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(a) Supervoxel Segmentation

(b) User Interactions

(c) Multi-label Segmentation

Figure 1: Starting with a supervoxel segmentation of the input (a), the user scribbles different regions to segment with multi-colored brushes
(b). These interactive constraints quickly cut the video into any number of segments, providing a fast and simple way to accomplish multi-part

segmentation tasks (c).

Abstract

Video segmentation requires separating foreground from background, but the general problem extends to more complicated
scene segmentations of different objects and their multiple parts. We develop a new approach to interactive multi-label video
segmentation where many objects are segmented simultaneously with consistent spatio-temporal boundaries, based on intuitive
multi-colored brush scribbles. From these scribbles, we derive constraints to define a combinatorial problem known as the
multicut—a problem notoriously difficult and slow to solve. We describe a solution using efficient heuristics to make multi-label
video segmentation interactive. As our solution generalizes typical binary segmentation tasks, while also improving efficiency in
multi-label tasks, our work shows the promise of multicuts for interactive video segmentation.

Categories and Subject Descriptors (according to ACM CCS): 1.4.6 [Computer Graphics]: Image Processing and Computer
Vision—SegmentationRelaxation G.2.2 [Computer Graphics]: Discrete Mathematics—Graph TheoryGraph labeling

1. Introduction

Video segmentation is a common task. In media production, it is key
to composite or remove elements in a scene, or to apply effects to
different objects independently. In computer vision, video segmenta-
tion is key to creating ‘ground truth’ sequences from which to train
models for object classification. Professional visual effects (VFX)
tools like Silhouette [Sil14] and Mocha [Imagineer Systems Ltd.14]
allow artists to segment a foreground from uncontrolled back-
grounds; however, these often require hours of work for a few
seconds of footage. Acceptable results are achievable in simpler
tools, but these can still take time (e.g., Adobe After Effects Roto-
brush [BWSS09]) or be too inflexible (e.g., Power Matte [Dig]).

We aim to make a fast video segmentation tool which requires just
a few user interactions, but which is still able to produce acceptable
results for applications such as consumer VFX work or ‘ground
truth’ labeling of video databases. One avenue for potential gains
is to consider scenes where multiple objects or regions need to be
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segmented. Instead of many binary segmentations, it is possible to
take an approach so that user interactions inform the segmentation
of all parts simultaneously—producing a so-called multicut.

To this end, we introduce an approach to quickly solve the video
multicut problem with user constraints, and so create a fast in-
teractive video segmentation system. We begin with a supervoxel
over-segmentation of the video. This over-segmentation forms a
non-planar graph in spacetime, which must be cut into meaning-
ful segments. The user interactively scribbles onto the video with
different colored brushes, one color per desired segment. From
these scribbles, we resolve split and merge constraints to inform
the solution to the multicut problem. If the constraints conflict with
the underlying supervoxel graph, i.e., the over-segmentation is too
coarse, then we automatically refine the graph to resolve the con-
straints. In principle, many different multicuts may exist which meet
these constraints. To pick a good multicut, we assign costs to cut-
ting graph edges by dynamically clustering video features based
on user scribbles. With this approach, each added user stroke takes
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Figure 2: After an initial pre-process to compute superpixels and
aggregated features, the user interactively refines the segmentation
with multiple scribbles. Finally, the solution is matted.

~1 second to resolve, and the solution automatically generalizes to
segmenting any number of regions.

We perform a comparison of time and quality on 4 sequences
against two expert users who took 10—12 hours with professional
tools, and against novices who used RotoBrush. Our method was
50x faster than the experts, though with less output quality. Against
Rotobrush, our tool was 3x faster with comparable quality. From
these results, we believe our approach hold promise as an interactive
video segmentation tool for consumers, and as a quick tool to label
‘ground truth’ datasets for computer vision.

We state our contributions explicitly:

1. A formulation of the multicut problem that is appropriate for
interactive video segmentation, with an efficient way to provide
fast feedback to users.

2. A system for interactive video segmentation which demonstrates
the speed and quality achievable with a supervoxel-based multi-
cut solution.

2. Related Work

Interactive segmentation of videos into spatially and temporally
connected components (Fig. 1(b)) is a prerequisite for many video
post-production applications, such as matting [CAC™*02], color trans-
fer [BSPP13], or white balancing [HMP*08]. It is often performed
as a binary segmentation task where a foreground object is extracted
from the background [WBC*05,BS07,ZQPM12,NSB15,FZL*15,
LBSW16,LVS*16]. Prominent examples include the consumer Ro-
tobrush tool in Adobe After Effects, which is based on the work
of Bai et al. [BWSSO09], and professional commercial tools such as
Silhouette, Mocha, and Power Matte. These tools do not guaranteed
to create consistent segment boundaries between different objects.

