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Abstract
This paper proposes a modification of the filtered importance sampling (FIS) method, and improves the quality of virtual
spherical Gaussian light (VSGL) based real-time glossy indirect illumination using this modification. The original FIS method
produces large overlaps of and gaps between filtering kernels for high-frequency probability density functions (PDFs). This is
because the size of the filtering kernel is determined using the PDF at the sampled center of the kernel. To reduce those overlaps
and gaps, this paper determines the kernel size using the integral of the PDF in the filtering kernel. Our key insight is that
these integrals are approximately constant, if kernel centers are sampled using stratified sampling. Therefore, an appropriate
kernel size can be obtained by solving this integral equation. Using the proposed kernel size for FIS-based VSGL generation,
undesirable artifacts are significantly reduced with a negligibly small overhead.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

(a) Previous filtering kernels (b) Our filtering kernels

Figure 1: Sampling VPL clusters from an RSM based on FIS. Red
points: kernel centers sampled according to the PDF (brightness).
Orange squares: filtering kernels (i.e., VPL clusters). The previous
FIS (a) produces significant overlaps of and gaps between filtering
kernels. Our method (b) reduces these overlaps and gaps.

1. Introduction

The filtered importance sampling (FIS) method [KC08] is a vari-
ance reduction technique of Monte Carlo integration often used
for real-time or interactive rendering, which uses filtering kernels
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instead of sample points. This paper proposes a modification of
FIS, and improves the quality of virtual spherical Gaussian light
(VSGL) [Tok15] based real-time glossy indirect illumination using
this modification. The original FIS first samples the center of each
filtering kernel according to a probability density function (PDF),
and then determines the size of each filtering kernel using the PDF
at the sampled center. However, this kernel size determination pro-
duces large overlaps of and gaps between filtering kernels for high-
frequency PDFs (Fig. 1). This is because the kernel size can be
too large when the sampled center is at a local minimum of a high-
frequency PDF. Therefore, this paper introduces an appropriate FIS
kernel size to reduce these overlaps and gaps.

One effective application of our method is generation of VSGLs
using reflective shadow maps (RSMs) [DS05]. RSM-based global
illumination is well established for real-time rendering. However,
stochastic sampling of virtual point lights (VPLs) [Kel97] (i.e., tex-
els of RSMs which represent one-bounce light subpaths) produces
noticeable variance especially for glossy interreflections. To reduce
this variance, VSGLs were introduced recently. This method ap-
proximates a cluster of VPLs using a Gaussian-based representa-
tion. Thanks to this representation, the distribution of VPLs can be
filtered with a simple summation operation (e.g., mipmaping). In
addition, this representation has an analytical solution of the ren-
dering integral for each VSGL. Therefore, if VSGLs are generated
from RSMs inexpensively, we are able to render one-bounce glossy
indirect illumination at real-time frame rates.

Tokuyoshi [Tok15] sampled VPL clusters as VSGLs from an
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RSM based on FIS to achieve real-time frame rates. However, while
this approach is simpler and faster than k-means-based VPL clus-
tering [DGR∗09, PKD12], it does induce flickering structured arti-
facts due to the previously mentioned overlaps and gaps. This prob-
lem is noticeable when a bidirectional reflective shadow mapping
(BRSM) method [REH∗11] is used to build the PDF. This is be-
cause the BRSM method produces a dynamic and high-frequency
PDF. Using our kernel size, we are able to reduce flickering arti-
facts significantly for such a high-frequency PDF.

The contributions of our work are as follows:

• An appropriate kernel size of FIS is introduced to reduce unde-
sirable overlaps of and gaps between filtering kernels.

• For image-based PDFs, the above kernel size is computed using
a simple numerical approach with negligibly small overhead.

• Using the proposed FIS method, flickering artifacts are reduced
for VSGL-based real-time glossy indirect illumination.

