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Abstract

Realistic cloud is essential for enhancing the quality of computer graphics applications, such as flight simulation. Data-driven
method is an effective way in cloud modeling, but existing methods typically only utilize one data source as input. For example,
natural images are usually used to model small-scale cloud with details, and satellite images and WRF data are used to model
large scale cloud without details. To construct large-scale cloud scene with details, we propose a novel method to extract
relevant cloud information from both satellite and natural images. Experiments show our method can produce more detailed

cloud scene comparing with existing methods.
CCS Concepts

eComputing methodologies — Modeling methodologies; Shape modeling;

1. Introduction

Being able to model natural cloud scenes can significantly im-
prove the realism of many computer graphics applications, such
as flight simulation, city walkthrough and cultural heritage site
simulation. Existing cloud modeling methods can be divided into
three classes based on the type of data used, namely natural image
[DSY10, YLH*14], satellite image [DNYO98, DYNO09, ZLYL17],
and WRF (Weather Research and Forecasting Mode) data. Methods
based on natural images can generate clouds with detailed surface,
but being incapable of constructing large-scale cloud scenes, which
are typically required by practical applications. Methods based on
satellite images can easily model large-scale cumulus cloud scene
due to its extensive spatial coverage. However, the limited spatial
resolution (hundreds to tens of meters) makes it difficult to recover
cloud surface details.

To model a large-scale cloud scene with detailed cloud surface
incorporated, we propose a novel data-driven framework using both
satellite images and natural images. Our main contributions are:

e An novel cloud modeling framework based on natural images
and satellite images.

e A cGAN with improved object function for generating natural
cloud images based on the contours of coarse cloud models.

2. Related Work

Realistic natural phenomena and scenes, such as smoke, fire, fluid
and cloud, are challenging to reconstruct. In the area of cloud mod-
eling, Dobashi et al. [DSY10] proposed a method for modeling
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small-scale cloud scene. Yuan et al. [YLH*14] alternatively uti-
lized a simplified single scattering model to recover cloud shape.
These methods could only model a single cloud or a small cloud
scene. In contrast, Dobashi et al. [DNYO99] modeled large-scale
cloud scenes using metaballs as well as adopting a single scattering
model. In 2009, Dobashi et al. [DYNO9] proposed another method
for modeling large-scale cloud scenes by constructing cloud surface
from infrared image. Recently, Zhang et al. [ZLYL17] proposed
a modeling framework based on high-resolution landsat8 images.
Despite this method surpassed [DYNO9] by reconstructing physi-
cally more realistic and visually better results, the generated cloud
scenes were still lacking cloud surface details.

To tackle the problems, we propose a novel cloud modeling
framework, utilizing high-resolution feature of natural images and
large-scale, multi-band feature of satellite images to model large-
scale cumulus cloud scenes with detailed cloud surfaces.

3. Approach

In this section, we present the framework of our work. As shown in
Figure 1, we first generate a normalized natural cloud image dataset
(section 3.1). We then model coarse 3D cloud models from satel-
lite images following by generating the corresponding natural cloud
images for each coarse 3D cloud model (section 3.2). The surface
details of each generated natural cloud image are then modeled
and transferred onto the surface of the corresponding coarse cloud
model (section 3.3).
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Figure 1: Overview of our framework.

3.1. Natural Cloud Image Dataset Generation

In order to model detailed 3D cloud scene, we use cGAN to gen-
erate natural cloud images from the contours of 3D coarse clouds
modeled from satellite image (section 3.2), and construct a natural
cloud image dataset to train the cGAN. We collect natural cloud
images from crowdsourcing. Each natural cloud image is checked
manually, ensuring that gathered natural cloud images meet the re-
quirements. We then extract individual non-occluded clouds from
each natural image, generating the natural cloud image dataset. Fi-
nally, we obtain a natural cloud image dataset, where each image
in the dataset contains only a single cloud.

3.2. A Contour-based Natural Cloud Image Generation

We take both cloud information from satellite images and natural
cloud images as inputs for cloud scene modeling. The main prob-
lem involved is that there is no native correspondence between the
natural cloud images and the coarse 3D cloud models. We address
the problem as a contour-to-image generation problem, generat-
ing natural cloud images based on the contour of coarse 3D cloud
model. Surface details of each generated natural cloud image are
then modeled and transferred onto the surface of the correspond-
ing coarse cloud model. For this purpose, we adopt the method
proposed by Zhang et al. [ZLYL17] to generate coarse 3D cloud
models from satellite images.

After the coarse 3D cloud model scene has been reconstructed
from the satellite images, for each coarse cloud model, we sample
viewpoints at 180° apart. When the viewpoint have been sampled,
we render the cloud model at these viewpoints. The canny operator
is then used and contours of the cloud in the images are extracted.

To address the generation problem, we adopt the conditional
generative adversarial network (cGAN) and improve the object
function to generate natural cloud images based on the contours of
coarse cloud models. cGAN is a variation of generative adversarial
network (GAN) [GPAM™14], which learns a conditional genera-
tive model [MO14]. It consists of two main components: a genera-
tor G(x,z) and a discriminator D(x,y), where x represents an image
contour extracted from the natural cloud image dataset, z represents
a Gaussian noise vector, and y represents an image generated by the
generator.

The main idea is to devise a system where generated natural
cloud images produced by the generator become indistinguishable
from real cloud images. The objective of a conditional GAN can be
expressed as:

Lcgan(G,D) =Ey y[log D(x,y)] +Ex ;[log(1 —D(x,G(x,z)))] (1)

where generator G tries to minimize this objective against an adver-
sarial D that tries to maximize it. Previous approaches have found
it beneficial to mix the GAN objective with a more traditional loss,
such as L1 distance [IZZE17]. To generate more realistic cloud im-
age, we adopt a total variation (TV) L; norm, since it can stimulate
the high frequency component of the sensitivity map.

