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Abstract

3D object reconstruction from single view image is a challenge task. Due to the fact that the information contained in one
isolated image is not sufficient for reasonable 3D shape reconstruction, the existing results on single-view 3D reconstruction
always lack marginal voxels. To tackle this problem, we propose a parallel system named 3D VAE-attention network (3VAN)
for single view 3D reconstruction. Distinct from the common encoder-decoder structure, the proposed network consists of
two parallel branches, 3D-VAE and Attention Network. 3D-VAE completes the general shape reconstruction by an extension
of standard VAE model, and Attention Network supplements the missing details by a 3D reconstruction attention network.
In the experiments, we verify the feasibility of our 3VAN on the ShapeNet and PASCAL 3D+ datasets. By comparing with
the state-of-art methods, the proposed 3VAN can produce more precise 3D object models in terms of both qualitative and

quantitative evaluation.
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eComputing methodologies — Reconstruction; Volumetric models;

1. Introduction

3D reconstruction is an integral problem in geometric computing
and modeling. There already have been considerable researches in
3D reconstruction based on images.In many cases, we need to re-
cover 3D shape from single-view image. The single-view 3D re-
construction is an ill-posed problem due to the lack of disparity
information, so that the traditional methods require additional prior
knowledge.

Owing to the remarkable achievement of learning methods and
the establishment of various 3D object databases, learning meth-
ods have been gradually introduced into 3D reconstruction tasks.
[GFRG16] [TDB16] Although the above methods can be applied to
perform the 3D reconstruction tasks, they have not given the sub-
jective and objective evaluations. Choy et al. [CXG™16] proposed
an overall framework called 3D-R2N2 for single-view and multi-
view reconstruction based on LSTM which means it had high com-
putation complexity. Fan H et al. [FSG17] proposed a point set
generation network for 3D object reconstruction from one single
image.

Especially when we reproduce the experiments of [CXG*16]
[FSG17], we find that the output models often lack detailed infor-
mation on single-view reconstruction task. We attribute the prob-
lem to the ill-conditioned nature of the single-view reconstruction
task and the one-sidedness of the current networks. And parts of
missing information can be found in the corresponding image. So

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.

DOI: 10.2312/pg.20181279

we propose to address this information missing by introducing at-
tention mechanism to the task.

Our main contribution is to build an end-to-end parallel sys-
tem 3D VAE-attention network (3VAN) for single view 3D recon-
struction task. Our proposed 3VAN consists of two branches. The
first branch learns to generate 3D rough shape of an object. We
feed the corresponding image into modified 3D variational autoen-
coder reconstruction architecture to get the general volumetric oc-
cupancy. The other one integrates the details of the 3D object by
attention mechanism. It learns to endow higher weights to the fea-
tures of missing details in the image. Consequently, in the Attention
Network, we can obtain volumetric occupancy which represents
the details of object. Finally, we put the volumetric occupancy of
these two branches together to get the full 3D shape object model.
Our architecture generates 3D object models which contain more
vivid details and makes qualitative and quantitative improvements
on ShapeNet dataset [YSS*17] compared with [CXG*16] and
[FSG17]. The main contributions of this paper are summarized as
follows:

e We propose a parallel system instead of the common encoder-
decoder architecture.

o We introduce attention mechanism to the 3D reconstruction task.

e We propose an extension of the standard VAE generator frame-
work in our contour reconstruction branch.
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Figure 2: A sample of the two components reconstruction visual-
ization. The first row is airplane and the second row is car. (a) is
the ground truth model in the ShapeNet dataset. (b) and (c) are the
predictions of 3VAN in different projection, in which the blue voxel
girds are produced by the 3D-VAE and the pink ones are made up
by Attention Network.

e We propose a reasonable combined loss function for our net-
work.

e On the task of single-view reconstruction, our framework out-
performs state of the art.