2. Related Work

Sampling pre-integrated values is often used for image-based light-
ing. Structured importance sampling [ARBJ03] stratifies samples
hierarchically, and then the illumination is pre-integrated within
each stratum. FIS [KC08] is introduced for glossy materials un-
der environment maps. This technique samples pre-filtered value
using a mipmap, thus it performs at real-time frame rates. For in-
teractive indirect illumination, VPLs are often clustered and ap-
proximated using area lights such as Prutkin et al. [PKD12]. VS-
GLs [Tok15] were introduced to approximate a set of VPLs using
a Gaussian and spherical Gaussians (SGs) [TS06] for glossy in-
terreflections. To generate thousands of VSGLs at real-time frame
rates, an FIS-based approach was used with mipmapped RSMs.
However, this VSGL generation induces a flickering error for high-
frequency PDFs due to inappropriate kernel sizes. In this paper, we
introduce an appropriate FIS kernel size.

3. Modified Filtered Importance Sampling

FIS can be used when the integrand has a 2D image f (x), where
x ∈ [0,1]2 is the image-space position. This method first samples
each kernel center xi ∈ [0,1]2 according to a PDF p(x), and then a
filtered value of f (x) is used as each sample value instead of f (xi).
This filtered value is given by a pre-filtered mipmap as follows:∫

[0,1]2
f (x)g((x−xi)/si)

ai
dx≈ f̄ (xi, li),

where g((x− xi)/si) is the unnormalized filtering kernel which
has a fixed maximum, si is the kernel size, ai is the filtering area
(i.e., normalization factor) given by ai =

∫
[0,1]2 g((x− xi)/si)dx,

and f̄ (xi, li) is the mipmapped value of f (x) at mip level li. Let
M be the number of texels of f (x), then the filtering area ai is also
written as a function of mip level li: ai =

4li

M . Křivánek et al. [KC08]
determined mip level li by representing this filtering area using the
inverse of the density at sampled center xi as

ai =
4li

M
= min

(
K

N p(xi)
,1
)
, (1)
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Figure 2: CDF (blue line) and stratified sampled kernels.

where N is the number of samples, and K is a user-specified param-
eter to tweak the kernel size (Křivánek et al. used K = 4). However,
this mip level determination is sensitive to the sampled center xi.
When xi is at a local minimum of a high-frequency PDF, the filter-
ing kernel can be too large. Conversely, the filtering kernel can also
be too small when xi is at a local maximum. Therefore, undesirable
overlaps of and gaps between filtering kernels can be produced.

Our filtering kernels. This paper introduces an appropriate kernel
size to reduce overlaps of and gaps between filtering kernels for
FIS. Sampling according to a PDF is done by computing the inverse
cumulative distribution function (CDF) of the PDF. As shown in
Fig. 2, a sampling interval of the vertical axis is the integral of
the PDF in each filtering kernel. Therefore, if kernel centers are
sampled using stratified sampling, this integral is almost 1

N . Hence,
an appropriate kernel size si is obtained by solving the following
integral equation:∫

[0,1]2
p(x)g((x−xi)/si)dx =

1
N
. (2)

Since the left side is monotonically increasing with respect to the
kernel size, we can obtain the kernel size using a bisection method.
When PDF p(x) is given by a 2D image, we can use the mipmap of
the PDF, which is also used for sampling xi via hierarchical sample
warping [CJAMJ05]. Using this mipmap, Eq. 2 is rewritten as

4li

M
p̄(xi, li) =

1
N

, (3)

where p̄(xi, li) ≈
∫
[0,1]2 p(x) g((x−xi)/si)

ai
dx is the mipmapped value

of p(x). In this paper, li is calculated using the bisection method
with an iteration count of 12.

4. Application to Virtual Spherical Gaussian Lights (VSGLs)

In this paper, we demonstrate generation of VSGLs as an effec-
tive application of our filtered sampling. A VSGL represents the
positional distribution and total radiant intensity of VPLs using a
Gaussian and SGs, respectively. Since SGs have closed-form so-
lutions to evaluate rendering integrals, all-frequency illumination
is computed analytically for each VSGL. The VSGL algorithm is
composed of the following five phases: RSM rendering, PDF build-
ing, VSGL generation, shadow map rendering, and shading. This
paper improves only on the VSGL generation phase.
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Figure 3: Clustered VPLs. Each cluster is approximated with a
VSGL by computing the total VPL power and averaged VPL dis-
tributions within the cluster. These operations are done by filtered
sampling on the RSM.

(a) diff weight (b) spec weight (c) diff dir (d) spec dir (e) position (f) ‖position‖2

Figure 4: Mipmapped RSM for VSGL generation. Average emis-
sion directions (c)(d) and positions (e)(f) are weighted by VPL pow-
ers (a)(b). VSGLs are sampled from this RSM based on FIS.

