
Pacific Graphics (2017) Short Paper
J. Barbic, W.-C. Lin, and O. Sorkine-Hornung (Editors)

Robust Edge-Preserved Surface Mesh Polycube Deformation

Hui Zhao1 Na Lei2,3† Xuan Li4 Peng Zeng1 Ke Xu5 Xianfeng Gu4

1Tsinghua University, China
2DUT-RU ISE, Dalian University of Technology, China

3Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, China
4State University of New York at Stony Brook, USA

5Beijing University of Technology, China

Figure 1: Three surface models and their corresponding polycube shapes

Abstract
The problem of polycube construction or deformation is an essential problem in computer graphics. In this paper, we present a
robust, simple, efficient and automatic algorithm to deform the meshes of arbitrary shapes into their polycube ones. We derive
a clear relationship between a mesh and its corresponding polycube shape. Our algorithm is edge-preserved, and works on
surface meshes with or without boundaries. Our algorithm outperforms previous ones in speed, robustness, efficiency. Our
method is simple to implement. To demonstrate the robustness and effectiveness of our method, we apply it to hundreds of
models of varying complexity and topology. We demonstrate that our method compares favorably to other state-of-the-art
polycube deformation methods.

CCS Concepts
•Computing methodologies → Mesh models; Mesh geometry models;

1. Introduction

Polycube is coined and firstly proposed in [THCM04] to extend
cube mapping to general shapes. This kind of special shapes gen-
eralize Geometry Images [GGH02] to allow geometry and texture
stored efficiently.

In this paper, we propose a novel, automatic polycube deforma-
tion algorithm applied on surface mesh. Our framework separates
the polycube construction process into three components explicit-
ly: segmentation, polycube topology and polycube geometry. We
use existing algorithm for the first and the second steps. Our ma-
jor contribution is on the polycube geometry step. The technique
we implement can process all kinds of meshes: such as different
genus, orientation or non-orientation, with or without boundaries.

† Corresponding author: nalei@dlut.edu.cn

There is no pre-processing or post-processing cleanup processing
in our method. As we achieve the polycubes by deforming original
meshes, we get a direct cross-surface parameterization between the
meshes and their corresponding polycube shapes automatically.

2. Related Works

Recently some automatic algorithms are proposed in [HWFQ09,
LJFW08, GSZ11, HJS∗14]. The authors in [LJFW08] uses a seg-
mentation method to patch the input mesh, then use box-primitives
to approximate it coarsely . But this method fails in complicated
models. [HWFQ09] applies a distance-based, divide-and-conquer
algorithms to build the polycube. The method in [HWFQ09] gen-
erates over-refined polycubes and is sensitive to off-axis features.
The algorithms in [HWFQ09,LJFW08] are based on surface mesh-
es and can not build the cross-surface map automatically. While the
algorithms in [GSZ11, HJS∗14] are volume mesh based, these two

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/pg.20171319

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pg.20171319


H. Zhao, N. Lei, X. Li, P. Zeng, K. Xu & X. Gu / Polycube Deformation

algorithms look for a specific polycube which minimizes the dis-
tortion of the volumetric map. In [FBL16], they propose another
polycube method which is similar to ours. Their algorithm is also a
normal-driven method.

Poisson system based deformation [YZX∗04] is well-known
technique. After the rotations of all triangle faces are known, the
triangles can be rotated into the new orientation, then the Poisson
system is used to blend the triangle soup together and reconstruct a
consistent mesh into its new shape.

3. Our Methods

Polycube is also called as orthogonal polyhedra [LVS∗13, EM10].
We observe that there are three components in deforming a mesh
into its polycube shape: segmentation, polycube topology and poly-
cube geometry.

original segmentation topology geometry

Figure 2: The segmentation, polycube topology and geometry.

These three steps can be independent from each other. The first
step divides a mesh into several different patches. The second step
determines the polycube topology of the mesh, and the third step
fixes the polycube geometry. In Figure 2, the two models are seg-
mented into some parts as the second column; then based on the
parts, we assign every model a polycube topology in the third col-
umn; finally our algorithm can obtain an exact polycube geometry
in the last column.The previous algorithms mix these two or three
steps into one. Our algorithm separates them explicitly. In this pa-
per, we focus on the polycube geometry step. Given a model with a
valid polycube topology, such as using the method proposed in [F-
BL16], our algorithm produces a final shape with perfect polycube
geometry.

