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Abstract
Iris folding is a motif consisting of layered strips of paper, forming a spiral pattern behind an aperture, which can be used to
make cards and gift tags. This paper describes an interactive computational tool to assist in the design and construction of
original iris folding patterns. The design of iris folding patterns is formulated as the calculation of a circumscribed polygonal
sequence around a seed polygon. We analyzed the problem and found that it is possible to compute the positions of vertices
analytically for regular polygon; however, it is not straightforward to do so for irregular polygons, and we used a numerical
method for irregular polygons, which can be applied to arbitrary convex seed polygons. The user can quickly experiment with
various patterns using the system prior to constructing the motif.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction Techniques

1. Introduction

Iris folding is a motif consisting of layered paper strips that form a
spiral pattern behind an aperture, as shown in Figure 1. Iris folding
is a simple and fun paper-folding technique that can be used to
make greeting cards and gift tags. The center of the design forms an
iris-like pinhole at the center, similar to that of an eye or a camera
lens. In a typical workflow, a person first prepares a guide sheet
(usually taken from a book), base sheet, and paper strips. She then
cuts the base sheet making a hole as shown in the guide sheet. She
places the base sheet on the guide sheet and pastes the paper strips
on the base sheet following the instruction shown in the guide sheet.
After pasting all the paper strips, she turns the base sheet over to
obtain the final result.

There are several interesting geometric properties of iris fold-
ing patterns, which make the design of such patterns an intrigu-
ing mathematical problem. Although it can be easy to design basic
iris folding patterns, even for novices, many of the more complex
geometrical patterns must satisfy certain geometric constraints, as
shown in Figure 3. It is typically difficult for novices to design such
patterns. If the geometric constraints are not satisfied, waste of pa-
per increases because it cannot use the width of paper strips effec-
tively. In addition, it takes more time in manual construction as the
number of required polygon increases.

This paper presents an interactive computational system to assist
in the design and construction of original iris folding patterns that
satisfy geometric constraints. Figure 2 shows an overview of the
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Figure 1: (a) The end result viewed from the front side. (b)a guide
sheet. (c− f ) The construction process viewed from the back side.
(c) The user first cuts a paper and turns over the paper on a guide
sheet. (d− f ) Then the user pastes colored paper strips around the
central polygon.

process. The user first inputs an outline and a seed polygon inside.
Then it automatically computes an iris folding pattern, i.e., a series
of strips around the seed polygon. The user can experiment with
arbitrary polygons and color combinations prior to completing the
pattern.

The design of iris folding patterns requires the computation of
a series of strips of equal width around the polygon. As shown in
Figure 3, we formulate this design problem as the calculation of an
offset polygonal sequence around an inner polygon, which satisfies
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Figure 2: An overview of our system. (a) The user first inputs an outline S (blue line) and a seed polygon P (black line). (b) Then the system
automatically computes a pattern for iris folding and (c) applies texture rendering. (d) The user finally creates the physical pattern.

Figure 3: The problem is to calculate a next polygon circumscribed
to the inner polygon whereby the distance from the vertices of the
polygon to the corresponding internal polygon edge is constant.

the following constraint: the distance from the vertices of the poly-
gon to the corresponding internal edge of the polygon is constant
(i.e., the width of paper strips is constant). In this manner, the sys-
tem computes iris folding patterns around an arbitrary convex seed
polygon.

2. Related Work

Coahranm and Fiume [CF05] reported a sketch-based design for a
specific quilting art form, i.e., Bargello patterns. They described an
algorithm that transforms sketched input data into graceful Bargello
curves. Patchy [IM15] is an interactive system that can assist the
design of original patchwork patterns. The user designs original
patchwork strokes, and can quickly experiment with various pat-
terns prior to sewing.

The pursuit curve of a polygon forms a geometric pattern that
is similar to iris folding. It is defined as the trajectories of vertices
starting from the corners of the polygon, and moving inwards pur-
suing the neighboring vertices [Pet01]. In the case of a triangle,
three pursuit curves converge to a point known as the Brocard point.
Although pursuit curves form similar patterns to those seen in iris
folding, the definitions differ, and the analysis of pursuit curves
cannot be applied directly to our problem.

