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Abstract
We propose a Gauss-Seidel progressive iterative approximation (GS-PIA) method for Loop subdivision surface interpolation 
by combining classical Gauss-Seidel iterative method for linear system and progressive iterative approximation (PIA) for data 
interpolation. We prove that GS-PIA is convergent by applying matrix theory. GS-PIA algorithm retains the good features of 
the classical PIA method, such as the resemblance with the given mesh and the advantages of both a local method and a global 
method. Compared with some existed interpolation methods of subdivision surfaces, GS-PIA algorithm has advantages in three 
aspects. First, it has a faster convergence rate compared with the PIA and WPIA algorithms. Second, compared with WPIA 
algorithm, GS-PIA algorithm need not to choose weights. Third, GS-PIA need not to modify the mesh topology compared with 
other methods with fairness measures. Numerical examples for Loop subdivision surfaces interpolation illustrated in this paper 
show the efficiency and effectiveness of GS-PIA algorithm. 
CCS Concepts
•Computing methodologies → Parametric curve and surface models;

1 Introduction

Subdivision defines a smooth curve or surface as the limit of
sequence of successive refinements [ZS00]. Subdivision schemes
can be divided into interpolatory and approximating schemes. To
interpolate given meshes, we can use many interpolatory subdivi-
sion schemes [DLG90,ZSS96,KL10,Lev99,DM13]. However, the
limit surface of interpolatory subdivision schemes may exhibit dis-
tortions [ZSS96] and may need bigger local supporter regions to
generate surface with higher continuity. So sometimes it can not
meet the quality requirements of practical applications.

In order to obtain interpolation surfaces with high quality, schol-
ars have successively proposed various methods for interpolation
surfaces with high quality [ZS00] based on approximating subdivi-
sion schemes. Hoppe et al. [HDD∗94] and Nasri [NAS87] forced
the subdivision surfaces to interpolate a particular set of control
points by modifying the rules of subdivision. In addition, Bruner
[Bru88] also defined a set of scalar shape handles, which effective-
ly improved the quality of interpolation surface. For Catmull-Clark
subdivion surface interpolation, based on minimizing of a certain
fairness, Halstead et al. [HKD93] presented an efficient method.
However, both Nasri’s and Halstead et al.’s methods need to solve a
linear equations. When the given mesh has too many vertices or the
linear equations are singular or ill-conditioned [ZSS96, HKD93],
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that is troublesome. In the literature, one may also find methods
for least squares fitting of a subdivision surface to a dense input
mesh, in which the number of control vertices of the resulting sub-
division surface is substantially less than that of the initial input
dense mesh. Ma and Zhao [MZ00, MZ02] presented a method for
least squares fitting of Catmull-Clark subdivision surfaces based on
parametric evaluation of subdivision surfaces by Stam [Sta98]. Ma
et al. [MMTP04] also presented another method for Loop subdivi-
sion surface fitting by simultaneously applying both the subdivision
and limit position masks to a topology- and feature-preserving sim-
plified mesh of the input dense mesh. While both of the above least
squares fitting solutions produce stable results, they all lead to the
solution of a linear least squares system that may be expensive to
solve, especially if the resulting subdivision surface is to be defined
by a large control mesh.

To avoid solving linear equations, Litke et al. [LLS01] proposed
a fast and local algorithm for fitting a Catmull-Clark subdivision
surface. Zheng and Cai [ZC06] proposed the two-phase subdivi-
sion scheme for Catmull-Clark subdivision to interpolate meshes
with arbitrary topology. By introducing extra freedom of the vari-
ables in the first step subdivision to force the coefficient matrix of
the linear system strictly diagonally dominant, it can be quickly
solved by more efficient iterative methods. In addition, using the
excess degrees of freedom, Zheng et al. defined some shape pa-
rameters to control surface. However, the added vertices, edges and
faces in the first subdivision step lead to more surface patches that
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may bring inconvenience in surface modeling. A similar algorithm
is also applied to the Doo-Sabin subdivision scheme [ZC05]. By
modifying the geometric rules of the first step of Catmull-Clark
subdivision, Deng and Yang [DY10] used a simple and efficient
method to derive interpolation surface. However, the result surface
also have more surface patches than the origin mesh implies. Lat-
er, Deng [Den10] and Deng and Wang [DW10] also extended this
method to

√
3 and Loop subdivisions, respectively.

Similar to the progressive and iterative approximation (PIA)
method of B-spline curves and surfaces [LWD04], the iterative
method which avoids solving linear system has also been applied in
subdivision surface interpolation. Chen et al. [CLT∗08] and Cheng
et al. [CFL∗09] proposed the progressive interpolation approxima-
tion (PIA) algorithm for Catmull-Clark and Loop subdivision, re-
spectively. Recently, Deng and Ma [DM12] proposed the weighted
progressive interpolation approximation (WPIA) method for Loop
subdivision surfaces that can effectively control the convergent rate
by selecting weights based on experiments or theoretical analysis.

