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Abstract

Implementing algorithms that are based on dynamic triangle meshes often requires updating internal data-
structures as soon as the connectivity of the mesh changes. The design of a class hierarchy that is able to deal with
such changes is particularly challenging if the system reaches a certain complexity.
The paper proposes a software design that enables the users to efficiently implement algorithms that can handle
these dynamic changes while still maintaining a certain encapsulation of the single components.
Our design is based on a callback mechanism. A client can register at some Info-object and gets informed
whenever a change of the connectivity occurs. This way the client is able to keep internal data up-to-date. Our
framework enables us to write small client classes that cover just a small dedicated aspect of necessary updates
related to the changing connectivity. These small components can be combined to more complex modules and can
often easily be reused. Moreover, we do not have to store related ’dynamic data’ in one central place, e.g. the
mesh, which could lead to a significant memory overhead if an application uses some modules just for a short
time.
We have used and tested this class design extensively for implementing ’Dynamic Connectivity Meshes and Appli-
cations 9’. Additionally, as a feasibility study, we have implemented and integrated our concept in the OpenMesh2-
framework.

1. Introduction

Triangle meshes are a well established standard to represent
the outer skin of a 3D geometric object. Compared tody-
namic meshes, algorithms that are based onstatic meshes
are usually easier to implement from a design point of view.
Modules that realize such an algorithm just need to store
static data, with respect to the mesh, that does not change
during the runtime of the application.

To give a simple example, the application might comprise
one module that sets a flag whenever an edge of the mesh
gets selected by a user. Since the connectivity of the mesh
does not change the module can use an internalvector-
of-bools that reflects the current status of each edge.

When it comes to meshes that change their connectivity
during runtime, however, implementing algorithms that op-
erate on them gets more involved. Data that is stored inter-
nally to some module has to be aware of these changes. This
task is particularly challenging if the application reaches
a certain complexity and one wants to implement compo-

nents that can be reused. One way of solving such a prob-
lem is to store the data (edge-flags) outside of the module,
e.g. directly along with the mesh-data-structure that obvi-
ously ’knows’ when its connectivity changes.

One possible way to store data within the mesh are the
so calledMeshtraits or Meshitems that have been effectively
used in several libraries2� 5. This is an excellent approach, if
the data that is to be stored is an ’established property’ that
can be reused. This might for instance be a vertex-property
such as the valence, a list of all adjacent triangles, texture-
coordinates etc. The major advantage is the fact that mul-
tiple modules that work with the mesh have easy access to
this data and the data is stored/updated in just one place.
We found that in this case, the loss of data encapsulation
is not a severe restriction (as long as it gets updated cor-
rectly). However, the documentation of a module that uses
such a Meshitem should explicitly state that it needs a spe-
cific Meshitem and a compile-time check1 should make sure
that the appropriate Meshitems are present.
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Figure 1: Illustration of an edge-flip, the example-operator in
this paper. The common edge of the triangles�ABC
and�ACD (left) ’flips’ and forms the new triangles
�ABD and�BCD (right).

On the other hand, if a module makes use of module spe-
cific data that is used only temporarily, inflating/polluting
the Meshitems with this data is problematic. In particular for
more complex applications one can easily lose control over
all the different components, which clearly limits the main-
tainability. Even worse, the data consumes memory through-
out the lifetime of the application even though it might get
used for a short period only.

For this reason we have developed a framework that en-
ables independent modules of an application to be alerted
whenever the connectivity of the mesh changes. We ensure
that the modules do not have to expose internal data to the
outside, which facilitates their reusability. Our framework is
based on a callback mechanism, all client classes that have
to be aware of a changing connectivity supply a common
interface (they derive from a common base-class).

In Section2 we will build up the callback mechanism
that informs a custom tailored client class whenever the con-
nectivity of the mesh changes. Section3 illustrates how we
can make necessary information available to a client. In Sec-
tion 4 we show the concept of informingmultiple modules
of a change in the connectivity while being completely inde-
pendent of each other. To clarify our concept, we will de-
scribe an example application in Section5 and point out
some extensions of our framework in Section6.