In the computer vision literature, consistent boundaries can
be guaranteed by multi-label segmentations [GKHE10, OB11,
GNC™13]. However, existing work in this area has focused on fully
automatic segmentation. While automatic approaches will work
some of the time, it is currently very difficult to reliably generate
semantic-level segmentations. To complete the task of disambiguat-
ing regions and creating meaningful labels, a user is required, and
so interactive segmentation tools are needed.

Our approach builds on the formalization of segmentation as a
multicut problem. The multicut problem has recently become an
active topic of computer vision research [KLB*15,AG12,AKB*11,
AKB*12,AYM*13,KSA*11,KNKY11,VB10, YIF12]. A one-to-
one relation exists between segmentations and multicuts; thus, the

study of segmentations is the study of multicuts. The constraints
of the multicut problem make explicit the statement that contours
of segments are closed. Many models of segmentation have been
proposed which do not enforce this constraint, for instance, in seg-
mentation based on sketched silhouettes [AHSS04]. These models
benefit from assumptions such as the piecewise smoothness of con-
tours which sometimes yield closed contours in practice. However,
since the closedness of contours is not enforced, the result is not
guaranteed to define a segmentation. In this paper, we focus on the
formalization of video segmentation as a multicut problem and refer
the reader to [LMO1, Zha06] for a review of different approaches.

The multicut problem is an integer linear program [CR93], well-
known for its application in correlation clustering [DEFI06]. Solv-
ing instances of the multicut problem for the purpose of video
segmentation is challenging. Typically, the video is represented
as a graph, with pixels (or superpixels) as nodes joined by edges,
where a multicut is a set of edges which separate the nodes into
isolated subgraphs—the desired segments. This combinatorial op-
timization problem is NP-hard, even for planar graphs [BKKZ13].
Multicut approaches consider a set of linear constraints, where
a segmentation is any solution of a minimization problem under
these constraints. Exact solvers have been used for video segmen-
tation [AKB*11, AKB*12], but they remain impractically slow,
requiring more than two minutes for a 0.17 mega-pixel video, which
precludes user interaction. Beier et al. [BKK* 14] showed that using
heuristics can achieve solutions which are very close to the global
optimal, but take orders of magnitude less computation time. In this
work, we employed the heuristic KLj [KLB*15], which shows a
state-of-the-art runtime vs. solution quality trade off.

3. Our Approach

A block diagram for our system is shown in Fig. 2. To begin, we
preprocess the video to compute both supervoxels and an associated
feature vector per supervoxel which describes its appearance. Then,
interactively, the user employs a ‘paint by numbers’ approach with
multiple colored brushes to scribble coarsely and sparsely over the
video. These multiple labels are automatically resolved into a set
of constraints which specify which supervoxels belong to the same
segment and which belong to different segments. Should any con-
straints conflict with the underlying supervoxels, we automatically
refine the supervoxel over-segmentation, e.g., to capture fine details.

Then, we solve the constrained multicut problem and find a good
segmentation. To provide graph edge weights with which to score
potential multicut solutions, we cluster all supervoxels by training
on the provided user labels and appearance features. Once a multicut
solution is optimized, the presented segmentation respects both the
user constraints and the video appearance. Finally, after the user is
satisfied, we matte the result.

To make this model applicable to video, there are two major
challenges to overcome. The first challenge is making it fast while
maintaining segmentation accuracy. Multicuts are typically com-
puted on the graph of a supervoxel over-segmentation. Many super-
voxels are usually used through a fine over-segmentation, but this
implies a large graph which is slow to solve. In employing a very fast
heuristic—KLj (Sec. 3.3.1)—we can start with many supervoxels
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Figure 3: a. Every segmentation of a graph is defined uniquely
by the set of edges (dashed lines) that straddle different segments
(green). Not every subset of edges defines a segmentation. A negative
example is depicted in b. If precisely the edges depicted as dashed
lines straddled different segments, the three nodes connected by the
edges ey and ey would belong to the same segment, in contradiction
to e3 which straddles different segments.

(5,000) to increase output accuracy and still maintain interactivity
with ~1 second response.

