Workshop on Molecular Graphics and Visual Analysis of Molecular Data (MolVA) (2019)

J. Byska, M. Krone, and B. Sommer (Editors)

A Massively Parallel CUDA Algorithm to Compute and Visualize
the Solvent Excluded Surface for Dynamic Molecular Data

Marco Schifer!and Michael Krone!

IBig Data Visual Analytics, University of Tiibingen, Germany

Figure 1: Screenshots of our Solvent Excluded Surface (SES) visualization method showing three different test data sets obtained from the
PDB [BWF*00]. Left: haptoglobin-hemoglobin complex (PDB ID: 4XOL) colored by SES patch type (blue: convex spherical patches, red:
toroidal patches, yellow: concave spherical triangles). The cutout to the right shows that our method handles all singularities correctly and
creates a pixel-perfect image. Middle: an aquaporin (PDB ID: 1AF6) colored to show its three different amino acid chains. Right: Cowpea
chlorotic mottle virus capsid (CCMV, PDB ID: 1CWP) consisting of 214 k atoms, represented by the largest data set used for performance
measurements. The probe radius was set to 1.4 A for all data sets, which approximates water:

Abstract

The interactive visualization of molecular surfaces can help users to understand the dynamic behavior of proteins in molecular
dynamics simulations. These simulations play an important role in biochemical and pharmaceutical research, e.g. in drug
design. The efficient calculation of molecular surfaces in a fast and memory-saving way is a challenging task. For example,
to gain a detailed understanding of complex diseases like Alzheimer, conformational changes and spatial interactions between
molecules have to be investigated. Molecular surfaces, such as Solvent Excluded Surfaces (SES), are instrumental for identifying
structures such as tunnels or cavities that critically influence transport processes and docking events, which might induce
enzymatic reactions. Therefore, we developed a highly parallelized algorithm that exploits the massive computing power of
modern graphics hardware. Our analytical algorithm is suitable for the real-time computation of dynamic SES based on many

time steps, as it runs interactively on a single consumer GPU for more than 20 k atoms.

CCS Concepts

* Human-centered computing — Visualization; « Computing methodologies — Parallel algorithms; * Applied computing

— Molecular structural biology;,

1. Introduction

High-quality visualizations of smooth molecular surfaces are an
important tool for the analysis of molecular data. The investigation
of interactions between large biomolecules—such as proteins—and
solvents, ligands, or other proteins, plays an important role in bio-
chemical, medical, and pharmaceutical research. To reach a com-
prehensive understanding of the diverse and complex molecular

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

DOI: 10.2312/molva.20191094

interactions requires analytically correct and interactive visualiza-
tions. Such interactions occur for example in biochemical pathways
as docking events that induce transportation, assembly, or enzy-
matic reactions. Visualization can help to derive new knowledge for
exploring novel drug targets, improving drug design, or identifying
potential reaction partners. The shape of a protein can influence
these interactions. Thus, visualizations of the molecular surface in

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-1445-7568
https://doi.org/10.2312/molva.20191094

2 M. Schdfer & M. Krone / A Massively Parallel CUDA Algorithm to Compute and Visualize the Solvent Excluded Surface

combination with a coloring that illustrates the physico-chemical
properties influencing these interactions can greatly assist the un-
derstanding and, consequently, knowledge discovery.

A large number of different molecular representations have been
devised, each showing a specific characteristics of a molecule (see
Kozlikova et al. [KKF*17] for a recent survey of molecular visu-
alization). For example, the ball-and-stick model shows the funda-
mental 3D structure and atomic bonds. Another example is the Car-
toon representation for proteins, which provides an abstraction that
shows the high-level, functional structure of a protein. For molecu-
lar interactions, surface representations that show the accessibility
of a molecule with respect to another molecule (usually a solvent
or ligand) are more suitable. One of the most useful molecular sur-
face models for displaying accessibility is the SES (see Figure 1).
The SES is defined by a probe sphere that rolls over the Van-der-
Waals (VAW) spheres of a molecule. The radius of this probe is
chosen so that it approximates a specific solvent molecule. The sur-
face of the probe traces the SES, that is, parts of the molecule that
are not reachable by the probe are not part of the SES. While rolling
over the VAW spheres, the probe can be in three different states:
(1) It can be in contact with just one VAW sphere while rolling.
The part of the VAW sphere that is in contact with the rolling probe
is a convex spherical patch that will be part of the SES. (2) When
the probe is in contact with two VAW spheres, it can rotate around
the axis defined by the two sphere centers, thereby tracing out a
torus. The part of the torus that is between the two VAW spheres is
a toroidal patch that is also part of the SES. (3) If the probe is in
contact with three VAW spheres, it is in a fixed position, as it cannot
roll any further without losing contact with one of the spheres. The
concave spherical triangle on the probe surface between the three
points of contact with the spheres is the last part of the SES. The
leftmost image in Figure 1 shows the SES colored by patch type.
The survey of Kozlikov et al. [KKF*17] gives a more detailed ex-
planation of the SES.

