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Abstract
Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate
in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately
for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation
(movement and jiggle) from joint angle data sequences. The algorithm consists of two steps: identification of parameters for
a quasi-static muscle model using a musculoskeletal model and a short sequence of skin deformation data, and simulation of
dynamic muscle and soft tissue deformation with quasi-static muscle shape and a mass-spring-damper system. We demonstrate
our method using skeletal motion capture data of a subject (whose data is not used for training) to create appropriate skin
deformations for muscle co-contraction and external impacts. Experimental results show that the simulated skin deformations
are quantitatively and qualitatively similar to the measured actual skin deformations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Skin deformation of animated characters must be natural, dynamic,
and detailed if the characters are to appear realistic and lifelike.
This level of realism is particularly important in scenes of rich nat-
ural environments such as those in The Jungle Book and realistic
special-effect shots such as those in Planet of the Apes. These de-
formations are essential for creating a sense of life: tension in the
muscles and jiggle of the underlying muscle and soft tissue con-
vey the exertion of the character and the dynamics of the motion.
A number of algorithms have been created for generating plausi-
ble skin deformation [LAR∗14]. Recently, more effort has been ex-
pended in making anatomical models [SLST14].

In this paper, we present an algorithm that generates detailed
skin deformation (movement and jiggle) from a skeleton animation
based on standard motion capture joint angle data and three mod-
els: 1) a quasi-static muscle model, 2) a muscle dynamics model,
and 3) a soft tissue dynamics model. Our approach consists of two
main steps: identification of quasi-static muscle model parameters
followed by simulation of dynamic skin deformation. In the identi-
fication step, which is performed only once for each body type, we
compute subject-specific muscle shape parameters using a muscu-
loskeletal model [MTMN14] and a short sequence of skin deforma-
tion data captured with a dense marker set from [PH08]. The quasi-
static muscle model relates the quasi-static muscle shape to muscle
length and tension, which can be obtained by computing the in-
verse kinematics and dynamics using a musculoskeletal model and

joint angle data. Once a muscle deformation model is obtained, we
can simulate the dynamic muscle deformations using only joint an-
gle data. These can be obtained from skeletal motion capture (50-
60 markers) or from a physically plausible keyframe animation.
The simulation step first uses the quasi-static muscle deformation
model identified in the previous step to obtain the quasi-static mus-
cle shape for the given motion sequence. It then computes the dy-
namic skin deformation by simulating the passive muscle and soft
tissue dynamics modeled as a mass-spring-damper system.

We realize simulation of detailed skin deformation that has
anatomical and physical consistency, while maintaining manage-
able user and computational complexity. The contributions of our
work include: 1) A method for identifying muscle deformation
model parameters from a short sequence of skin deformation data
measured by motion capture using a dense marker set (400–450
markers), 2) A method for applying the muscle and skin deforma-
tion model to joint angle data recorded with 50-60 markers to cre-
ate new sequences with detailed skin and muscle deformation. Our
approach realizes a good balance between computational cost and
accuracy by applying a parametric model for muscle deformation
and a simple spring-damper model for soft tissue simulation.

2. Related Work

Skin deformation and dynamics are required for a realistic and
natural-looking character, and therefore many approaches have
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been developed to generate this motion. One of the most common
approaches is linear-blend skinning in which each skin vertex po-
sition is computed using a weighted sum of the positions of nearby
joints. However, the skin often lacks realism because of artifacts
and because small scale details in the skin deformation are miss-
ing with linear-blend skinning. A number of algorithms have been
created to overcome these problems [LAR∗14].

More realistic models fall into two broad classes: simulated and
data-driven. To model human-like creatures, researchers have pro-
posed a layered approach in which the skin is driven by interac-
tions between multiple underlying layers with different properties
that are based on anatomy [LGK∗12]. Various parts of the human
body have been modeled in detail, such as face [LAR∗14]. With
this approach, the research focus has been on modeling the shape
and deformation of muscles to reduce artifacts and express de-
tails in skin deformation. Deformation of muscles and soft tissues
is often simulated by physics-based models such as mass-spring-
damper models [ZCCD04] and volumetric models such as the fi-
nite element method (FEM) [KMF∗96, BTS∗05] or the finite vol-
ume method [FLP14]. To avoid issues with stability, data-driven
approaches model skin deformation directly from data rather than
simulating the behavior of each layer in the musculoskeletal struc-
ture. Anguelov and colleagues [ASK∗05] used SCAPE to build a
pose deformation model. Park and Hodgins used motion capture to
collect data, and then trained the parameters of a mass-spring model
from the captured data [PH08]. Their mass-spring model treated the
body parts as a homogeneous medium rather than having separate
models for muscles, fat, and interstitial tissue as we do.