The final objective function, Ly; is defined as:

Lfina = arg mci;n max Legan(G, D)+ L (G)+TVg  (2)

Besides, L;; (G) is defined as:
L1 (G) =Exye[ll y— G(x,2) ||] 3)

The TV regularization as:

1
TVg(s) = W iZj(sobelh(s)z + soblev(s)z)f’/2 4)
where H and W are the height and width of the last feature map in
the decoder of the generator, respectively, and i and j are the pixel
coordinates on the feature map.

We adopt a modified version of the "U-nets" [RFB15] as a gen-
erator. The generator contains 16 CNN blocks, where 8 of those are
used for encoding and the remaining 8 are used for decoding. The
generator architecture is shown in Figure 2.

Similarly, we adopt a CNN based classifier "patchGAN"
[IZZE17] as a discriminator. During the training of the proposed
method, we follows the standard approach [IZZE17, GPAM™ 14].

3.3. Surface Detail Blending

In order to extract the details of a cloud image, we use the method
proposed by Yuan et al. [YLH" 14] to model cumulus cloud from a
single image. This method can generate a fine cloud model closely
resembling an input cloud image as well as its cloud surface details
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Figure 2: The generator architecture.

geometrically. We refer the reconstructed model by this method as
the fine cloud model in the following. Table 1 summarizes the main
notations used in the following.

Table 1: Main notations

Symbol Definition

S a fine cloud model

S a smoothed model associate with S

U a corresponding coarse cloud model to §

5.8, the Laplacian coordinates of the vertex i in S and S,
P where §; € 8, §; € §

7 the position in R? for vertex i

N; the neighborhood ring of vertex i

d; the number of vertexes in ;

(1,) the (u,v) pair represents the vertex of cloud model

’ projected into the cylinder surface

& the details of vertex i is peeled from S

& the details of vertex i is rotated by R;, where <“,; € F,’

R; a rotation operation of vertex i

L the Laplacian matrix of U

U a model with transferred details

Instead of directly processing absolute coordinates of the cloud
models, we describe their geometry using a set of differentials
A ={3J;} called Laplacian coordinates [Sor05] as these coordinates
allowing us to detach fine geometrical details from the fine geome-
try of a 3D model. The Laplacian coordinate §; of vertex i is defined
as the difference between v; and the average of its neighbors:

SiZV[ffZVj (5)

We smooth S in order to get a low-frequency model § associated
with S. We smooth the fine cloud model as follows:

_ L
-

Vi

Y v ©)
JEN;

Our smooth approach filters out the high-frequency details on the
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model surface yet the connectivity of the model is reserved. Then
the Laplacian coordinates §; and &; of the vertex i in S and § are
calculated. The detail of the model surface S is therefore defined

by &; = 8; — 0;. Now the detail is encoded and peeled from the fine
cloud model.

To apply detail blending, we need to define a mapping between
S and U. We have experimented with several mapping methods,
finding that the cylindrical mapping method yields the best result.
Based on this, we put S and U in the same space by linear transfor-
mation, they are normalized to the same scale and aligned by the
viewpoint gained in Section 3.2. We then project both models to be
surrounded by a cylinder:

w=y
{ v = arccos(x/vVxZ +22)

Thus the vertexs are projected into a (u,v) plane, each of the
(u,v) pair represents a point on the cylinder surface. For each (u,v)
pair that is projected from the coarse cloud model, we find the near-
est neighbor on the (u,v) plane as the corresponding vertex of the
fine cloud model. Then the details &; should be rotated with re-
spect to the target to compensate for the different local surface ori-
entations of corresponding points in the source and target models
&; = R;(&;). Having all the R; associated with the &;, the coating
transfer from S onto U is expressed as follows:

U'=L76+8) ™

Now we have a detailed cloud model.

4. Experiments

This section shows results of natural cloud images generation and
cloud surface details transfer, as well as a comparison with Zhang’s
method [ZLYL17] on cloud modeling.

4.1. Natural Image Generating

We use cGAN to generate natural images. To train the cGAN, the
natural cloud image dataset is divided into 240 training images and
75 testing images, with corresponding contour images. The original
size of all these images is 256 x256. Each natural cloud image and
corresponding contour image are merged into a single image with
the size of 256x512. We set batch size to 1 and learning rate to
0.0002. Each CNN block uses batch normalization regularization
and L1+TV regularization. The generated natural images are shown
in Figure 3.

4.2. Comparison of Cloud Scene Modeling methods

We compare our modeling results with [ZLYL17]. Figure 4 shows
some examples of the mesh models generated by Zhang and de-
tailed cloud models generated by our method. From the experiment
results, with our method, surface details are accurately mapped and
transferred onto the corresponding coarse cloud models.

Figure 5 shows the comparisons of the clouds modeled and ren-
dered via Zhang’s method and the same clouds rendered via our
method. Figure 6 shows the rendering results of a large-scale cu-
mulus cloud scene generated by our method.
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Figure 3: Different input cloud image contours extracted from nat-
ural cloud image dataset, the generator synthesized realistic cloud
images (outputs).

Figure 4: Comparison of mesh models. Images on the left side are
coarse cloud models generated by Zhang, while images in the mid-
dle column are corresponding fine cloud models, and images on the
right side are our results.

5. Future Work

In the future, we are interested in improving the natural image gen-
eration process. Current cloud image generation method only uses
the boundary of a cloud as prior. With the progress on adversarial
network, more cues can be applied to the process.
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