2. The Callback Mechanism

In order to keep our explanations of the class design and the
examples as simple as possible, we will restrict ourselves to
one single topological operation, the edge-flip (cf. Fig1). A
fully-fledged library would of course comprise the complete
set of operators that change the connectivity of the mesh,
e.g. , edge-split, edge-collapse, face-split, etc. The additional
operators can be integrated into our framework in a similar
way as the edge-flip and are thus omitted here.

As we have illustrated in Section1, we will store data
that is sensitive to changes of the connectivity of the mesh
along with the modules that are using this data, instead of
storing them in Meshitems inside the mesh. This way how-
ever we are not able to update our data inside some private
method of the mesh wheneverMesh::flipedge() gets
called. Hence, we cannot callMesh::flipedge directly
and therefore outsource calls that change the connectivity of
the mesh to another class. It makes sure that ’dynamic data’
is always up-to-date and callsMesh::flipedge.

So instead of calling

mesh�>flipedge(edge_handle);

directly and thus risking that some modules remain clue-
less about the fact that the connectivity of the mesh has just
changed and consequently that the data they store might be
outdated, we wrap the call toMesh::flipedge by two
calls to methods which the users can custom tailor to their
needs. Later we will show how a module can hook into these
calls and is thus updates its own data whenever an edge-flip
occurs.

For now we will show a very simple example of this con-
cept and will later develop a more complex class that we are
using in a real-world application.

The core piece of our framework is calledDynamic, the
following listing illustrates the basic form of the callback
mechanism.

struct Dynamic<Mesh> {

void flipedge (EdgeHandle _edge_handle){
if ( info�>preFlip()){

mesh. flipedge (_edge_handle);
info�>postFlip ();

}
}

Mesh& mesh;
InfoBase� info ;

};

Listing 1:Dynamic::flipedge shows the basic form of
the callback mechanism a user can hook into.

in this example,InfoBase is implemented as follows:

class InfoBase{
virtual bool preflip (){ return true ;}
virtual void postFlip (){};

};
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InfoBase is meant as a dummy base-class that does
nothing but illustrate a certain interface, i.e. in its sim-
plest form the call toDynamic::flipedge()does noth-
ing but flip an edge of the mesh just as a direct call to
Mesh::flipedge() would have done. So what is the
benefit of introducing this additional layer?

The users can derive their ownMyInfo-class fromIn-
foBase and replaceDynamic::info with it. This way
additional functionality can be implemented and the ap-
propriateMyInfo::pre/postFlip-method gets called
wheneverDynamic::flipedge gets called.

As a simple example we implementMyInfo class as fol-
lows:

class MyInfo : public InfoBase
{
bool preflip () { cout « " preFlip " ;return true;}
void postFlip () { cout « " postFlip ";}

};

Using an instance ofMyInfo Listing 2 illustrates how to
flip the edge with the EdgeHandle 0 while getting feedback
about theMyInfo::pre/postFlip-calls.

int main()
{
Dynamic dynamic;
// read mesh & pass it to dynamic

MyInfo myinfo;
dynamic.info = &myinfo;
dynamic. flipedge (EdgeHandle(0));

// output of the program:
preFlip�called postFlip�called

}

Listing 2: Getting feedback about the flip of edge 0 via My-
Info.

Please note that you can prevent an edge from flipping
by returning false in your own MyInfo::preFlip()-
method. This way you can (in addition to executing edge-flip
specific code) influence the optimization process. We will
come back to this point in Section5.

Conceptually it would make sense to distinguish between
the influence on the optimization process (cf. Section5) and
the execution of edge-flip specific code. Consequently we
should separate between, for example, a classMyDataUp-
dateBase which provides thepre/postFlip-interface
and anotherMyStrategyBase-class where the users can
implement different strategies to influence the optimization
process. In practice however, we found it more convenient to
have everything in one singleMyInfo-object.