The second challenge is implementing constraints to split differ-
ent brush strokes. Whenever the user wants two pixels to belong to
different segments, there must exist at least one segment boundary
on any path between these two pixels. This is a large space, and
many constraints must be added to the optimization problem to
constrain the set of feasible segmentations. As this is expensive, we
propose a solution to this problem in Sec. 3.3.

3.1. Multicuts of Supervoxel Graphs

A segmentation of a graph is a partitioning of its node set into
connected subsets, where the partitioning is defined by a subset of
graph edges. A multicut is a binary labeling x € {0, I}E of edges
in the graph, with edges labeled 0 and 1 defining, correspondingly,
connectivity within and between segments (solid and dashed lines
in Fig. 3).

Chopra and Rao [CR93] showed a necessary and sufficient con-
dition for a binary labeling to be a valid multicut: for edge set
{e € E|x. = 1}, along each graph cycle, either no edge or more than
one edge is labeled 1. We write this as a set of linear inequalities:

VT €cycles(V,E) Ve €Ec  xe < Z X )
e’ €T\{e}

Here, cycles(V, E) denotes the set of all cycles in the graph (V,E).

3.2. User Interactions

Users provides evidence about the correct segmentation via scrib-
bling over each intended segment with a different colored brush.
From these scribbles, we automatically extract a set of constraints:

o Asset Ey C E of edges known to connect adjacent supervoxels of
the same segment, i.e., supervoxels along a single brush stroke.

e Asset £y C E of edges known to connect adjacent supervoxels of
different segments.

e Aset Ff C (V xV)\E of pairs of non-adjacent supervoxels
known to be in different segments, i.e., supervoxels along differ-
ent colored brush strokes.
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This evidence constrains the set of feasible segmentations.

We can write these constraints formally as linear inequalities:

VecEy x.=0 (2)

VecE xe=1 3)

V{v,w} € F Vrm€path(v,w) 1< Z Xe “4)
eET

where path(v,w) denotes the set of all paths in the graph (V,E)
from node v to node w. The inequalities in (4) state that no path
exists in the graph that connects supervoxels v and w. Constraining
non-adjacent nodes to the same segment is possible [NL10], but
is a substantial complication that is beyond the scope of this work.
This means that, in our solutions, disconnected but similarly-brush-
colored segments are assigned different segment labels in the result.
In practice, this is not a problem as we simply relabel the result
segments based on their intersecting input brush stroke colors.

3.3. Optimization Problem

From the set of all possible segmentations which satisfy these con-
straints, we wish to favor segmentations in which similar appearing
supervoxels belong to the same segments, and dissimilar supervox-
els belong to different segments. To this end, we model the similarity
between supervoxels by the edge features described in Sec. 3.3.2.
Then, the segmentation problem is posed as a minimization over
probabilities that adjacent supervoxels belong to different segments.

The probability p. that an edge between adjacent supervoxels
e € E belongs to a segment boundary with x, = 1 can be modeled
by any probabilistic model for classification (Sec. 3.3.2). We convert
the vector of probabilities p € [0,1]'F! into a cost vector ¢ € RIF|
by ce =log ((1 — pe)/pe). The problem of inferring the most prob-
able segmentation x given the user-defined constraints (2)—(4) is an
integer linear program (ILP):

i ere 5
xe?&r]]}E eggc X (%)
subjectto (1), (2)-(4) (6)

If an edge e is likely to be a segment boundary, i.e. if pe > 0.5,
its cost ¢, is negative. Thus, the value of the objective function is
minimized if the edges that are likely to be segment boundaries are
labeled 1. Constraint (1) enforces the edge labeling to be a valid
segmentation with closed contours, and constraints (2)-(4) enforce
the segmentation to respect the user input.

3.3.1. Kernighan-Lin-type Heuristic Algorithm (KLj)

Solving the resulting optimization problem is NP-hard, therefore
exact solvers are not suitable for our interactive scenario. However,
primal feasible heuristics are known to work well for the multicut
problem [BKK* 14, KLB*15], delivering good solutions in little
time. In these cases, it is impossible to impose hard constraints (2)-
(4). However, we circumvent this problem by assigning very large
positive or negative weights to edges which connect supervoxels
that, through resolving constraints derived from the multi-colored
brush strokes, were marked by a user as belonging to the same or
different segments. This restricts the search space of the heuristics
to the solutions that respect the user input constraints, because the
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solutions that violate them will have a much higher objective values.
One benefit of this approach is that if a user specifies contradicting
constraints, we can still arrive at a solution that is feasible w.r.t. the
multicut constraints (1), i.e., a valid segmentation. This makes our
system more stable under arbitrary user interactions.