3. User Interface

3.1. User Inputs

The user first inputs an outline polygon S and an internal convex
seed polygon P inside S. The user can change the width w of the

paper strips. The system provides two methods to input the outline
S: the user can either draw a stroke line directly, or can load a black-
and-white bitmap image and have the system traces the contour line
using the marching-squares algorithm [LC87].

The user draws a polygon P, as shown in Figure 2(a). Arbitrary
polygons can be designed by clicking on the vertex position of the
polygon. The user can also draw a regular polygon by choosing
one from a menu bar. The system automatically places the polygon
at the center, and the user can drag it to a desired position. It is
also possible to scale the polygon P. The default width of the paper
strips is 10 mm; however, this can be changed using the menu. The
user can change orientation of the strips using the menu.

3.2. Interactive Design

Once the outline S, the seed polygon P and the strip width w are
determined, the system automatically generates a pattern for iris
folding. When the user drags the vertices of the internal polygon
P, the system updates the pattern in real time. The user can set
the color of the strips using a paint tool. By default, the system
shows a design with n−sided polygons with n colors, as shown in
Figure 2(b).

To create a shaded image, the system may also switch to visu-
alization with shading, considering the layers of paper strips, as
shown in Figure 4. Regions of the same color are grouped for
previewing, and the system calculates a rendered image for each
group. The user can preview the resulting image using a texture im-
age of paper strips. This cannot be manipulated interactively while
previewing the texture image, however, and the system switches to
normal coloring mode while the user performs a dragging opera-
tion.

Figure 4: (left) The fill tool, and (right) texture rendering.
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3.3. Construction Guide

The system ultimately outputs a pattern for use in construction. The
user pastes paper strips onto the back side of the main piece of pa-
per, as shown in Figure 5. Therefore, the resulting guide sheet is
flipped horizontally. The system also shows a step-by-step graphi-
cal presentation to aid the construction.

Figure 5: A step-by-step construction guide.

4. Theoretical Analysis

This section describes a theoretical analysis of the geometric prob-
lem. The algorithm used in the current implementation is described
in the next section. First we define the problem, and then we de-
scribe an analysis of regular seed polygons, followed by the treat-
ment of irregular seed polygons.

4.1. Definitions

The seed polygon P (input by the user) is defined as P0. The poly-
gons formed using paper strips are defined as Pm(m = 1,2, ...). We
consider the problem as determining the Pm+1 from Pm for a given
strip width w. The system first computes an offset polygon Pm′

,
i.e., the polygon that is obtained by offsetting each edge of Pm by
the strip width w. Then it searches for the Pm+1 that satisfies the
following geometric constraints: 1) The vertices of the next poly-
gon Pm+1are located on the edge of the offset polygon Pm′

; 2) The
edges of the next polygon Pm+1 pass through the vertices of the
polygon Pm.

4.2. Analytical Solutions for Regular Polygons

With a regular n−polygon Pm, it is possible to analytically calcu-
late the angle of rotation and the scaling ratio that maintain the next
polygon Pm+1 as a n−polygon. As shown in Figure 6, for an inter-
nal angle of the n−polygon α and strip width w, the edge length l
can be found. The system computes the angle of rotation θ whereby
the vertices of the polygon Pm+1 lie on the edges of the strip.

The geometrical relations shown in Figure 6 can be expressed as
follows:

L
sinα

=
l

sinθ
=

k
sin(π−α−θ)

(1)

Equation(1) can be rewritten as

w = ksinθ

=
sin(π−α−θ)

sinα
Lsinθ

= L
sin(α+θ)

sinα
sinθ

(2)

Figure 6: The iris folding geometry for a regular n-polygon.

When L = 1, we obtain the angle of rotation θ as follows:

θ = 2πn−2tan−1
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2
)
6= 0. The length of a single side of

polygon Pm+1 is given by Lm+l = l + k.