3. Passing Data to MyInfo

Up to this point we get informed via our own
pre/postFlip-method whenever an edge-flip oc-
curs. Of course, a very important fact we are interested
in is where the flip actually took place. This is crucial for
executing flip-specific code inMyInfo. It would be straight
forward to pass the edge to thepre/postFlip-method
as an argument. In practice however, we found that we often
need more information about the flip that is going to take
place or just took place. For this reason we pass a pointer to
a wholeData-struct topre/postFlip, which is of the
form:

struct Data{
EdgeHandle flip_edge_ ;
...

};

and is a member ofDynamic. Opposed to our toy-
example, this struct also holds all the information that is
needed for the other topological operations (cf.Section2).
This additional information can be exploited for instance if
the user needs to know which was the last edge that collapsed
prior to the current edge-split etc.

We have madeData a member ofDynamic instead
of storing it directly inInfoBase for two reasons: First,
for reasons of efficiency since we can use the members of
Data to store the current edge directly while being inDy-
namic::flipedge() and thus do not need any addi-
tional copy operation.

Second and more importantly, in the next expansion stage
of our framework we will introduce the concept of mul-
tiple InfoBase-objects that work independently of each
other. Each of them gets notified by a special instance of an
InfoBase-object, however, we would like to avoid multi-
ple instances ofData. We will see how our framework can
benefit from this and point out some implementation issues
in the next section.

4. Distributing to multiple Clients by an Observer

With the current implementation ofMyInfowe would have
to put all code, which has to be executed in order to respond
correctly to an edge-flip, intoMyInfo.

In practice, for a more complex application, a compre-
hensive, custom tailoredMyInfo class can easily become
a Blob 3, i.e. a single class with a large number of attributes
and operations. Even worse, we would not have gained much
compared to the ’embed-all-edge-flip-specific-code-in-the-
mesh-class’-approach (cf. Section1), meaning that if a
module puts flip-specific code intoMyInfo entails that this
module cannot encapsulate and manage its own data any-
more.
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By using the observer/observable-pattern4, the diagram in
Figure2 shows how we can get around the two problems that
we have just mentioned. A client can register at the Observer,
in our framework we call itHub, and gets called whenever
an edge-flip is performed. This way we can write small, inde-
pendent client classes that are aware of changes of the mesh-
connectivity. The whole concept works as follows.

We create aHub that is derived fromInfoBase and
let Dynamic::info point to it - this way the Hub gets
called by Dynamic::flipedge(). A client class de-
rives fromInfoBase and hence supports thepre/post-
Flip interface. Now an object of this client class registers
at theHub by passing a reference to it. TheHub main-
tains a list of these client objects, the callees. Whenever
Hub::pre/postFlip gets called, theHub passes the
call to all its callees. Additional information about that flip is
available viaData. A pointer to this struct is passed to the
pre/postFlip methods and can thus be exploited by the
callees.

Again, using this approach we are able to hide client spe-
cific code and data-structures and do not have to expose it to
some central instance. We found that the Hub also encour-
ages users of our framework to write small and independent
and thus reusable components.

In our current implementation theHub holds a simple list
of references to callees that get called one after the other.
However, if the user needs fine grained control over the or-
der of execution of the client classes, one can easily incorpo-
rate a more sophisticated calling strategy. This could either
be calls by priority, but one can also think of a calling-tree
similar to a scenegraph (theHub serve as nodes, the clients
are the leaves).

5. An Example Application

In this Section we will showcase a small application scenario
that demonstrates how the framework can be put into prac-
tice. We just want to give an impression how the parts of
our concept play together and show that the different mod-
ules form a closed entity that can be reused easily. Of course,
many more applications can be realized similarly to our sim-
ple example and we hope that the pool of modules that uses
our framework will grow rapidly.

Assume we are given a triangle mesh that contains ver-
tices with high valences, i.e. many edges emanate from these
vertices. A multitude of algorithms in geometric modeling
prefer vertices with valence six (or at least close to six). The
edge-flip is one operator that can reduce this valence-excess
(cf. 6� 8 for a detailed description).

In our example we will use two client classes that regis-
ter at aHub (cf. Section4). ValenceStore manages the
valences of all mesh-vertices - it serves as an example for a
module that holds its own data and updates it if the connec-
tivity of the mesh changes.

class ValenceStore :public InfoBase{

// assume the valences are stored in valenceMap_
// and initialized by the constructor of this class .