In the first step, it is well known the necessary conditions of the
segmentation for a valid polycube is still an open problem [EM10].
However there are three sufficient conditions [EM10] :

a) one single patch of a polycube has at least four other neigh-
boring charts;

b) two neighboring polycube patches must not have opposite la-
bels;

c) the valence of every polycube vertex is three.

In this paper, we use the same polycube topology validated data
in [FBL16] for the comparison.

3.1. Polycube Topology

The second step is determining the polycube topology. Given
a valid segmentation of a mesh, this step labels or associates
each triangle with one of six axis (+X ,−X ,+Y ,−Y ,+Z,−Z),
such as in Figure 2, the six different colors represen-
t (+X ,−X ,+Y ,−Y ,+Z,−Z) respectively.

A valid polycube topology assigns a target normal to every tri-
angle face. In each patch, all triangles have the same target normal.
Our algorithm rotates all triangles to their corresponding target nor-
mal directions. There is no explicit constraints between the patches.
Every triangle is independently rotated. However there is an implic-
it global topological constraints between them due to the polycube
topology.

Different polycube topologies. If the same model is assigned
several different polycube topologies, then we will have different
polycube shapes. In the Figure 3 and 4, we demonstrate this con-
clusion. The first and the third columns of Figure 3 show the same
“bimba” model, but with different polycube topologies, and the sec-
ond and the last columns are their corresponding polycube shapes.

topology 1 polycube 1 topology 2 polycube 2

Figure 3: The model and two different polycube topologies.

topology 1 polycube 1 topology 2 polycube 2

Figure 4: Another model and two different polycube topologies.

3.2. Polycube Geometry

This step aligns and reorients the triangles in each patch with one
axis direction. And every patch should be mapped into a planar
polygon and all of chart boundaries are straight lines.

Our polycube geometry method is based on a Poisson system
which reconstructs the deformed polycube mesh to satisfies the
current assigned face normals of triangles. As the Poisson system
can only approximate the input normal requirements, therefore we
use an iterative Poisson systems. After several iteration, our system
converges and outputs the corresponding polycube shape whose
boundary between two patches is exactly straight automatically,

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

18



H. Zhao, N. Lei, X. Li, P. Zeng, K. Xu & X. Gu / Polycube Deformation

original 1 step 2 iterations

3 iterations 4 iterations 150 iterations

Figure 5: The iteration of the polycube deformation of two models.

and the triangles in every chart fall on a plane automatically without
the need of any extra planarity constraints.

Motived by their explanation and derivation on stretching de-
formation energy [ZG16]. Our algorithm adopts and modifies their
stretching energy. In their original method [ZG16], the rotations of
faces are unknown variables and changed in every iterative step,
however in our configuration, the rotations are known in advance
and kept the same in our iteration. In fact, our deformation does
preserve the metric in theory, but in practice we observe the change
of edge length is small.

Let S be an original surface and S′ be its deformed surface em-
bedded in 3-dimension. And denote a 3-vector xv be the position
associated with vertex v of S, and a 3-vector x′v with vertex v of
of S′. On every triangle of the mesh, we define one rotation ma-
trix variable referred to as R(t). The stretching energy [ZG16] is

man elephant gargoyle

isidorehorse dino hand

Figure 6: The six models and their polycube shape.

defined as

E(x′,R) = ∑
hevw

cot(avw)‖(x′v− x′w)−R(tvw)(xv− xw)‖2. (1)

In above, ‖·‖2 is the standard 3-vector norm, hevw represents the
half edge from the vertex v to w. We denote the angle of the corner
opposite to the half edge hevw in its triangle with avw. Finally R(tvw)
represents the 3×3 rotation matrix associated with the triangle face
whose the half edge is hevw.

It is proved in [ZG16] that the E(x′) measures the quantity∫
s
(σ1(p)−1)2 +(σ2(p)−1)2 dAg(p), (2)

where the symbol σ1(p) and σ2(p) represent the the maximum and

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

19



H. Zhao, N. Lei, X. Li, P. Zeng, K. Xu & X. Gu / Polycube Deformation

minimal stretching ratios of a tangent vector of S at a point p un-
der the differential mapping dx′ from S to R3. Therefore E(x′) is
one reasonable quantity to measure the stretching of a deforming
surface.