Mipmap-based VSGL generation. To generate VSGLs, VPLs
are first clustered. Then VPL powers are summed and VPL distri-
butions are averaged for each cluster (Fig. 3). To represent VPL dis-
tributions with a Gaussian and SGs, weighted averages of emission
directions, VPL positions, and squared VPL positions weighted by
each VPL power are required (for the detail, please refer to the
supplemental material). Therefore, an RSM to store the above VPL
power and weighted distribution parameters is generated, and then
they are mipmapped to approximately obtain total texel values (Fig.
4). Let f (x) be the RSM, then the total texel value in ith VPL clus-
ter centered at xi is approximated using the mipmap f̄ (xi, li) as fol-
lows: ∫

[0,1]2
f (x)g((x−xi)/si)dx≈ 4li

M
f̄ (xi, li),

where filtering kernel g((x−xi)/si) represents the VPL cluster. To
sample the kernel center xi and mip level li, an FIS-based approach
can be used. The kernel center xi is sampled according to a dynamic
and high-frequency view-dependent PDF p(x) given by the BRSM
method. Tokuyoshi [Tok15] determined li using Eq. 1 with K = 1
according to the previous FIS. Using this mip level determination,
the total RSM texel value in each cluster is given by∫

[0,1]2
f (x)g((x−xi)/si)dx≈ f̄ (xi, li)

max(N p(xi),1)
. (4)

However, since the numerator is filtered while the denominator is
not, this sampling method can induce an intensive error due to over-
laps of and gaps between filtering kernels.

VSGL generation using our filtering kernels. To obtain an ap-
propriate mip level li, this paper employs Eq. 3 instead of Eq. 1 for
FIS-based VSGL generation. Using this mip level li, the total texel

value in each cluster is approximated as follows:∫
[0,1]2

f (x)g((x−xi)/si)dx≈ f̄ (xi, li)
N p̄(xi, li)

. (5)

Unlike Eq. 4, both the numerator and denominator are filtered using
the same kernel. Hence, temporal coherence is improved for a dy-
namic high-frequency PDF. Furthermore, the approximation error
can be reduced if PDF p(x) is approximately proportional to f (x),
similar to standard importance sampling.

Controlling the kernel size. For Eq. 5, the mip level li affects only
the filter bandwidth. Therefore, the user-specified parameter K can
also be used for calculating li in our case. This is implemented us-
ing K

N instead of 1
N in Eq. 3. Using K > 1, the temporal coherence is

improved, though an overblurring error is induced. This overblur-
ring error is reduced by increasing the number of samples N, simi-
lar to the original FIS.

5. Experimental Results

Here we present rendering results using 1024 VSGLs generated
using our FIS with K = 1 on an NVIDIA R© GeForce R© GTX

TM

970 GPU. The frame buffer and RSM resolutions are 1920×1088
and 5122, respectively. A tessellation-based imperfect shadow map
[BBH13] of resolution 642 is employed to evaluate the visibility of
each VSGL. To estimate a view-dependent PDF on the RSM using
the BRSM method, 2048 VSGLs without shadow maps are gener-
ated on the G-buffer. For the PDF on the G-buffer, reflectance is
used. To perform stratified sampling, the Fibonacci lattice point set
using a golden ratio approximation [SJ94] is employed as a quasi-
random number. For comparison, this paper uses k-means cluster-
ing using 2D image space and 3D world space. In these k-means-
based approaches, once clusters are assigned to all the texels, those
texels are sorted by cluster ID. Then, to compute the total value of
clustered texels, a thread is dispatched for each cluster similar to
Prutkin et al. [PKD12]. For implementation details, please refer to
the supplemental material.

Quality. Fig. 5 shows rendered images using different VSGL gen-
eration methods. Using the previous kernel size (a), intense artifacts
can be produced with low probability, though this sampling method
is faster than the k-means-based approaches (c)(d). This is because
too large of a filtering kernel is produced when the sampled kernel
center is at a local minimum of the PDF. On the other hand, our
kernel size (b) does not produce these undesirable filtering kernels
nor does it noticeably sacrifice performance.