// update valences after an edge_flip
bool postFlip (const Data& _data){

EdgeHandle e = _data . flip_edge_ ;

// Update their valences of the four adjacent
// vertices v_i of e // v3
valenceMap_[v[0]]�=1; // / | \
valenceMap_[v [1]] +=1; // v0 | v2
valenceMap_[v[2]]�=1; // \ | /
valenceMap_[v [3]] +=1; // v1

}

std :: map<VertexHandle,int> valenceMap_;
};

class BalanceStrategy :public InfoBase{

// Pass a ValenceStore object to
// this class in the constructor

bool preFlip (const Data& _data){

EdgeHandle e = _data . flip_edge_ ;

// Now get the four adjacent vertices of e and their
// valences val [0,...,3] from valenceStore_ ...

//... and calculate the valence�excess ...
current_excess = sqr ( val [0]�6) + ... + sqr ( val [3]�6);

// New valences under the assumption that
// a flip has taken place
val [0] �= 1; val [1] += 1;
val [2] �= 1; val [3] += 1;
flip_excess = sqr ( val [0]�6) + ... + sqr ( val [3]�6);

if ( new_excess < current_excess )return true ;
else return false ;

}
};

Note that we do not have to enumerate all adjacent ver-
tices of a vertex to recalculate its valence, since we know
how the valences of the four vertices are affected by an edge-
flip.

The second class is an example for exerting influence on
the execution of edge-flips.BalanceStrategy is a class
that calculates the valence-excess of vertices incident to an
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Figure 2: UML-diagram of our framework. A client class derives fromInfoBase and registers at theHub. TheHub gets
passed toDynamic and is thus ’aware’ of a (scheduled) edge-flip. Additional information about that flip is stored inData
which is a member ofDynamic. A pointer to this struct is passed to thepre/postFlip methods and can thus be exploited
by a client class.

edge and indicates viapreFlip if an edge-flip would im-
prove it.

Eventually we can assemble the components. A sketch
of the main parts of the program that balances the valence-
excess of a triangle mesh is shown in Listing3.

int main()
{
Dynamic dynamic;
// read mesh & pass it to dynamic

Hub hub;

ValenceStore vStore(mesh);
hub. registerCallee (&vStore);

BalanceStrategy balance (vStore );
hub. registerCallee (&balance);

dynamic.info = &hub;

// now iterate ...
for ( e = mesh.edges_begin (); e != mesh.edges_end();++e)

dynamic. flipedge (e );
}

Listing 3: Reducing the valence excess

6. Extensions

As capturing all details of our framework exceeds the scope
of this paper, we have only outlined the core concepts. How-
ever, there are many ways to extend the concept we have
shown so far and we want to highlight some of them.

In our implementation we have used aniterator for pro-
cessing multiple edges at once. So, instead of passing edges
to Dynamic::flipedge() one-by-one, we iterate over
a whole set of edges. We will illustrate the advantage of this
concept by means of a small example.

Let’s stick to the valence-excess example of the previous
section. Assume we have a moduleA that wants to prevent
the four blue edges (cf. Figure1) from flipping as soon as
the red edge has flipped - the four edges remain locked as
long as we have not processed every edge in the mesh. After
one iteration over all edges, the status of these edges is set
to ’free’ again. If a moduleB of our application processes
edges one-by-one, we need an indicator when it is done with
processing. The problem is that both modules might be un-
aware of each other. We can solve this problem by leaving
the control over the edge-flips toDynamic and inform the
user via theInfoBase-interface after all the edges pro-
vided by the iterator are processed. This way all clients that
have registered at theHub can respond in their specific way.
Of course, the iterator is not limited to iterating over all
edges of a mesh , but it can feed an arbitrary set of edges
to Dynamic::flipedge().