2. 3D VAE-Attention Network

In this section, we propose an effective 3D VAE-Attention Net-
work to reconstruct authentic 3D object model from one single
view image,. It decomposes the 2D-to-3D reconstruction task into
two branches (as shown in Figure 1).

e 3D-VAE: This branch extends the standard VAE for adapting to
3D reconstruction tasks. It reconstructs rough 3D object shape
conditioned on a single image which is sampled from an arbi-
trary view, yielding an uncompleted volumetric occupancy.

e Attention Network: By inputting the same single view image,
it makes up the defects in uncompleted volumetric occupancy
and reconstructing detailed voxel occupancy to integrate the 3D
shape.

Eventually, we combine these two aforementioned outputs together
to get the completed 3D shape of object model. The combination is
visualized and shown in Figure 2.

2.1. Variational Autoencoder

Variational Autoencoder is composed of two networks that one en-
codes the input data x to the latent vector z and the other decodes
the latent vector back to the data space for target generation X. The
process of these encode-decode system can be simplified as the fol-
lowing equation:

2= encoder(x) = (2 ), 1)
X=decoder(z) = p(X| z), )

where x and X are both observed distribution during training and z
is learned to represent the mapping relation between them.

For our 3D-VAE framework, a 2D image x sampled from an arbi-
trary view is fed into the 2D-image-encoder to produce low dimen-
sional feature vector z. The 3D-voxel-decoder expanses the image
feature to generate the corresponding 3D volumetric occupancy X.
We pre-train the 3D-rough-shape generation branch with random-
sampling which is a VAE structure. During the training process of
upper-branch, we initialize the encoder with the pre-trained param-
eters and remove the random-sampling for better performance of
the whole architecture.

2.2. Attention network

Inspired by the fact that the volumetric occupancy generated from
3D-VAE network lacks marginal voxels often, we add an atten-
tion branch to the 3D reconstruction for completing the shape of
3D models. We design a fully convolutional Attention Network as
shown in the lower half branch of Figure 1 to establish the corre-
spondence between missing details in volumetric occupancy and
the local feature of image.

Convolutional network can extract a set of feature vectors from
the 2D image. The extractor produces an m-dimensional vector A =
{a1,a2, -+ ,am}, am € R, each element of which represent a local
region of the image.

As the 3D-VAE can produce a rough shape of volumetric occu-
pancy, we can get the residual voxel occupancy which fail to re-
construct. In the convolutional Attention Network, the backpropa-
gation algorithm will project the residual voxels back to the atten-
tion weight eigenvector. The mapping relation is recorded as I and
can be obtained from an interlayer. I = {i1,i, - ,in}, in € Risa
n-dimensional vector and each element symbolizes the pertinence
between these local regions of image and the residual voxels. So
that it can be regarded as importance weighted eigenvector.

As shown in the lower half branch of Figure 1, we feed an 2D
image x into the Attention Network. From two sub-branches (i.e.
regarded image feature extraction as weight matrixWy and impor-
tance weighted extraction as weight matrix Wy) we can get a at-
tention vector V when m = n. V contains the information that the
different regions of image contribute to shape completion variously.
After feeding into the decoder ( Wy), V is expanded to the residual
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Figure 3: The implementation architecture of 3VAN

voxels. This process can be formulated in the following formulation
and X is the distribution of full shape 3D model,

V=WxoWex) =401, 3)
X—-x=W;-V. 4)

Attention Network is voxel complemental branch of 3VAN and
shares the same input image with 3D-VAE branch. It establishes the
mapping relation between the local feature of image and the miss-
ing marginal voxels, and utilize the relationship to endow higher
weight to more crucial region of image. Through the same decod-
ing architecture as 3D-VAE branch, Attention Network produces
detailed volumetric occupancy utimately.