In biomechanics and robotics, many musculoskeletal models
have been developed for simulation and analysis of human body
dynamics [DAA∗07, MTMN14]. However, these models focus on
accurate simulation and analysis of human motion and do not in-
clude computation of the skin or muscle shape as is needed for
animated characters.

3. Method

During dynamic motion, actuated muscles cause bone motion as
well as bulging due to tension and length changes. Additionally,
muscles and soft tissue, including skin, fat, and viscera, deform
passively in response to the bone and muscle movement as well as
external forces from the environment. Accordingly, our skin defor-
mation model consists of three sub-models (Figure 1 lower left):

1. A quasi-static muscle model that relates the muscle length and
tension to the quasi-static muscle shape. This model represents
the muscle bulging and relaxation at different activation levels.

2. A muscle dynamics model that describes the passive dynamics
of muscles using a mass-spring-damper system. The model con-
sists of point masses placed at the vertices of the muscle polygon
model and connected by springs and dampers. Each point mass
is also connected to the corresponding vertex of the quasi-static
muscle by a spring and damper.

3. A soft tissue dynamics model that describes the passive dy-
namics of the skin and subcutaneous fat using a mass-spring-
damper system. The model consists of point masses placed at
the vertices of the polygons on the skin surface with springs
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Figure 1: Three models used in our skin deformation model (lower
left), and block diagram of the identification and simulation pro-
cesses.

and dampers connecting them to neighboring vertices and to the
point masses on the dynamic muscle or bone surfaces.

Figure 1 shows the block diagrams of the identification and sim-
ulation processes, where the blocks with red borders are the new
components developed in this work. The details are explained in
the following subsections. In Section 3.1, we review the skin de-
formation data collection process and the musculoskeletal model.
We then present the quasi-static muscle model and the parameter
identification process in Section 3.2. In Section 3.3, we describe
the algorithm to simulate the dynamic skin deformation using the
muscle and soft tissue dynamics models.

3.1. Skin Deformation Data and Musculoskeletal Model

Identifying the quasi-static muscle model parameters requires sam-
ple skin deformation data. We use the data recorded by Park
and Hodgins [PH08] using an optical motion capture system with
400–450 reflective markers. For identifying the quasi-static mus-
cle model parameters, we use a slow jump motion that is approxi-
mately 300 frames (2.5 seconds) in length. We intentionally select
a slow sequence in which the soft tissue dynamics does not play a
big role in the skin deformation. In order to obtain the input data for
the quasi-static muscle model, we apply the inverse kinematics and
dynamics algorithms of a musculoskeletal model [MTMN14] using
the trajectories of 60 markers manually chosen from the full set of
400–450 based on the improved version of the Helen Hayes Hos-
pital marker set. The musculoskeletal model used in our work con-
sists of skeleton and musculo-tendon network models. Each of the
muscles, tendons, and ligaments is represented by two end points
(origin and insertion points), any number of via points, and straight
pathways between them. Each origin, insertion, or via point is fixed
with respect to a bone, and their locations are computed by solving
the forward kinematics (Figure 2).

We first obtain the joint angles of the skeleton model at each
frame with an iterative inverse kinematics algorithm using the po-
sitions of the 60 markers as soft constraints. Then, the joint torques
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required to execute the measured motion are computed by applying
a recursive inverse dynamics algorithm for articulated rigid bod-
ies [LWP80]. Finally, we compute the muscle tensions required
to produce the joint torques [MTMN14]. The number of muscles
is much larger than the number of joint torques and this redun-
dancy is resolved with mathematical optimization. If electromyo-
graph (EMG) data are recorded at the same time, we can obtain
physiologically plausible muscle tensions for actions that are not
observable from the motion, such as co-contraction [YFN05].

