [−1,1]. Second, a quadratic function is applied to take the
quadratic space (x times y) into account and flip originally low val-
ues to high values, as both should be assigned low shading rates.
Third, we subtract the result from 1 so both very high and very low
differentials map to low indices and thus low shading rates.

3. Spatio-Temporally Filtered Adaptive Shading

A high-level overview of our STeFAS algorithm is given in Fig-
ure 1a (executed on the CPU) and Figure 1b (executed on the GPU).
Our algorithm starts by clearing the shading-rate image to the high-
est shading rate to avoid artefacts from previous frames. In the next
step, a color difference image to the previous frame is scaled down
to 1

16 of its resolution in x and y direction to obtain an average color
difference for each 16x16 tile. Afterwards, a compute shader uses
this scaled-down color-difference image to compute the shading-
rate image, which is set up for the VRS pipeline and used during

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Pacific Graphics (2021)
M. Okabe, S. Lee, B. Wuensche, and S. Zollmann (Editors)

DOI: 10.2312/pg.20211391 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6453-8158
https://orcid.org/0000-0002-5168-8648
https://orcid.org/0000-0002-9370-2663
https://doi.org/10.2312/pg.20211391

S. Stappen et al. / Shading Rate Assignment for Real-Time Applications

all subsequent draw calls. If TAA is part of an application’s ren-
der loop, color difference textures can be shared among the TAA
step and STeFAS—which means that STeFAS’ overall costs are di-
minished for such setups—otherwise color differences and clipping
distances [Kar14] must be generated explicitly for STeFAS. The
compute shader derives a shading rate for each 16x16 pixels tile by
dividing the color-difference space in equidistant regions, each as-
signed a shading rate. Larger differences are assigned higher shad-
ing rates and smaller differences are assigned coarser shading rates.
As we compute the shading rate from the previous frame’s proper-
ties, we have to do a forward projection to get the new screen-space
coordinates. This is possible by computing the world coordinates of
the previous frame using a backward projection. These world co-
ordinates are then transformed to the screen-space coordinates of
the current frame and used to fetch the previous shading rate. In the
last step, the derived shading rate is saved at the new coordinates.
Regions that moved or are not hit by the forward projection due to
perspective distortions are handled by the default shading rate, set
in the first step of the algorithm as the maximum shading rate.

Clear Shading Rate Image

Scale Down Textures Containing Clipping

Distance from the Previous Frame

Compute Shading-Rate Image Using

Scaled Clipping-Distance Texture

Draw Scene

TAA and Compute Clipping Distance of

the Current Frame

(a) The CPU-side steps of STeFAS.

Derive Shading Rate from Properties

Forward Project

Stabilize Shading Rate with Previous

Shading Rate

Save Shading Rate to New Coordinates

1 2 7 9 8

2 3 5 7 8

7 7 7 1 6

1 2 7 9 8

2 3 5 7 8

7 7 7 1 6

2 4 5

0 3

1 2 7 9 8

2 3 5 7 8

7 7 7 1 6

(b) STeFAS steps in compute shader.

Figure 1: Overview of the STeFAS algorithm

4. Preliminary Results and Conclusion

We capture the average frame times of animations for various
configurations in two test scenes for performance evaluation. To
analyze the quality of our approach, we compute the SSIM and
the PSNR of frames at fixed positions of these animations. The
scene used during the evaluation is a modified version of Crytek’s
Sponza. We performed the evaluation at various combinations of
resolution and MSAA sampling count. Resolutions include 1080p,
2560x1440, 4k and 8k to cover potential future workloads. Sam-
pling count configurations range from 1× to 8× MSAA. Figure 2
shows the performance in frame times and the SSIM in percentage.
Ground-truth images for the SSIM and PSNR computations were
rendered at 8k resolution with 8× MSAA and VRS disabled.

Our techniques are at least 33% faster in configurations utilizing
higher sample rates and focusing on quality, e.g. all evaluation sce-
narios using 8× MSAA. In the performance-wise best cases, uti-
lizing only coarse shading rates, e.g., all evaluation scenarios using
1x MSAA, we achieve four times faster frame computations. Alter-
natively, our techniques enable the rendering at higher resolutions,
e.g. four times the resolution in amount of pixels, at the same per-
formance levels of rendering at the lower resolution. For example,
rendering with a resolution of 3840x2160, our VRS-enabled ren-
dering is still 5% faster than rendering at a resolution of 1920x1080

without VRS. This enables higher resolutions while keeping the
same frame rates. In terms of quality, the configurations focussing
on performance deliver SSIM values with a deviation of 5% - 11%.

0 20 40 60 80 100

Frame Times in ms

7680x4320x8

7680x4320x4

7680x4320x2

7680x4320x1

3840x2160x8

3840x2160x4

3840x2160x2

3840x2160x1

2560x1440x8

2560x1440x4

2560x1440x2

2560x1440x1

1920x1080x8

1920x1080x4

1920x1080x2

1920x1080x1

R
e
s
o
lu

ti
o
n
 a

n
d
 M

S
A

A
 S

a
m

p
le

s

SSIM in %

94%

94%

94%

94%

95%

96%

95%

96%

96%

97%

96%

97%

99%

100%

99%

100%

82%

83%

86%

90%

84%

86%

90%

93%

87%

89%

95%

96%

95%

97%

96%

99%

83%

84%

87%

90%

85%

87%

90%

92%

89%

90%

95%

96%

95%

97%

98%

99%NONE

TDCAS

STeFAS

Figure 2: Performance in frame times and quality in SSIM. Filled
color boxes represent performance, empty boxes SSIM values.

Remaining challenges to tackle include advanced temporal sta-
bilization techniques for the shading rate and the rendered im-
age. Further improvements in TAA are possible, like increasing the
weight for previous frames. Moving objects, however, pose further
difficulties which can lead to ghosting and noticeable artifacts. We
would like to investigate combinations of TDCAS and STeFAS,
and expect further performance and quality improvements. Simple
approaches select the minimum/maximum shading rates to focus
on performance/quality, respectively. More advanced approaches
may strive to combine the strengths of both techniques.

Acknowledgements

This work was supported by the Research Cluster “Smart Commu-
nities and Technologies (Smart CT)” at TU Wien.

References
[Kar14] KARIS, BRIAN. “High-quality temporal supersampling”. Ad-

vances in Real-Time Rendering in Games, SIGGRAPH Courses 1
(2014), 1–55.

[NVI18] NVIDIA. NVIDIA Turing GPU Architecture.
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf, accessed on 12.11.2019. NVIDIA
Corporation. 2018.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

66

