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Abstract

Extracting human body skeletons from consecutive surfaces is an important research topic in the fields of computer graphics
and human computer interaction, especially in posture estimation and skeleton animation. Current approaches mainly suffer
from following problems: insufficient time and space continuity, not robust to background, ambient noise, etc. Our approach
is to improve against these shortcomings. This paper proposes a 3D human body skeleton extraction method from consecutive
meshes. We extract the consistent skeletons from consecutive surfaces based on shape segmentation and construct skeleton
sequences, then we use the continuous frame skeleton point optimization model we proposed to optimize the skeleton sequences,
generating the final skeleton point sequences which are more accurate. Finally, we verify that our method can obtain more
complete and accurate skeletons compared to other methods through many experiments.

1. Introduction

Extracting 3D human body skeletons from geometric surface from
the grid sequence is an important research content in the fields
of computer graphics, human-computer interaction, etc., and has
important applications in pose estimation [SHRB11, PAG11], hu-
man body modeling [STG*97, BAS14] and skeleton manipula-
tion [Féd03, SSCO3]. While many research work are devoted to
human body skeleton extraction from static point clouds, existing
methods cannot fully explore the spatial or temporal coherence of
human poses and hence lead to low accuracy [LHW*13]. Whether
in group skeleton multi-granular real-time extraction and tracking
technology of two-dimensional, or in Kinect bone tracking data
processing of 3D, Workers usually use the human body skeleton of
20 points which is the better reflection of actual human(the number
of skeleton points on the limbs is 4, one skeleton point in the mid-
dle of the ankle, one skeleton point in the waist, one skeleton point
in the middle of the shoulder, and one skeleton point in the head) in
both group skeleton multi-granular real-time extraction and track-
ing technology of 2D and Kinect bone tracking data processing of
3D.

Existing skeleton extraction methods can be roughly divided in-
to two categories: point clouds based methods [TZCO09,LHW™* 13,
ZSW™*18], and meshes based methods [TAOH12, CTO*10]. How-
ever, for the 3D human body, the number of skeleton points extract-
ed by the above methods are inconsistent, incomplete, error branch
or partial point position deviation and the original 3D human body
cannot be better represented because of point cloud blocking and
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point cloud loss. Therefore, the human body skeleton extracted in
this paper is necessary and has certain advantages in terms of in-
tegrity, correctness and standardness, and has certain practical val-
ue and significance for subsequent bone-based animation produc-
tion and 3D human body operation. We propose a spartial-temporal
consistency model (STC) for 3D human body skeleton extraction.
Compared with traditional skeleton extraction methods, the contri-
butions of STC are summarized as follows:

e The entire process of skeleton extraction is fully automated.

e The 3D human body skeleton extracted without manual inter-
vention is a skeleton with 20 points which better represents the
actual skeleton of the human body.

e The 3D human body skeletons we extracted are more suitable
for applications such as post-skeleton animation.

2. Data preprocessing

We first give notations which shall be used in this paper. || - ||2, ]| - |0
denote the ¢5, £y norm of a vector or a matrix, respectively. [A]; ;
denotes the element of the ith row, jth column of a matrix A, and
[A]; denotes jth column of a matrix A.

The data preprocessing consists of three steps.

Multiview image collection: We collect multiview images of a
moving human body of each action using the light field acquisition
device (see Fig. 1), which contains 50 industrial cameras with a
given frame rate.

Point cloud generation, normalization and alignment: We
generate a 3D dense point cloud of human body using Patch based
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Figure 1: A light field acquisition system.

Multiview Stereopsis (PMVS) based on camera parameters esti-
mated by Structure from Motion [HZ08], and perform a normal-
ization and alignment scheme aim to scale to unitBox and move to
origin on the point cloud so that all point clouds of human body
of an action sequence share similar sizes, geometric centers and
orientations.

Triangular mesh reconstruction: To perform a semantic seg-
mentation on human body, we require a mesh representation of hu-
man body besides the point cloud model. Thus we downsample the
dense point cloud by merging multiple points within the same grid
box into a single point, and then perform Poisson surface recon-
struction to obtain a triangular mesh of human body (See Fig. 2).

3. Details of STC

We introduce the details of STC in this section. Fig. 3 shows a
flowchart of STC, which mainly consists of three stages, each of
which is detailed in the following subsections.

3.1. Initial skeleton extraction

The first stage of STC extracts initial skeletons from point clouds
of each frame individually based on a semantic segmentation of
triangular meshes of human body. Specially, this stage consists of
four steps which are introduced as follows.

Pseudo-skeleton generation: We segment the mesh into sever-
al sematic patches using [KO19], and generate "pseudo-skeletons"
using the centroid of each patch.