This stretching energy is quadratic in x′ with a fixed rotation
matrix R per triangle. Take the gradient of the stretching energy
and set it to zero. We can obtain the optimal variables x′ by solving
a single linear system as the following:

∑
w∈N(v)

[
cot(avw)+ cot(awv)

]
(x′v− x′w)

= ∑
w∈N(v)

[
cot(avw)R(tvw)+ cot(awv)R(twv)

]
(xv− xw). (3)

By defining the 3-vector at vertex v as:

bv := ∑
w∈N(v)

[
cot(avw)R(tvw)+ cot(awv)R(twv)

]
(xv− xw), (4)

we can change the above system into matrix format as:

Lx′ = b, (5)

where L is the n-by-n Laplacian matrix, x′ and b are n-vectors of
3-vectors.

Rotation per triangle. In the above system, we need know the
rotation matrix of every triangle face of the mesh. Although we do
not know the exact vertex positions of the polycube in advance, the
face normals of the polycube are determined and fixed by its poly-
cube topology. Therefore we can calculate the rotation matrix for
every triangle from its unit normal on the original mesh and the tar-
get normal from its polycube topology without knowing the target
polycube shape. Given two unit normals, the rotation between them
can be computed by the algorithm of Rodrigues’ rotation formula.

The stretching energy defined in equation 1 can measure the
stretching ratio if it is a function of both rotation R and unknown
position vectors x′. In our framework, we fix the variable R, our
system is only a function of unknown position vectors x′. Therefore
our method does not minimize the stretching energy, it is a simple
Poisson system. The explanation of "stretching energy" in [ZG16]
gives us a hint why our simple Poisson system changes edge length
not so much in practice.

Iteration. Poisson system basically is an approximation method.
The system 5 cannot result in an exact polycube, such as the mod-
els with a nearly polycube shape shown in Figure ??. We fix the
problem with an iteration method. In every step i, we recompute
the rotation matrix Ri(t) for the triangle t according the face nor-
mal of the current model and the target normal from its polycube
topology. With the new Ri(t), we update the Li and bi. Then the
iteration system is as the following:

Lix
′
i = bi . (6)

Figure 5 demonstrates the iteration process of the two polycube
deformation. We observe that the polycube shapes get better and
better after each iteration. And the planarity and straightness of the
polycube are realized in the converge of the iterations.

In these experiments, It is shown that the polycube shape in the
fifth step is almost the same as the one from the hundredth step.

Therefore the converge speed of our polycube deformation is very
fast. In practice, the speed varies according to the different models.

4. Results and Demonstrations

In Figure 6, we show several models and their polycube shapes.
The technique we propose can manipulate models with high genus
directly, such as shown in Figure 14.

Figure 7 exhibit some meshes with boundaries and their poly-
cubes. As there are implicit constraints of polycube topology, the
edges on the boundary can not be deformed into the straight lines.

Figure 7: The models with or without boundary, and their polycube
shapes.

Even on non-orientable meshes, our algorithm can also defor-
m them successfully. In Figure 8, the well-known "costa" surface
mesh is deformed into a polycube.

costa polycube

Figure 8: The non-orientable surface "costa" and its polycube.

Comparison. In this part, we compare the methods between ours
and theirs [FBL16]. We use the same models, the same segmen-
tation charts and the same polycube topologies of the data in [F-
BL16]. We run our algorithms in a hundred of models, and exhibit
several results in Figure 9 and Figure 10.

The polycube shapes from our and their algorithms are almost
the same. However the area and the size of every polycube face is
slightly different. We compute the edge and area errors for each
model with our and their polycube results. The error ratios of one
hundred models from two methods are displayed in Figure 11 and
12. We can conclude that our algorithm can preserve the edge and
area much better than the method in [FBL16].

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

20



H. Zhao, N. Lei, X. Li, P. Zeng, K. Xu & X. Gu / Polycube Deformation

fandisk [FBL16] ours

Figure 9: The polycube comparison of [FBL16] and ours.

woodenfish [FBL16] ours

Figure 10: The polycube comparison of [FBL16] and ours.