KL;j extends the classic Kernighan-Lin algorithm for the set parti-
tioning problem [KL70], which is equivalent to solving the multicut
problem defined w.r.t. a complete graph. KL;j starts with an initial
feasible solution (all nodes V are in the same component) and then
greedily improves the boundary between a pair of neighboring seg-
ments by moving nodes locally from one set into the other and
assessing the objective cost of the move. KLj can also introduce
new segments by the same procedure carried out against an empty
set. While KLj does not provide any approximation or runtime
guarantees, in practice it is much faster than exact ILP solvers and
still produces usable results. For a more detailed description of the
algorithm, we refer the reader to [KLB*15].

3.3.2. Edge Features and Classification

The cost vector c in (5) describes the similarity between neighbor-
ing supervoxels. To describe this similarity, we compute the mean
and variance of per pixel grayscale intensity, sum of the squared
horizontal, vertical and temporal gradient magnitudes, Lab color,
HSV color, and bi-directional optical flow [Liu09]. This results in a
24-d feature vector of means and variances per supervoxel.

These costs ¢ depend on the probability that adjacent supervox-
els belong to different segments. To predict these probabilities, we
use the user labels to train a random forest classifier with 64 trees
with features for every edge between adjacent supervoxels, where
the element-wise distance between the feature vectors represents
the overall distance. In principle, it is possible to pre-train an edge
classifier from a database of videos. This could be useful for domain-
specific videos, such as for sports videos.However, in general, re-
training the classifier for every video is the most flexible approach
to cope with unseen videos of widely-varying appearance.

3.4. Supervoxels

As we solve for a solution on a graph of supervoxels, we rely on
these supervoxels for temporal consistency. Given that, an initial
over-segmentation should not be too coarse so as to avoid miss-
ing important contours, and should not be too fine so as to remain
computationally tractable. We favored fast feedback, and refine the
supervoxel segmentation whenever user constraints deem it neces-
sary. We compute SLIC supervoxels [ASS*12] which we re-label
into connected components. Moreover, SLIC sometimes produces
small cluttered regions. We remove regions smaller than 500 pixels
per frame and relabel their pixels with that of their nearest neighbors.
This provides a good trade-off between speed and quality among a
set of tested alternatives [SGS™*06, FH04, RM00].

Refining Supervoxels Our fast solver allows us to use many super-
voxels, but this still may not be enough to capture fine details.This
manifests as conflicting constraints in the system of equations, e.g.,
two different scribble colors in the same superpixel. We detect such
conflicts and automatically refine the supervoxel segmentation to

Figure 4: Left: A blue superpixel is in conflict with a new red
scribble. Middle: To automatically resolve the conflict, we split the
supervoxel in a 3D region-growing process (dotted lines converging
on center line), where samples along the brush strokes act as seeds.
Right: The supervoxel is split and the constraint resolved.

match the constraints (Fig. 4). Coordinates along the conflicting
scribble lines are used as seeds to a 3D region growing algorithm,
which uses the sum of squared gradient magnitudes in horizontal,
vertical, and temporal directions as features. This refinement takes
less than a second. This allows the user to quickly make coarse
segmentations using the discovered supervoxel edges, but also to
specify new segmentation edges in arbitrary locations by drawing
conflicting brush strokes very close together.

3.5. Matting

After segmentation, we compute a matting solution to refine
our supervoxel edges and to cope with transparency. We use a
spatio-temporal cross-bilateral filter [TM98] with fast bilateral
grids [CPDO7]. This filter takes two video volumes as input: a
binary mask, and per-pixel weights to modulate the Gaussian kernel
used in filtering. We use a grayscale version of the video as our
weights. Each label is filtered separately, then the resulting mattes
are normalized so that they sum to 1. This solution can be paral-
lelized across labels. Other state-of-the-art matting solutions would
improve our results further [BWS11, SPCR14].

3.6. Web Implementation and Collaborative Editing

Our system is built as a web application: All core algorithmic com-
ponents are implemented in C++, then wrapped through Cython and
served from Tornado Web Server. The client is written in JavaScript,
with WebGL rendering. First, the video and supervoxel segmen-
tation are sent from the server and cached on the client. During
interaction, only the constraints are sent to the server, with the seg-
mentation returned to the client. Updates to the supervoxels are sent
to the client as incremental changes. This approach allows for new
applications such as collaborative segmentation on difficult or long
sequences, or for segmenting large video databases as the task can
be crowdsourced and completed on light-weight terminals.