3.2. Modeling and Identification of Quasi-static Muscle Model

We next develop a quasi-static muscle model that computes the
quasi-static muscle shape from the muscle length and tension.
We first choose about 300 surface muscles from 989 muscles
in [MTMN14] because we cannot identify the parameters of the
inner muscles from surface data. The remaining 700 muscles are
still used for inverse dynamics because their tensions affect the
tensions of the surface muscles. We construct the following quasi-
static muscle model around the pathway of these 300 muscles.

Because most skeletal muscles have spindle-like shapes, we ap-
proximate the quasi-static muscle surface with a spindle whose
cross-section perpendicular to the pathway is an ellipse, the size
of which varies along the pathway according to a sigmoid func-
tion (Figure 2). The pennate muscles such as Pectoralis Major,
whose cross sectional shapes are quite different from the ellipsoid
shape, are modeled with multiple thin spindle-shaped wires. The
sigmoid parameters and the eccentricity are represented as func-
tions of the muscle length and tension. In addition, we divide some
muscles at a center point into two parts with different sets of sig-
moid function parameters to represent asymmetric muscles such as
the Soleus. The same identification and simulation method can be
applied to any muscle shape if the pathway of the muscle is given.
In the following equations, we omit the muscle index for clarity.
We represent the quasi-static muscle surface shape in a cylindrical
polar coordinate system for each part whose longitudinal axis is the
muscle pathway (Figure 2). For a point on the m-th (m = 1,2) part
of a muscle, the distance from the pathway, rm, is described by the
location along the pathway x, the angle from the polar axis θ, and
the current frame number t (t = 1,2, . . . ,T ) as

rm(x,θ, t) =
(

km,3(t)

1+ ekm,1(t)−km,2(t)x
+ km,4(t)

)
×
√

1− ε2(t)sin2
θ (1)

where sigmoid function parameters km,n(t) (m = 1,2, n = 1,2,3,4)
and the eccentricity ε(t) are functions of the muscle length l(t) and
tension τ(t):

km,n(t) = αm,nl(t)+βm,nτ(t)+ γm,n (n = 1,2,3,4) (2)

ε(t) = α5l(t)+β5τ(t)+ γ5. (3)

In our implementation, the x axis is normalized for each part so that
x = 0 represents the origin or insertion of a muscle and x = 1 rep-
resents the center point. The local coordinate system of each part is
defined with respect to the closest bone’s local coordinate system at
the initial skeleton posture. Therefore the local coordinate system
does not change discontinuously as long as the skeleton motion is
continuous. In this model, the total number of parameters to iden-
tify is 27 (αm,n,βm,n,γm,n (m = 1,2,n = 1,2,3,4), α5,β5,γ5) for

each muscle. We determine these parameters at each muscle inde-
pendently so that the muscle shape fits the skin deformation around
the muscle during the motion capture sequence.

Let us define a muscle segment as a section of a muscle between
two neighboring origin, insertion or via points along the pathway
and denote the number of segments in a muscle by L. At each mo-
tion capture frame t, we find a user-defined number of markers
closest to the pathway that belongs to each segment and represent
their positions in the local cylindrical polar coordinate system of
the muscle as

(
r̂k,t , θ̂k,t , x̂k,t

)
(k = 1,2, . . .L). We then solve an op-

timization problem to adjust the model parameters so that the total
distance between the muscle surface and the positions of the clos-
est markers is minimized. We used a gradient-based algorithm to
minimize the following quadratic cost function:

Z =
1
2
(Zr +avZv +atZt) (4)

where a∗ are user-defined positive weights. Zr represents the total
squared distance between the muscle surface and measured marker
data and is formulated as

Zr =
T

∑
t=1

L

∑
k=1

∆rT
k,t∆rk,t (5)

∆rk,t = r̂k,t −
(
rm(x̂k,t , θ̂k,t , t)+ r f

)
(6)

where m represents the part containing segment k and r f is a man-
ually chosen fat thickness. We use r f = 0.00m in the experiment.
Zv represents the variance of the muscle volume across the entire
motion sequence and can be formulated by

Zv =
T

∑
t=1

(
V1(t)+V2(t)−

1
T

T

∑
t=1

(V1(t)+V2(t))

)2

(7)

where Vm(t) is the volume of part m at frame t computed by

Vm(t) = li(t)
∫ 1

0
r2
m(x,0, t)π

√
1− ε2(t)dx (8)