2.3. The proposed network architecture

The network architecture pipeline is shown in Figure 3. We feed
a single image which is sampled from arbitrary view into the two
branches of 3VAN. In the upper half branch of Figure 3, 3D-VAE
network first uses several 2D convolutional layers which encode the
127 x 127 image into an eigenvector. Then, the decoder which is
composed by 3D convolutional and deconvolutional layers extends
the 343 dimensional eigenvector into 32 x 32 x 32 voxel occupancy
of 3D rough shape. In the lower half branch of Figure 3, the Atten-
tion Network endows high weights to unreconstructed regions by
attention mechanism which is a cocurrent convolutional network
and uses the same decoder architecture to get the 32 x 32 x 32 voxel
occupancy of 3D detailed shape. In attention mechanism module,
the upper sub-branch extracts the 2D image feature and the lower
sub-branch learns the attention weight eigenvector. For clear illus-
trate, here we take a sample of airplane category as an example.
The results of these two components of attention are shown in Fig-
ure 2. The blue voxels describe a rough 3D shape and the pink ones
add the details. We sum the results of these two components up for
getting more precise 3D shape of object model.

2.4. Loss function

Loss function is a critical factor for the convergence of neural net-
work. For our reconstruction task, we add a quadratic component to
a common loss function weight Sigmoid Cross Entropy with Logits
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(®— SCE), and the loss function could be expressed as:

Loss = —w tlog(c(0)) — (1 —1)log(1 — 6(0)) + At — 6(0)),
Q)

where 6(x) = ﬁ, 0 = wijX;j + bjj, t is the representation of
occupancy which is either O or 1, o is the output of the network , ®
and A are hyper parameters. In our paper, ® = 20, A = 1.

3. Experiments

In this section, we firstly introduce the dataset and training details,
and verify the feasibility of 3VAN in quantitative (summarized in
the Table 1 and Table 2) and qualitative (shown in Figure 2).

3.1. Datesets and implementation details

Dataset The ShapeNet dataset is a richly-annotated, large-scale
dataset of 3D shapes. It is collected by Princeton, Stanford and
TTIC. We use a subset of the ShapeNet dataset which contains
about 40,000 3D models over 13 common categories.

We evaluate the generalization ability of 3VAN on the PASCAL
3D+ dataset [XMS14]. We convert the CAD model to voxel for-
mat. This dataset contains 12,093 3D models over 12 common cat-
egories. We split the dataset into training and testing sets, with 1/2
for training and the remaining 1/2 for testing.

Implementation details We use the ADAM [KB14] solver for
stochastic optimization in all the experiments. During the training
time, the learning rate is 1074 (whole network) or 1073 (pretrain)
for the neural networks. The representation of accuracy is IOU.
We pretrain the 3D-VAE, and use these pretrained parameters to
initialize the 3D-VAE before the whole network 3VAN is trained.

3.2. Quantitative and qualitative results

To validate our network structure, We compare our results with
the state-of-the-art deep learning 3D reconstruction methods
[CXG*16] [FSGI17] on ShapeNet dataset. The IoU accuracy of
13 categories for our 3VAN and compared methods are reported in
Table 1.

3D-R2N2 reconstructs 3D model from single or multi-view im-
ages, and in the single view reconstruction setting we achieved bet-
ter performance in most categories. Particularly, in 8 out of 13 cat-
egories, our results are even better than 3D-R2N2 reconstructs for
5 views. Although Point-Net achieves higher IoU accuracy in some
categories, the generated 3D model is represented by fixed amount
of 210 points, distinct from 3VAN reconstruct the 3D model with
25 dimensional occupancy problem, which means the comparsion
of evaluation is unfair and higher IoU accuracy in Point-Net is not
positive correlation to model look more immersive. We train the
network by all categories without any semantic labels. It causes
the cross-impact effect, which leads to the performance decline of
some categories. But the total performance of all categories gets
better. The category-wise IoU of the 3D-VAE is 0.627, and that of
3VAN reaches to 0.640 indicate the attention mechanism works.
In Table 2, 3VAN also outperforms the state-of-art methods on
the PASCAL 3D+ dataset which verifies the generalization of our
method.
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3D-R2N2 Net VAE 3VAN
Viewpoint 1 3 5 1 1 1
Plane 0.513 0.549 | 0.561 0.601 0.565 | 0.594
Bench 0.421 0.502 | 0.527 0.55 0.499 0.74
Cabinet 0.716 | 0.763 | 0.772 | 0.771 0.755 | 0.597
Car 0.798 | 0.829 | 0.836 | 0.831 0.828 | 0.709
Chair 0.466 | 0.533 0.55 0.544 | 0.605 | 0.562
Monitor 0.468 | 0.545 | 0.565 0.552 | 0.591 0.59
Lamp 0.381 0.415 | 0421 0.462 | 0.574 | 0.771
Speaker 0.662 | 0.708 | 0.717 | 0.737 | 0.715 | 0.566
Firearm 0.544 | 0.593 0.6 0.604 | 0.508 | 0.547
Couch 0.628 0.69 0.706 | 0.708 | 0.693 | 0.588
Table 0.513 0.564 0.58 0.606 | 0.598 | 0.716
Cellphone | 0.661 0.732 | 0.754 | 0.749 | 0.697 0.83
Watercraft | 0.513 0.596 0.61 0.611 | 0.535 0.513
Mean 0.56 0.617 | 0.631 0.64 0.627 0.64