Figure 11: The edge error diagram of our algorithm and [FBL16].

s

Figure 12: The area error diagram our algorithm and [FBL16].

5. Conclusion and Future work

In this paper, we present a robust, efficient polycube deformation
algorithm. The quadrangulation and hexahedral meshing from a
surface mesh is a crucial problem in graphics community, it is a
promising direction to exploit our method in these kinds of appli-
cations.

Figure 13: The models of high genus and their polycube shapes.

Figure 14: The models of high genus and their polycube shapes.

Acknowledgments

We wish to thank anonymous reviewers for encouragements and
thoughtful suggestions. We are grateful for Professor Steven J.
Gortler for the motivation and the insightful guide which make this
paper possible. We also thanks Yue Li for the help in our experi-
ments. Mesh models are courtesy of the Aim@Shape Repository,
the Stanford 3D Scanning Repository and the dataset of [FBL16].
We used Mitsuba [Jak10] for rendering images. Our algorithms are
implemented on MeshDGP [Zha16] framework. We also thank Li-
bigl [JP∗16] for reference. The project is partially supported by NS-
FC 61772105, 61720106005, 11271156, NSF DMS-1418255 and
AFOSR FA9550-14-1-0193.

References
[EM10] EPPSTEIN D., MUMFORD E.: Steinitz theorems for orthogo-

nal polyhedra. In Proceedings of the twenty-sixth annual symposium on
Computational geometry (2010), ACM, pp. 429–438. 2

[FBL16] FU X., BAI C., LIU Y.: Efficient volumetric polycube-map
construction. Computer Graphics Forum (Pacific Graphics) 35, 7 (2016).
2, 4, 5

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geometry images. In
ACM Transactions on Graphics (TOG) (2002), vol. 21, ACM, pp. 355–
361. 1

[GSZ11] GREGSON J., SHEFFER A., ZHANG E.: All-hex mesh genera-
tion via volumetric polycube deformation. In Computer graphics forum
(2011), vol. 30, Wiley Online Library, pp. 1407–1416. 1

[HJS∗14] HUANG J., JIANG T., SHI Z., TONG Y., BAO H., DESBRUN
M.: L1-based construction of polycube maps from complex shapes.
ACM Transactions on Graphics (TOG) 33, 3 (2014), 25. 1

[HWFQ09] HE Y., WANG H., FU C.-W., QIN H.: A divide-and-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

21



H. Zhao, N. Lei, X. Li, P. Zeng, K. Xu & X. Gu / Polycube Deformation

conquer approach for automatic polycube map construction. Computers
& Graphics 33, 3 (2009), 369–380. 1

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 5

[JP∗16] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library, 2016. http://libigl.github.io/libigl/. 5

[LJFW08] LIN J., JIN X., FAN Z., WANG C. C.: Automatic polycube-
maps. In Advances in Geometric Modeling and Processing. Springer,
2008, pp. 3–16. 1

[LVS∗13] LIVESU M., VINING N., SHEFFER A., GREGSON J., S-
CATENI R.: Polycut: Monotone graph-cuts for polycube base-complex
construction. Transactions on Graphics (Proc. SIGGRAPH ASIA 2013)
32, 6 (2013). doi:10.1145/2508363.2508388. 2

[THCM04] TARINI M., HORMANN K., CIGNONI P., MONTANI C.:
Polycube-maps. ACM Transactions on Graphics (TOG) 23, 3 (2004),
853–860. 1

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B., SHUM
H.-Y.: Mesh editing with poisson-based gradient field manipulation.
ACM Transactions on Graphics (TOG) 23, 3 (2004), 644–651. 2

[ZG16] ZHAO H., GORTLER S. J.: A report on shape deformation with
a stretching and bending energy. CoRR abs/1603.06821 (2016). URL:
http://arxiv.org/abs/1603.06821. 3, 4

[Zha16] ZHAO H.: MeshDGP: A C Sharp mesh processing framework,
2016. http://meshdgp.github.io/. 5

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

22

http://dx.doi.org/10.1145/2508363.2508388
http://arxiv.org/abs/1603.06821