Determination of CShoulder and Waist: We connect each pair
of pseudo-skeletons belonging to adjacent semantic patches with an
edge, and CShoulder is recognized as the unique pseudo-skeleton
which achieves the maximum degree. Similarly, Waist is recog-
nized as the unique pseudo-skeleton which achieves degree three.

Determination of LShoulder and RShoulder: We set the patch
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Figure 2: Triangular mesh reconstruction. Left to right: multiview
image collection, sparse point cloud reconstruction, dense point
cloud reconstruction, removing irrelevant points, and Poisson sur-
face reconstruction.

corresponding to CShoulder as the target patch, and select the left-
most adjacent patch (i.e. left upper arm) and rightmost adjacen-
t patch (i.e. right upper arm) of the target patch. Then we divide
the points of target patch into three subpatches according to an e-
quivdistant rule with respect to the leftmost and rightmost patches.
Finally LShoulder and RShoulder are determined by the centroid of
the leftmost and rightmost subpatches, respectively.

Standard skeleton completion: To fulfill an initial skeleton ex-
traction with the same number and similar locations to standard
skeletons, we divide the collection of all pseudo-skeletons and
those four skeletons into six subsets corresponding to six compo-
nents of human body: Torso, Head, LArm, RArm, LLeg, RLeg, ac-
cording to their connectivity (see Fig. 4).Then we add or remove
skeleton points to each component until the number of pseudo-
skeletons reaches the standard number for current component.

3.2. Skeleton alignment

The second stage of STC is to match skeleton points between
consecutive frames, i.e., to establish the correspondence between
skeletons of different frames so that all the same skeletons are cor-
rectly matched. Since the blocks where Head and Neck locate and
where Waist and center points of LShoulder and RShoulder locate
can be judged based on the number of points on each branch and
the connection with the center point of the Shoulder or Waist. Ob-
viously, Head and Waist can be easily realize inter-frame match
separately, and it is easy to distinguish two arms and two legs. To
find a correspondence between two arms (and two legs) of pairwise
adjacent frames, we denote X, ; € R? to be the coordinates of the
ith skeleton of the ¢th frame; if

Z [I%,i _Xt—o—l,i”% <
i=23.45

2
(1%, —Xi41,i14]2
=234,

holds, then the skeletons of two arms of the (# + 1)th frame are
correctly matched; otherwise we switch the skeletons of two arms
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Figure 3: A flowchart of spatial-temporal consistency model. (a)
Data preprocessing; (b) Initial skeleton extraction; (c) Skeleton ad-
justment.

of the (¢ + 1)th frame from LArm to LArm. The correspondence
between two legs is computed in a similar fashion.

The x,y,z coordinates of initial skeletons obtained in this section
are denoted by x\W x® x3 e RT*20, respectively, where 7,20

init? ““init? ““init d
are the frame number and skeleton number, respectively, and the
tth row of Xl(r];)t corresponds to the coordinates of initial skeletons
at the rth frame, k =1,2,3,¢r=1,...,T.

3.3. Skeleton adjustment

The third stage of STC adjusts the skeletons by using a spatial-
temporal consistency adjustment model. As the position of each
skeleton of a motion sequence exhibit continuous change, i.e., for
almost all frames, the position of a skeleton can be given by the me-
dian value of the positions of the same skeleton of the front frame
and latter frame; for another, for each frame, semantic segmentation
produced by [KO19] is imprecise: most non-root skeletons locate
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Figure 4: Standard human model of 20 body skeletons marked by
black spheres and 6 body components marked by colored line seg-
ments: S , LArm, RArm, LLeg, RLeg. The parent relation-
ship of all nodes of the tree is given by (1).

far from the corresponding “parent skeletons" determined by

parent(02) =01 parent(03) =02 parent(04) =03  parent(05) = 04
parent(06) =01 parent(07) =06 parent(08) =07  parent(09) = 08
parent(10) =01 parent(11) =10 parent(12) =11  parent(13) = 12
parent(14) =13 parent(15) = 14  parent(16) =11  parent(17) = 16
parent(18) =17  parent(19) =18 parent(16) = 11,

(1)

except four ending skeletons (LHand, RHand, LFoot, RFoot) which
locate close to their “parent skeletons". The reason is that each of
those four skeletons locates at the end of a body component, and
the segmented patch produced by [KO19] cannot distinguish that
skeleton and its parent skeleton. Based on the argument, we pro-
pose the following spatial-temporal consistency adjustment model:

3

320 2
min Y IIDXOo+a ¥ Y X (1) X5 —BelX wenc |

XOR_ =1 =1j=2 2
[ 1 ifj=2,3,6711,12,13,16,17,20 .
BJ*{ 1 ifj—4,58,9,14,15,18,19 0 J=200520,
—1 if2<i<T—-1Ai=j*1
D;={ 2 if2<i<T—1Ai=j  .ij=1,...T,

0 otherwise

3]
where the first term enforces the medium representation of skele-
tons of almost all frames, with D € R7 %7 representing the “median
representation” matrix, and the second term enforces a framewise
fine-tuning over all non-root skeletons for approaching or keeping
away from the corresponding parent skeletons, with f3; being a pre-
given parameter for determining whether each skeleton approach
or keep away from its parent.