This term is added to represent the conservation of muscle vol-
ume [Kar90]. Zt is added to constrain the radius at origin, insertion,
and center so that the muscle is smoothly connected to the tendons
at the ends and to each other at the center. Zt is formulated as:

Zt =
T

∑
t=1

((w− r1(0,0, t))
2 +(w− r2(0,0, t))

2+

(r1(1,0, t)− r2(1,0, t))
2) . (9)

where w is a manually chosen tendon radius. We use w = 0.01m in
the experiments. We set the weights for Eq. (9) (at ) high so that the
muscle shape is smooth after the optimization (av = 100,at = 102).

3.3. Muscle and Soft Tissue Dynamic Deformation

Once the quasi-static muscle model parameters are identified, we
use the same set of parameters to simulate the dynamics deforma-
tion of the muscles and the soft tissue for new joint angle data se-
quences. Here, the shape of the quasi-static muscle model defines
the rest shape of the dynamic muscle model from its length and
tension. We model the bones, the quasi-static muscles, the dynamic
muscle, and the skin surface as polygonal surfaces. Let Ps denote
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Figure 2: Muscle shape and its local coordinate system. The red
line represents the muscle pathway that connects the origin point,
one or more via points, and the insertion point.

the set of skin vertices, Pqm the vertices on the quasi-static muscle
surfaces, Pdm the vertices on the dynamic muscle surfaces, and Pb

the vertices on the bone surfaces. In the soft tissue dynamics model
(Figure 3, left), each skin vertex ps ∈ Ps is connected to:

1. the adjacent skin vertices,
2. a set of nearby muscle vertices, which includes the vertices

within the hemisphere whose center is at ps and radius is α+ r
(here, α = 2.0cm), where r is the distance between ps and its
nearest vertex in Pdm∪Pb and α(> 0) is the offset, and

3. the bone vertices included in the hemisphere defined above.

Note that a skin vertex may be connected to multiple muscles.
These connections allow the skin to slide over the muscle surface
to the extent allowed by the spring stiffness. In the muscle dynam-
ics model (Figure 3, right), each muscle vertex pdm ∈ Pdm is con-
nected to:

1. the adjacent dynamic muscle vertices,
2. the skin vertices that have been connected to pdm, and
3. the corresponding quasi-static muscle vertex pqm.

As a result, the muscle deforms not only because of the skeleton
motion but also based on the change in the quasi-static muscle
shape due to muscle activation.

If pi is connected to p j via a spring and damper pair, the force
applied to vertex pi from p j, fi j, is computed by

fi j = ki j(||xi j||− li j)
xi j

||xi j||
+ ci j

(vi j)
T xi j

||xi j||
xi j

||xi j||
(10)

where xi and vi are the position and velocity of vertex pi, xi j =
x j − xi, vi j = v j − vi, and ki j and ci j are the stiffness and damp-
ing coefficients of the spring connecting vertices pi and p j . The
individual spring coefficients are determined based on a few man-
ually selected global spring parameters shown in Table 1. These
parameters are selected such that the skin becomes stiffer at loca-
tions closer to the bones such as around the elbow and ankle, and
more compliant at other places to emulate the effect of thick soft
tissue and muscle layers. To compute the spring coefficients of in-
dividual springs, Kss, Kmm, and Kdqm are scaled by the size of the
polygon that vertices belongs to, whereas Ksmb is determined to be
inversely proportional to the distance between the skin and bone
vertices. In all cases, the damping coefficient is set to d =

√
k/50

for a connection with a spring coefficient of k. While these parame-
ters are manually chosen, it is easy to find a set of values that yield
reasonable simulation results.

Table 1: Types of the springs and their global parameters.

parameter springs between vertices of value
Kss skin–skin 104

Kmm dynamic muscle–dynamic muscle 105

Kdqm dynamic muscle–quasi-static muscle 102

Ksmb skin–dynamic muscle 107

skin vertex

dynamic muscle vertex

bone vertex

skin vertex

dynamic muscle vertex

quasi-static muscle vertex

Figure 3: Spring-damper connections between skin, muscle, and
bone vertices

We add all the forces from springs and dampers for each vertex
in Ps ∪Pdm, and compute its acceleration by dividing by its mass
that is computed from the total weight and the polygon size. We use
the Velocity Verlet integration method [SABW82] to update the po-
sitions and velocities of the skin and muscle surface vertices. This
method allows us to achieve high stability at no significant compu-
tational cost over the explicit Euler method. Although an implicit
integration method [BW98] would allow a larger time step than ex-
plicit integration, that class of method is not suitable for our appli-
cation because they add extra damping that diminishes the jiggling
of the surface of the skin that we are modeling.