Combining the PIA algorithm and Gauss-Seidel method, in this
paper we propose the Gauss-Seidel progressive and iterative ap-
proximation (GS-PIA) algorithm for Loop [Loo87] subdivision
surfaces interpolation. The convergence of GS-PIA is proofed ac-
cording to matrix theory. Compared with some existed interpola-
tion method of subdivision surfaces, GS-PIA algorithm has advan-
tages in three aspects. First, it has a faster convergence rate com-
pared with the PIA and WPIA algorithms. Second, compared with
WPIA, GS-PIA need not to choose weights. Third, GS-PIA need
not to modify the mesh topology compared with other method-
s [ZC06, DY10] with fairness measures.

2 Loop subdivision surfaces

Loop subdivision scheme defined over triangular mesh generates
new vertex points and new edge points in refinement. Loop subdi-
vision surfaces is the generalization of box-spline surfaces.

2.1 The rules for Loop subdivision

Given a triangular mesh with a set of vertices {vi}. The process
for each refinement iteration includes:

I. The new vertex points: for each vertex point vi, compute the
new vertex point v′i by a linear combination of the points within the
neighborhood of vi (see Figure 1(a))

v′i = (1−niβni)vi +βni ∑vi, j,

where ni is the valence of vi, and βni =
1
ni
( 5

8 − ( 3
8 +

1
4 cos 2π

ni
)).

II. The new edge points: if the triangles (v0,v1,v2) and
(v0,v1,v3) share the same edge v0v1, then the new edge point is
computed as (see Figure 1(b))

ve =
3
8
(v0 + v1)+

1
8
(v2 + v3).

III. Connect each new vertex point to surrounding new edge
points (see Figure 1(c)).

IV. Connect each new edge point to the new edge points of adja-
cent edges (see Figure 1(c)).

(a) (b) (c)

Figure 1: Loop subdivision rules (old vertex ◦): (a) new vertex
point •; (b) new edge point ∗; (c) refined mesh construction.

By repeating the above process (I-IV), it yields a sequence of re-
fined meshes which eventually converges to a limit surface, known
as the Loop surface.

2.2 Formula of the limit point for Loop subdivision surfaces
For each vertex vi in mesh M, assuming its valence is ni, its limit

point is

vi,∞ = αivi +Qi. (1)

where

αi =
3

11−8× ( 3
8 +( 3

8 +
1
4 cos 2π

ni
)2)

,Qi =
(1−αi)∑vi, j

ni
, (2)

the points vi, j are adjacent vertices of vi .

3 The GS-PIA algorithm for Loop subdivision surfaces
interpolation

Given an initial mesh M with a set of vertices V = {vi}m
i=0, we

want to design a algorithm (Algorithm 1) for constructing Loop
surface that efficiently interpolates the given mesh.

3.1 The GS-PIA algorithm

Let V 0 = {v0
i = vi}m

i=0 be the original vertices of the mesh
M0 = M, and compute the limit point v0

0,∞ of v0
0 on M0 by Eq. (1).

Denote that Mk is the mesh that we get from the original mesh af-
ter k steps of modification, where their vertices are V k = {vk

i }m
i=0.

And let V k
i = {vk+1

0 , · · · ,vk+1
i−1 ,v

k
i , · · · ,vk

m} correspond to the mesh
Mk

i , where 0 < i≤ m.

Firstly, denote the adjustment vector as

d0
0 =

v0
0− v0

0,∞
α0

.

Let

v1
0 = v0

0 +d0
0 .

Then let V 0
i = {v1

0, · · · ,v1
i−1,v

0
i , · · · ,v0

m}m
i=0 be the vertices of

the mesh M0
i , and compute the limit point v0

i,∞ of v0
i on M0

i as

v0
i,∞ = αiv

0
i +Q0

i ,

where Q0
i is the value of the Eqs. (2) for the mesh M0

i .

At the same time, we also have

d0
i =

v0
i − v0

i,∞
αi

,v1
i = v0

i +d0
i .
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When i = m holds, we set the vertices of the mesh M1 to V 1 =
{v1

j}m
j=0, where

v1
j = v0

j +d0
j , j = 0,1, · · · ,m.

At this point, we complete the first iteration.

As the k increases, the corresponding adjustment vectors are
written as

dk
i =

v0
i − vk

i,∞
αi

, i = 0,1,2, · · · ,

where vk
i,∞ = αivk

i +Qk
i , and Qk

i is the value of the Eqs. (2) for the
mesh Mk

i .

For the Loop subdivision scheme from Eqs. (1), we have

vk+1
i = vk

i +dk
i =

αivk
i + v0

i − vk
i,∞

αi
=

v0
i −Qk

i
αi

. (3)

In this way, we get a mesh sequence {Mk}(k = 1,2, · · ·). In the
following Sect. 3.2, we will prove that as k tends to infinity, Mk

converges to M∞ whose Loop surface interpolates the all original
vertices of given mesh M.