Performance. Table 1 shows the computation times of VSGL gen-
eration both for BRSM (upper row) and final shading (lower row).
Our contribution is written in red. Although our method is a nu-
merical approach, its overhead is a total of about five microseconds
more compared to the previous FIS-based generation. In addition,
our method is about 7-9 times faster than the k-means-based ap-
proaches. The difference is significant especially for the BRSM
method, which uses a higher-resolution G-buffer (1920×1088)
than the RSM (5122). Table 2 shows the computation times us-
ing different PDFs. For these PDFs, the performance of k-means-
based approaches is more expensive than Table 1. This is because
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Figure 5: Rendered images using different VSGL generation methods for 331k triangles scene (upper row) and 75k triangles scene (lower
row). When a sampled kernel center is at a local minimum of the PDF, the previous method (a) produces too bright of a VSGL with low
probability. On the other hand, our method (b) does not produce such an error similar to k-means-based approaches (c)(d). Aliasing artifacts
on the glossy table in the upper row are the shadow acne of imperfect shadow maps.
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Rendering time: 19.3 msRendering time: 19.3 ms CloseupCloseup
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Figure 6: Unlike k-means-based approaches, our approach can control the kernel size using the user-specified parameter K. By increasing
K, the temporal coherence is improved, while some illumination appearance is overblurred (262k triangles scene).
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(a) [Tok15] (b) Ours (c) k-means (2D image space) (d) k-means (3D world space)

Figure 7: Light occluded by columns (262k triangles scene). Since FIS-based approaches (a)(b) ignore the difference of world space posi-
tions, they blur some indirect illumination for this scene similar to the k-means-based approach using image space (c). These low-frequency
errors are visually acceptable compared to high-frequency artifacts.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

16



Y. Tokuyoshi / Modified Filtered Importance Sampling for Virtual Spherical Gaussian Lights

Table 1: Computation times of VSGL generation (ms).

[Tok15] Ours k-means (2D image space) k-means (3D world space)

PDF for BRSMPDF for BRSM
(camera view)(camera view)

KernelsKernels PDF for BRSMPDF for BRSM
(camera view)(camera view)

KernelsKernels PDF for BRSMPDF for BRSM
(camera view)(camera view)

ClustersClusters PDF for BRSMPDF for BRSM
(camera view)(camera view)

ClustersClusters

Additional G-buffer: 0.816 Additional G-buffer: 0.816 Cluster assignment: 3.004 Cluster assignment: 5.009
Mipmapping: 0.968 Mipmapping: 0.968 Sort: 1.541 Sort: 1.517
Filtered sampling: 0.090 Filtered sampling: 0.092 Sum: 9.096 Sum: 9.856

PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) ClustersClusters PDF (light view)PDF (light view) ClustersClusters

Additional RSM: 0.165 Additional RSM: 0.165 Cluster assignment: 0.619 Cluster assignment: 0.860
Mipmapping: 0.201 Mipmapping: 0.201 Sort: 0.306 Sort: 0.299
Filtered sampling: 0.084 Filtered sampling: 0.088 Sum: 1.995 Sum: 4.231
Total: 2.324 Total: 2.330 Total: 16.561 Total: 21.772

Table 2: Computation times of VSGL generation (ms).

[Tok15] Ours k-means (2D image space) k-means (3D world space)

PDF for BRSMPDF for BRSM
(camera view)(camera view)

KernelsKernels PDF for BRSMPDF for BRSM
(camera view)(camera view)

KernelsKernels PDF for BRSMPDF for BRSM
(camera view)(camera view)

ClustersClusters PDF for BRSMPDF for BRSM
(camera view)(camera view)

ClustersClusters

Additional G-buffer: 0.752 Additional G-buffer: 0.752 Cluster assignment: 3.262 Cluster assignment: 5.756
Mipmapping: 0.985 Mipmapping: 0.985 Sort: 1.523 Sort: 1.499
Filtered sampling: 0.087 Filtered sampling: 0.089 Sum: 8.850 Sum: 8.735

PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) ClustersClusters PDF (light view)PDF (light view) ClustersClusters

Additional RSM: 0.154 Additional RSM: 0.154 Cluster assignment: 1.172 Cluster assignment: 0.899
Mipmapping: 0.199 Mipmapping: 0.199 Sort: 0.306 Sort: 0.305
Filtered sampling: 0.065 Filtered sampling: 0.067 Sum: 5.275 Sum: 20.489
Total: 2.242 Total: 2.246 Total: 20.388 Total: 37.683

the last pass “Sum” (which is the summation of texel values based
on Prutkin et al.’s implementation) has a linear complexity with
respect to the number of texels in a cluster. Comparatively, the per-
formance of our approach is almost independent of the PDFs, be-
cause it uses pre-filtered mipmaps. Hence, the proposed method is
suitable for applications which require stable performance.