Table 1: 3D reconstruction loU on the ShapeNet dataset test

method ToU
Kar. [KTCM15] | 0.318
3D-R2N2 0.517
3VAN 0.6

Table 2: 3D reconstruction IoU on the PASCAL 3D+ dataset test

The voxel grid visualization of our experimental results is shown
in Figure 4, we compare our reconstruction results with 3D-R2N2
and 3D-VAE for the qualitative analysis. The first five reconstruc-
tion samples show that 3VAN makes up the lacking details, espe-
cially in the thin structure such as the leg of a chair in the 4th row,
so that we can get more precise results. And the last two rows show
the limitation of the state-of-art methods in reconstructing hollow
structure object which need to be further researched.

4. Conclusion

In this paper, we design a 3D reconstruction network 3VAN. The
proposed method decomposes the prediction into two branches.
The first one is 3D-VAE which produces rough 3D shape by an
extension of standard VAE. The other one is Attention Network
which establishes the correspondence between missing details in
volumetric occupancy and regions in image to add the details for
completing 3D model shape. By comparing with state-of-art meth-
ods and analyzing the structure effectiveness, 3VAN is verified to
produce more precise 3D object models in qualitatively and quan-
titatively.
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Image

Figure 4: Visualization of volumetric occupancy in distinct meth-
ods

References

[CXG*16] CHOY C. B., XU D., GWAK J., CHEN K., SAVARESE S.:
3d-r2n2: A unified approach for single and multi-view 3d object recon-
struction. In European Conference on Computer Vision (2016), Springer,
pp. 628-644. 1,3

[FSG17] FANH., SUH., GUIBAS L.: A point set generation network for
3d object reconstruction from a single image. In Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2017), vol. 38. 1, 3

[GFRG16] GIRDHAR R., FOUHEY D. F., RODRIGUEZ M., GUPTA A.:
Learning a predictable and generative vector representation for objects.
In European Conference on Computer Vision (2016), Springer, pp. 484—
499. 1

[KB14] KINGMA D. P., BAJ.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 3

[KTCM15] KAR A., TULSIANI S., CARREIRA J., MALIK J.: Category-
specific object reconstruction from a single image. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2015),
pp. 1966-1974. 4

[TDB16] TATARCHENKO M., DOSOVITSKIY A., BROX T.: Multi-view
3d models from single images with a convolutional network. In Euro-
pean Conference on Computer Vision (2016), Springer, pp. 322-337. 1

[XMS14] XIANG Y., MOTTAGHI R., SAVARESE S.: Beyond pascal: A
benchmark for 3d object detection in the wild. In IEEE Winter Confer-
ence on Applications of Computer Vision (WACV) (2014). 3

[YSS*17] YIL., SuUH., SHAO L., SAVVA M., HUANG H., ZHOU Y.,
GRAHAM B., ENGELCKE M., KLOKOV R., LEMPITSKY V., ET AL.:
Large-scale 3d shape reconstruction and segmentation from shapenet
core55. arXiv preprint arXiv:1710.06104 (2017). 1

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.