Model (2) can be solved by applying naive Lagrange multiplier
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Figure 5: Qualitative results of Tagliasacchi et al. [TAOH12] (row 2), Cao et al. [CTO*10] (row 3), Huang et al. [LHW™*13] (row 4),
Zhang et al. [ZSW*18] (row 5) and STC (row 6) of 25th, 50th, 55th, 63rd, 76th, 84th, 88th and 90th frames of Arm stretching

method to the following Lagrangian function:

3 20 2
. k k k k)12
(i, 3 <|Y( )||0+(x];2H[X( N =z, +MY® —px( )”2>
2 =(1 = )X (] + BelXi parenc k=123
3)

where Y®) € RT>20 k= 1,2,3 are auxiliary variable matri-
ces for replacing DX® and A € R* is the penalty parameter. We
solve (3) by alternating solving two subproblems regarding x®
and Y.

4. Experimental results

In this section, we evaluate the effectiveness of STC by compar-
ing it with state-of-the-art methods. We collect multiview inten-
sity images of the Arm stretching action by using 50 industri-

al cameras with 2.2 million pixels through the light field acqui-
sition system (see Fig. 1), and the resolution of captured images
is 2048*1088. All the experiments are conducted on an Intel(R)
Core(TM) i5-8250U CPU 1.8 GHZ CPU with 8GB RAM using
MATLAB R2016.

We select four state-of-the-art methods for comparative ex-
periments: Tagliasacchi et al. [TAOH12], Cao et al. [CTO*10],
Huang et al. [LHW™13], and Zhang et al. [ZSW*18], and show
qualitative results for Arm stretching in Fig. 5. We summarize the
main shortcomings of comparative methods as follows.

Cao et al. [CTO™ 10] suffer from missing of skeletons, especially
on the junction of LArm and torso, the junction of RArm and tor-
so the junction of LLeg and torso, the junction of RLeg and torso
(see the 25th, 50th, 55th, 63rd, 76th, 84th, 88th and 90th frames
of Fig. 5) and great prediction errors on the junction of LArm and
torso, the junction of LKnee and torso (see 63rd frame of Fig. 5).
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Huang et al. [LHW*13] suffer from obvious problems such as
missing of skeleton points (the 76th, 84th, 90th frames of Fig. 5),
missing of branches (the 76th of Fig. 5), incorrectness of connec-
tion between branches (see the 63rd, 90th of Fig. 5).

Zhang et al. [ZSW™ 18] occasionally produce incomplete skele-
tons on Head (see the 50th, 55th frames of Fig. 5).

In contrast, STC produces more accurate skeletons generally,
without the appearance of wrong branches, and more complete than
above skeletons, and are consistent, response to human posture bet-
ter. Because initial standard skeleton extraction algorithm based
on shape segmentation can extract the 3D human body skeleton
with 20 points. The temporal consistency preserving skeleton op-
timization algorithm has the position constraints of the intra-frame
skeleton points and the position constraints of inter-frame skeleton
points. Our optimization model make the final standard skeletons
are more accurate, more tidy, and more conformable to the origi-
nal input surfaces, more in line with the actual human body skele-
ton points distribution. Therefore, the method proposed in this pa-
per is better than the traditional skeleton extraction method, and
is more convenient to be used by subsequent posture estimation,
human body modeling and operation.

5. Conclusion

We propose a sort of 3D human body standard skeleton extrac-
tion method from consecutive surfaces, which can generate more
complete, tidier, more accurate 3D human body standard skeleton-
S. Our method can be applied to 3D human body standard skele-
tons extraction from meshes which are reconstructed by multiview
images of moving body or 3D human motion surfaces which are
scanned, while requiring without manual intervention. However,
because our initial skeleton extraction is based on shape segmen-
tation, so whether our skeleton extraction is ideal or not depends
on the normalization and the success of shape segmentation. De-
spite of this, our 3D human body standard skeletons from contin-
uous frame meshes are more standardized, more effective and are
more conducive to be used by subsequent posture estimation, body
modeling and operation.
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