Code size. Table 3 shows the code size of VSGL generation in
our implementation. FIS-based approaches use only two compute
shaders. One is for the calculation of the additional RSM (or G-
buffer), and the other is for the filtered sampling of VSGLs. The
difference of our method from the previous method [Tok15] is only
the mip level determination (10 lines of code). On the other hand,
the k-means-based approaches require more compute shaders than
ours. In addition, some of them are dispatched iteratively for the
GPU sort. Our method is about five times fewer lines of code than
the k-means-based approaches.

Table 3: Code size of VSGL generation (C++ and HLSL)

[Tok15] Ours k-means (2D) k-means (3D)
# of shaders 2 2 9 9
# of dispatch calls 2 2 39 39
Lines of code 222 232 1143 1172

Kernel size controlling. As shown in Fig. 6, the kernel size of
our method is controllable by using the user-specified parameter
K unlike k-means-based approaches. Although some illumination
appearance is overblurred by using K > 1, the temporal coherence
is improved. The parameter K can be used to balance illumination
details and temporal coherence according to the liking of a user.
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Rendering time: 11.1 msRendering time: 11.1 ms
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Rendering time: 11.2 msRendering time: 11.2 ms

PDF and kernels
(light view)

Figure 8: Caustics rendered using our method with the same PDF
(514 triangles scene). Kernel centers of the upper row and lower
row are generated using hierarchical sample warping [CJAMJ05]
and the Metropolis-Hastings-based temporally coherent sampling
[BBH13], respectively. Due to a lack of stratification, Metropolis-
Hastings produces noticeable artifacts.

6. Limitations

Feature space. As shown in Fig. 7, FIS-based approaches (a)(b)
ignore the difference of world space positions similar to the k-
means-based-approach using image space (c). If VPLs are clus-
tered ignoring such high-dimensional features, some indirect illu-
mination is blurred when using VSGLs. These low-frequency er-
rors are a limitation of FIS-based VSGL generation to achieve real-
time frame rates, but they are more visually acceptable than high-
frequency artifacts (e.g., flickering and spiky artifacts).

Overlaps and gaps. Although our method reduces overlaps of and
gaps between filtering kernels, they cannot be removed completely
for inhomogeneous sample distributions. This problem is alleviated
by using stratified sampling.

PDF. Since our method requires a given PDF, it cannot be applied
to sampling strategies without the PDF (e.g., sequential Monte
Carlo instant radiosity [HKL16]).

Temporal coherence. Since our method improves only the kernel
size, kernel centers can still be temporally incoherent for dynamic
PDFs. Although the Metropolis-Hastings algorithm can be used for
temporally coherent sampling [BBH13], it is limited to static light
sources and has a lack of stratification. This problem induces no-
ticeable artifacts especially for caustics (Fig. 8). Therefore, this pa-
per employs hierarchical sample warping for stratified sampling. If
the temporal coherence is more important than detailed illumina-
tion, K > 1 can be used for our method to improve the temporal
coherence.

7. Conclusions

This paper improved the kernel size of FIS to reduce overlaps
of and gaps between filtering kernels. Using this modification for
VSGL generation, we are able to render glossy indirect illumina-
tion with fewer artifacts than the previous VSGL generation. The
overhead of our method is about 5 microseconds for thousands of
VSGLs on a commodity GPU. Although the FIS-based approach
cannot take into account the difference of higher-dimensional fea-
tures (e.g., world position) unlike k-means-based approaches, it is
simple, fast, and has stable performance. This paper has demon-
strated VSGL-based dynamic glossy indirect illumination, but our
method is also usable for SG light generation for dynamic environ-
ment maps. Since environment maps are 2D light distribution, it
might be more suitable than VSGL generation. We would like to
investigate its efficiency in the future.
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