4. Results

The sample skin deformation data used for quasi-static muscle
model identification are recorded with 400–450 reflective mark-
ers using 16 near-infrared Vicon MX-40 cameras at a rate of
120fps [PH08]. The motion data used for the simulations are
recorded with 60 reflective markers using the same motion capture
system. We also record the contact force between the subject and
the ground using two AMTI AccuSway PLUS force plates, each of
which can measure the six-axis contact force and momentum at a
rate of 1kHz. Aurion ZeroWire system with 16 pairs of electrodes
is used to capture EMG data of muscles beneath the electrodes at
a rate of 5kHz. The EMG data are processed by mean subtraction,
rectification, and a Butterworth bandpass filter with a cut-off fre-
quency of 10–1000Hz. A high-speed video camera is also used for
some of the motions to capture the dynamic skin deformation at
1 kHz (used for ground truth).

4.1. Evaluation of Identified Quasi-static Muscle Model

We first demonstrate the advantage of using musculoskeletal
and muscle deformation models to obtain the underlying muscle
shapes. As we mentioned in Section 3, we use the skin deforma-
tion data captured by markers densely placed on the skin to iden-
tify the muscle parameters. The distance between a marker and the
closest point on the simulated skin surface indicates how well the
muscle deformation model matches the actual skin deformation.
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Figure 4: Skin deformation simulation with muscle co-contraction.
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Figure 5: Skin deformation simulated by our method (top) and cor-
responding images from high-speed video recording (bottom). The
similar skin folds are realized especially at the white-circled place.

We evaluate the quasi-static muscle deformation using two mo-
tion sequences: the slow jump motion used for identification and
a slow walk motion for cross validation. The active deformation of
the muscle is several millimeters even at the maximum muscle ac-
tivity, which is much smaller than the deformation caused by the
skeleton motion. The distance with deformation is 16.2± 2.3mm
(mean ± SD) for the slow jump and 18.6± 2.4mm for th slow
walk, while the distance without deformation is 18.4±2.5mm and
20.2±2.5mm respectively. This result shows that the distances are
smaller with muscle deformation in both motions. Specifically, ap-
plying dynamic deformation to the quasi-static muscle deformation
model results in larger improvement on average (approx. 2mm)
than the dynamic deformation used in [PH08] (approx. 1mm). We
also qualitatively compared our results with [PH08], and there is no
significant visual difference between them.

4.2. Simulation Results

We now show simulated deformation of different parts of the skin
for various motions to demonstrate our method. These motions are
measured from a subject different from the one used for identi-
fying the quasi-static muscle model using a standard marker set,
force plates, EMG, and a high-speed camera recording for refer-
ence. The video clips of the simulated and recorded skin deforma-
tion are shown in the supplemental movie.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

[m]

x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

y
 (

fi
lt

er
ed

)

x 10-3

x

y

z

: measured

: reconstructed from simulation

: reconstructed without muscle or 

  soft tissue dynamics

[sec]

-1

0

1

2

-0.08

-0.06

-0.04

-0.14

-0.12

-0.1

-0.08

-0.06

Figure 6: Trajectories of the measured and simulated markers dur-
ing the jump motion.

Figure 4 shows a body building pose with tensing of the up-
per arm muscles. The top row represents the simulated skin de-
formation, the middle row represents the increase in the upper arm
perimeter from the initial state, where the color changes from yel-
low to red as the perimeter increases, and the bottom row represents
the corresponding snapshots from the high-speed video camera.
The graph shows the normalized activities of the Biceps Brachii
and Triceps Brachii obtained by post-processing the EMG data.
The result shows that our method effectively simulates the bulging
of the muscles during co-contraction, which is mainly detected by
the EMG data because co-contraction of antagonistic muscles does
not appear as joint motion. The skin jitters observed in the supple-
mental movie come from noise in the EMG signal, which remains
even after the Butterworth bandpass filtering.