4.3. Numerical Analysis for Arbitrary Polygons

Now we describe numerical analysis for an arbitrary n−polygon
Pm. As shown in Figure 7, the vertices of an n−polygon Pm are
defined as Pm

0 ,Pm
1 , · · · ,Pm

n−1 in clockwise order. We put a point

vstart on the edge Pm′

0 Pm′

1 by varying the parameter t in the range
[0, 1]. The straight line l1 passes through vstart and Pm

1 , and inter-
sects the edge Pm′

1 Pm′

2 at point Pm+1
1 . The straight line that passes

through Pm′

i and Pm
i+1 is line li+1, which intersects the edge between

Pm′

i+1Pm′

i+2 at Pm+1
i+1 . The straight line that passes through vstart and Pm

0
is line l0. The point where lines l0 and ln−1 intersect is v(t). The
intersection between the trajectory of v(t) and the edge Pm′

0 Pm′

n−1
becomes Pm+1

n−1 .

We tried to obtain an explicit formula to compute Pm+1 from
Pm, but found that it is overly complicated and difficult. So, we
analyzed the problem numerically using an interactive geometry
software (Cinderella [cin98]). By varying t in the range 0 to 1, the
trajectory of v(t) can be found, as shown in Figure 8. We observe
that the trajectories are conic curves, and therefore we can calculate
the value t for which the point v(t) is located on an edge of Pm′

using a bisection search. In Appendix, we show that such trajectory
is a conic curve (quadratic equation) when the seed polygon is a
triangle.

5. Algorithm

We calculate the next polygon Pm+1 from polygon Pm using a
bisection search. The system computes the signed distance from
v(t) to the corresponding edge Pm′

0 Pm′

n−1. When the user chooses
clockwise pattern, we search for the parameter t between [0, 0.5].
When the user chooses counterclockwise pattern, we search for
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Figure 7: Analysis of iris folding with arbitrary polygons. The aim
is to find t such that v(t) is located on the edge Pm′

0 Pm′

n−1.

Figure 8: By varying t from 0 to 1, the trajectory v(t) was found
(red line).

the parameter t between [0.5, 1]. After identifying the value of t,
the system generates Pm+1 using the value. This is repeated until
Pm ⊃ P(S), where P(S) includes the polygon of the inputted outline
S.

Because the trajectory is conic curve, a solution does not always
exist. The existence of a solution depends on the ratio of the strip
width to the edge length of the polygon (see Figure 9). If a solu-
tion cannot be found, the system does not draw a pattern, and the
user searches for another solution by moving the vertex of the in-
ternal polygon or changing the strip width w. If a solution cannot
be found, the system show the user to the fact that the problem was
not solved.

6. Results

A prototype of the system was implemented using JavaTM running
on a laptop computer with a 1.2 GHz processor and 2 GB RAM. We
used this system to create designs for iris folding pattern, as shown
in Figure 10. Users can experiment with various patterns using the
system prior to beginning construction. A design session typically
takes approximately 10−20 min, and construction takes about 1 h.

Figure 9: The existence of a solution depends on the ratio of the
strip width to the length of the edges of the polygon. Here the ratio
w/l was varied from 0.29 to 0.33, 0.37, and 0.41 (left to right.) For
w/l = 0.37 and 0.41, a pattern could not be formed.

Figure 10: Design examples formed using our system.

7. Conclusion and Future Work

We have described an interactive design system for generating iris
folding patterns. Users can quickly experiment with various pat-
terns using the system before beginning the practical work.

As part of future work, we plan to develop a method to han-
dle multiple internal polygons. We also plan to investigate patterns
formed with other constraints, such as symmetry and similarity
with the original polygon. We also plan to investigate conditions
for the presence of the polygon Pm+1 which circumscribes poly-
gon Pm and inscribes polygon Pm′

. It is also interesting problem to
analyze a requirement about the shape of the internal polygon.
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