Listings 4 and5 show the extension we have to make in
order to realize the concept.
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struct Dynamic<Mesh> {

// canditate serves as iterator over a set of edge

void flipedge (){
for ( candidate�>init (); candidate�>hasmore();

candidate�>next() ){
if ( info�>preFlip(const Data& _d)){

mesh.flipedge ( canditate�>get());
info�>postFlip(const Data& _d);

}
} // end: for all candidates

info�>endFlip();
}

Mesh& mesh;
InfoBase� info ;
Candiate� candidate ;

};

Listing 4: Incorporating the iterator-concept into Dynamic.

class InfoBase<Dynamic>{
virtual bool preflip (const Dynamic::Data&){return true;}
virtual void postFlip (const Dynamic::Data&){};
virtual void endFlip (){}

};

Listing 5: Extended version of InfoBase.

Another venue for extending our framework is the design
of small client classes that cover just one specific aspect of
the changing connectivity. In this context we do not limit
ourselves to the edge-flip, but think of the complete set of
operators that change the connectivity of a mesh. The aspects
can be as diverse as:

� a change of the adjacency list of a vertex.
� a notification that some triangles/edges/vertices have van-

ished.
� a change of normals in the vicinity of an operation.

For instance we could address the first item by designing
a module that maintains a list of adjacent vertices for each
vertex in a mesh. This modules registers at theHub and up-
dates its internal list with respect to a notification it gets via
the callback mechanism - this can be done efficiently, since
the module ’knows’ how the adjacency lists have to be up-
dated for e.g. an edge-flip. Now the module can grant a client
access to these lists. The client does not need to worry if the
lists are up-to-date or maintain its own list.

We can even go one step further and separate the data
(the adjacency lists) from the information about the update
(which list has changed in which way). Using this concept
we can design a classA that registers at theHub and just

takes care of the update. Another classB1, which registers at
A, can e.g. hold the adjacency lists. To carry on this thought,
we also think of a classB2 that just needs to be notified about
a change of the adjacency-information, but does not hold a
complete adjacency-list at all. Eventually, this concept will
lead to a tree-like structure of callbacks that enable a client
to register at those points that are vital for its algorithms.

7. Results

We have used the framework we have described in the last
Sections to implementFSR, a program that comprises the
algorithms propose in8� 9. One result we have achieved with
FSR is shown on the first page. InFSR we register dozens
of modules that inter-operate with each other, it showed that
managing these modules without clearly separating between
them is quite error-prone. We have also implemented a small
example which is based onOpenMesh2. A tar-archive can be
downloaded from our web-site7. Please note that the current
version is just a feasibility study and is not mature enough to
be used in a production environment.

Certainly, our framework comes along with some over-
head compared to directly calling the member functions
(edge-flip/edge-split, etc. ) of the mesh. As a worst case sce-
nario we have tested our implementation forOpenMesh2. We
have passed an emptyInfoBase-object toDynamic in
order to disable the callback-mechanism and have executed
one single edge-flip via our iterator-interface. This setup is
2.5x slower that the direct call tomesh.flip(). However,
after changing ourFSR-program to the proposed concept,
we not only found that it was easier to incorporate new al-
gorithms, but we were also able to discarded many calls to
redundant update routines and eventually makeFSR signifi-
cantly faster.

8. Conclusion

We have proposed a framework for efficiently handling and
working with dynamic connectivity meshes from a design
point of view. In particular we have shown how encapsulated
modules that depend on the changing connectivity of a mesh
can keep internal data-structures up-to-date. Our callback-
mechanism facilitates implementing new algorithms which
base on dynamic meshes and shows how to add this new
functionality to complex applications that make use of our
framework.

Of course, there are many venues for further extensions
and improvements. We expect, that a rich pool of small
and reusable clients, which cover one specific aspect of the
changing connectivity, will significantly speed up the devel-
opment of algorithms that depend on dynamic meshes.
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Figure 3: A result achieved with our design-framework. The original fan-disk (left) getscoarsened by successively changing the
mesh-connectivity with simple topological operators9. In one module of our application, we use our framework to automatically
update the selected edges (green) whenever a topological change occurs. Another module takes care of equally distributing
vertices across the surface. Both modules work independently of each other and there is no need to expose internal data-
structures to the outside. Thus, the modules can easily be reused in another context.
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