Figure 5 shows the simulation result for a running motion and
Figure 6 represent the simulation results for a jump motion. In this
motion capture session, we attached several markers in a grid pat-
tern to quantitatively compare the actual and simulated skin defor-
mations. Figure 6 plots the average trajectories of the 16 markers
from the measured and simulated skin deformations. Each trajec-
tory is represented in the local coordinate system fixed to the lower
leg bone. The blue and red lines represent the measured and sim-
ulated trajectories of markers, which are on the softest part of the
leg. The green dotted lines represent the marker trajectories that
are simulated without muscle or soft tissue dynamics. The differ-
ence between the simulated skin deformation with muscle and soft
tissue dynamics and the one without them is obvious. The third
graph represents the y-direction trajectory that is post-processed by
the Butterworth high-pass filter with a cut-off frequency of 100 Hz.
This graph shows that the amplitude, frequency, and duration of
the jiggles in the simulated skin deformation with muscle and soft
tissue dynamics are similar to those in the measured motion, espe-
cially in the y direction just after the landing. This effect would not
be realized without muscle or soft tissue dynamics.

The simulated skin deformation of hitting an object with his arm
and the corresponding movie from the high-speed camera record-
ing are shown in the supplemental movie. The high-speed camera
shows the skin wrinkle around the elbow caused by the impact,
which is also seen in our simulation. We include a parameter that
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determines the average relative thickness of muscles with respect
to soft tissue (β in Figure 3, right) to simulate different body types.
The simulation result shows the skin deformation when this param-
eter is selected so that the model is 25% less muscular in the sup-
plemental movie. The amplitude of the skin jiggle becomes larger
than that observed in the muscular model as expected.

5. Discussion

In this paper, we developed a new algorithm for simulating dynamic
skin deformation in novel motion sequences based on an anatom-
ical model of the musculoskeletal system and a passive dynamics
model of soft tissue. This algorithm directly generates the skin de-
formation from skeletal motion data.

• The quasi-static muscle model allows us to compute the quasi-
static muscle shape from muscle length and tension information
for a wide range of motions. The resulting muscle shape is con-
sistent with the dynamics of the motion because it is based on
muscle pathway and tension data obtained by inverse kinematics
and dynamics algorithms for a musculoskeletal model.

• The passive dynamics of the soft tissue effectively describes the
interaction between the skin and internal bones and muscles. Our
model can simulate skin deformations that depend on the under-
lying structure, such as different jiggling patterns when the skin
hits the front side (tibia) and the calf side of the lower leg.

• This algorithm can simulate physiologically realistic skin defor-
mations that are difficult to estimate only from standard motion
capture data if EMG data are recorded along with the motion
data. An example is muscle co-contraction, which cannot be es-
timated only from motion data because the activations of antag-
onistic pairs of muscles do not cause joint motion.

The simulation based methods tend to handle relatively static
body parts and motions. The data-based methods are difficult to
handle novel motions. Our method combines simulation-based and
data-driven approaches: simulation allows us to obtain realistic re-
sults for a wide variety of motions, while a small set of data can be
used to adapt the model to different body types.

We model the muscle and soft tissue dynamics with a mass-
spring-damper system. This system is based on a realistic body
shape created by a modeler, and the simple spindle-like mus-
cle shape is only used to indicate how the detailed skin shape
should deform. We chose a mass-spring-damper model because
FEM would requires significantly higher computational cost and
more parameter tuning than the mass-spring damper model even for
a similar simulation resolution, though FEM shown in [WBD14]
may be applied in principle. There are oscillation artifacts seen in
our simulation that may caused by the explicit integration. Apply-
ing the implicit integration [BW98] may decrease these artifacts.

Our method has several limitations. The quasi-static muscle
model parameter identification requires some frames of skin defor-
mation data captured with a dense set of markers. As an alternative
to measured skin deformation data, a modeler may provide the skin
shapes at a few frames in a motion sequence. It is also possible
that modern depth cameras could be used to provide this data. The
other limitation is that we identified the quasi-static muscle model
parameters assuming that the measured skin deformation data are

not affected by the soft tissue dynamics. It may be possible to iden-
tify the two sets of parameters simultaneously using dynamic skin
deformation data which might provide more accurate results.
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