Algorithm 1 The GS-PIA algorithm for Loop subdivision surface

Input: Given the vertices {vi}m
i=0 of the initial mesh M.

Output: The new vertices {v∞i }m
i=0 of the limit mesh M∞.

Initializa: v0
i = vi, i = 0,1, · · · ,m.

for k = 0,1,2, · · · do

for i = 0 to m do

vk
i,∞ = αivk

i +Qk
i , dk

i =
vk

i−vk
i,∞

αi
, vk+1

i = vk
i +dk

i .

end for

end for

3.2 Convergence of the GS-PIA algorithm

Firstly, we define a matrixB, where

B =


αn1 · · · 1−α1

n1
· · ·

...
. . .

1−αi
ni

αi · · ·
... · · · αm

 . (4)

Then we can get

V k
∞ =BV k. (5)

By Eq. (3), the GS-PIA format can be written in matrix form as

V k+1 =D−1(V 0−LV k+1−UV k),

=−(L+D)−1UV k+(L+D)−1V 0, (6)

where B is decomposed into diagonal matrix D, lower and upper
triangular matrices L and U , i.e.B =D+L+U .

By subtractingB−1
L V 0 both sides of Eq. (6), we have

V k+1−B−1V 0 = (−(L+D)−1U)k+1(V k−B−1V 0). (7)

Then denote error vector

δk = V k−B−1V 0

We can get

δk+1 = (−(L+D)−1U)k+1δk.

Denote GB = −(L+D)−1U and ρ(GB) be the spectral ra-
dius of the matrixGB . If we can get ρ(GB)< 1, then the GS-PIA
algorithm is convergent for Loop subdivision.

Lemma 1 If the coefficient matrixA of the linear system of equa-
tions Ax = b is Hermite positive definite, the Gauss-Seidel itera-
tion of the matrixA is convergent, namely ρ(GA)< 1 [GVL96].

Theorem 1 The Gauss-Seidel iterative interpolation process for
Loop subdivision surface interpolation is convergent.

Proof Let bi =
1−αi

ni
(i = 1, · · · ,m) andB =MN , where

M =

b1
. . .

bm

 ,N =


α1
b1
· · · 1 · · ·

...
. . .

1 αi
bi
· · ·

... αm
bm

 . (8)

Then we have

GB =−(L+D)−1U =−(MLN +MDN )−1MUN

=−(LN +DN )−1UN =GN .

It is known from [CFL∗09] the matrix N is positive definite
Hermite matrix. Therefore using Lemma 1, we have ρ(GB) =
ρ(GN ) < 1. Then the iterative process of GS-PIA is convergent
for the Loop subdivision surfaces.

Table 1: The statistics of the Loop surface interpolation.

Examples Vertex Valences
Spectral radius E10

E0

PIA W-PIA GS-PIA PIA W-PIA GS-PIA

1 477 4, · · · ,13 0.769 0.624 0.312 0.028 0.002 1.08× 10−5

2 1618 3, · · · ,11 0.783 0.643 0.267 0.017 0.001 2.12× 10−6

3 8604 3, · · · ,24 0.815 0.688 0.341 0.018 0.002 1.10× 10−5

4 Examples
In this section, we give some specific examples to illustrate the

interpolating results by GS-PIA method. Define the error after iter-
ation k steps as ek

i = ‖v0
i − vk

i,∞‖, Ek = maxi{ek
i }.

First of all, for the Loop subdivision scheme, we compare PI-
A [CFL∗09] algorithm and W-PIA [DM12] algorithm with GS-PIA
algorithm. Note that in next example, we all use the optimal weight-
s for W-PIA. Three examples are presented in Figure 2. We can see
the surface generated by the GS-PIA algorithm faithfully resembles
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Given
mesh:

GS-PIA
method:

Figure 2: Loop surfaces interpolation.

the shape of the original mesh. Besides the basic information of the
original mesh in Figure 2, Table 1 describes the spectral radius of
the iterative matrix corresponding to the three methods and the ra-
tio E10

E0
after iteration 10 times for loop subdivision surface. We can

see that the iteration matrix of the GS-PIA algorithm has a smaller
spectral radius and therefore the convergent rate is much more ef-
fective. More importantly, GS-PIA is simpler than W-PIA because
it does not need to select a weight.

5 Conclusions

We have presented a GS-PIA interpolation method for Loop sub-
division surfaces. GS-PIA is a simple, stable and efficient surface
interpolation method that can be applied to meshes with arbitrary
topology. As an iterative method, the convergence of the GS-PIA
is proved. In addition, the GS-PIA algorithm does not modify the
initial mesh topology and has a faster convergence rate. In the fu-
ture, we will continue to investigate the convergence of GS-PIA
algorithm for the interpolation of other subdivision surfaces.
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