For interaction, the user selects a brush, scribbles, and the segmen-
tation is returned. The user iterates until they are satisfied. There are
two optional brushes: the first turns off retraining the classifier, for
use when the clustering is well-defined and should not be swayed by
newly-marked regions; the second is a pure non-constraint-forming
scribble, to paint the segmentation labels of supervoxels directly. In
practice, the novice user need not use these expert features.

4. Results

For a 1280x720x 150 video, on an Intel Xeon E5-2609 CPU, our
system spends 12 min in unoptimized pre-processing: 10 min to
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Figure 5: The four different videos in the comparison. 1) ‘Kung
Fu’, 960x540x270. 2) ‘The Secret Number’, 1280x720x210. 3)
‘Sunset’, 1280x960x 60. 4) ‘Time Expired’, 1280x960x 150. 5) The
required segments for each sequence.

compute edge features (Sec. 3.3.2), then 2 min to compute supervox-
els and aggregate features. During interaction, with 5k supervoxels
and 25 user constraints, training and classifying takes 0.3 s, with the
multicut problem solved in a further 0.25 s. After network transfer,
the total response time to interaction is under one second. As an
extreme case, with 25k supervoxels, training and classifying takes
1.4 s, with the multicut problem solved in 5 s.

To assess the accuracy and efficiency of our approach, we com-
pare our tool with After Effects Rotobrush which is used in a re-
peated binary segmentation fashion by a novice user. For compar-
ison, we also hired two professional VFX artists to segment our
videos with professional tools of their choice (namely Silhouette
and mocha Pro). In total, four videos were segmented with different
levels of difficulty (Fig. 5). Completion times are shown in Table 1.
We can see from the expert timings that high-quality multi-label seg-
mentation is a laborious task. Ideally, one would re-use the shared
edges between different segments. While this is possible in existing
foreground/background segmentation tools, our approach solves
edges jointly and guarantees consistent non-overlapping boundaries.
Our novice user was able to perform multi-label segmentation tasks
more quickly with our tool than with After Effects Rotobrush, and
to a similar segmentation quality (Fig. 6). However, our automatic
pre-process takes longer. While we only tested four videos, these
results show some promise for the generality of the tool.

5. Discussion

Pro-level tools can achieve high edge accuracy given enough time,
and this is where our tool cannot compete yet. In principle, the
system of arbitrary supervoxel refinement (Sec. 3.4) could be aug-
mented to take input not from scribbles but from parametric curves,
similar to Silhouette. This would provide the control necessary to
describe arbitrary edges with more control, though it requires future
work. That said, our current results are suitable for many consumer-
level editing tasks, and the speed and multi-label nature of the tool

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

Table 1: Completion time in minutes. Participants completed the
multi-label segmentation tasks faster with our tool than with Roto-
brush (RB).

Ours RotoBrush  Silhouette  mocha Pro

Novice Novice Expert 1 Expert 2
Video 1 11.29 27.61 405.75 174.25
Video 2 5.48 35.88 33.10 35.36
Video 3 8.99 15.31 103.50 147.34
Video 4 13.04 31.68 180.21 219.89
Mean 9.70 27.63 180.64 144.21

Figure 6: (a) 'Sunset’ (video 3) and ‘Kung Fu’ (video 1). (b) Seg-
mentation from professional VFX artist using Silhouette (SI). (c)
Novice Rotobrush (RB) result. (d) Novice result with our tool.

makes it suitable for labeling large databases of videos to generate
‘ground truth’ for training computer vision models.

One limitation with re-learning a classifier at every new stroke
is that the resulting segmentation can change in unexpected ways,
e.g., an edge in the video which has similar content in appearance
on either side may change segment as new strokes are added. This
typically manifests itself in the very early stages of segmenting a
video, when the classification boundaries have very few user labels
to inform them. One solution is to simply educate the user to trust
the process as it is a part of the learning system; another is to use
a static pre-trained classifier, though this may be inflexible to new
‘unseen’ videos which do not match the training database.

6. Conclusion

We propose an interactive multicut video segmentation system. We
solve two challenges with creating an interactive video multicut tool:
making it fast through a state-of-the-art multicut solver, and integrat-
ing user constraints into the problem. Our system produces similar
quality to current prosumer tools such as After Effects Rotobrush,
while being faster to use. Overall, these results show the promise of
interactive multicut video segmentation, easing the way for more
advanced video editing and database labeling.
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