The SES was defined by Richards [Ric77] using this rolling
probe algorithm. A year later, Greer and Bush [GB78] gave an-
other, equivalent definition: the SES can be defined by the union
of all probe spheres that do not intersect the VAW spheres of the
atoms. They also coined the term Solvent Excluded Surface, since
the probes represent a certain solvent, which is excluded from the
surface. Another name for the SES is Connolly surface, since Con-
nolly was the first to present the analytical equations to compute
the three surface patches [Con83]. Due to the complex nature of
the SES, a naive computation is very time-consuming. Therefore,
many algorithms accelerating this computations have been devel-
oped, which we briefly discuss in Section 2.

Richards’ rolling probe algorithm also traces out a second type of
molecular surface: the Solvent Accessible Surface (SAS) [Ric77].
The SAS is, however, defined by the center of the rolling probe. It
is analogous to the VAW spheres, but the probe radius is added to
the VAW radius. The SAS is computationally cheap, but it does not
create a smooth surface and is, therefore, less suited for the analysis
of molecular interactions [KKF*17].

In this paper, we present a fast algorithm to compute the SES in
parallel on the GPU using Nvidia’s Compute Unified Device Ar-
chitecture (CUDA) for the computations and OpenGL/GLSL for

rendering. Our approach employs the tremendous parallelization
of the GPU to check for every triplet of atoms whether the probe
sphere can be placed in a fixed position without intersecting any
other atom. While this is a rather brute-force method, the computa-
tion time as well as the memory consumption on the GPU scale lin-
early with the number of atoms (in contrast to previous approaches,
see Section 5.3). Our algorithm can render large molecular data sets
interactively using a single consumer GPU. Our visualization of the
SES is analytically correct and pixel-precise, since the surface is
rendered using GPU-based ray casting [KBE09] (see Figure 1).

2. Related Work

The SES is the most commonly used surface representation, be-
cause it is suitable for the analysis of protein-solvent interaction or
docking. The computation of the SES is, however, quite involved
and time-consuming. Dynamic molecular data, such as simulation
trajectories, typically contain several thousand to tens of thousands
of frames. Thus, precomputing the SES for all frames—as done by
some molecular viewers—is not a feasible approach for large, dy-
namic data. To enable the visualization of the SES for dynamic data
at interactive frame rates, a method which computes the surface
out-of-core is crucial. Hence, many approaches for the interactive
computation and rendering of the SES have been proposed over the
last 10 years. Below, we just briefly introduce the most notable and
recent methods, an extensive overview of SES algorithms can be
found in the survey by Kozlikod et al. [KKF*17], which covers the
entire field of molecular structure visualization.

An efficient method to render the patches of the SES is the GPU-
based ray casting presented by Krone et al. [KBE09]. The im-
plicit description of the different patches is sent to the GPU, where
shader programs are used to compute the ray-patch intersections.
This method is well-suited, as it combines high image quality and
low rendering times. Lindow at al. [LBPH10] presented a CPU-
parallelized version of the Contour-Buildup algorithm by Totrov
and Abagyan [TA95] to compute the SES interactively. Subse-
quently, Krone et al. [KGE11] adapted the Contour-Buildup to run
efficiently on the GPU. Their implementation is to date one of the
fastest ways to compute the SES analytically. Jurcik et al. [JPSK16]
adapted their approach to enable semi-transparent SES rendering.

Another class of algorithms to compute the SES discretizes the
space into voxel grids and samples the atoms to this grid. The SES
can then be derived using an Euclidean distance transform [XZ09].
An efficient GPU implementation of this approach was recently
presented by Hermosilla et al. [HKG*17]. By computing the grid
progressively, they achieve interactive computation times even for
very large molecular complexes. Egan and Gibou [EG18] presented
a method that uses Octrees to refine the grid and that was imple-
mented to run on massively parallel compute clusters. While the
quality of the resulting SES is very good, the computation takes
several seconds for larger data sets and is, thus, not interactive. In
general, grid-based methods can usually be parallelized quite well
and have low computation times. However, the quality of the SES
is limited by the grid resolution. Therefore, we focused on the ana-
lytical computation of the SES.

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

M. Schiifer & M. Krone / A Massively Parallel CUDA Algorithm to Compute and Visualize the Solvent Excluded Surface

Figure 2: Solvent Excluded Surface of an isomerase (PDB ID:
logz) colored by element. The probe radius was set to 2.4 A.

3. Algorithm Overview

We present a new, highly parallel, analytic approach for the effi-
cient calculation and rendering of the SES. In general, our algo-
rithm computes all intersection points of three-way combinations
of SAS spheres that represent the atoms of a protein. As mentioned
in Section 1, the radius of a SAS sphere is the VAW radius of the
corresponding atom plus the probe radius. These intersections rep-
resent the center of a probe sphere in a fixed position—that is, a
probe in contact with three VAW spheres—which defines a spheri-
cal triangle. Only a fixed probe sphere that does not intersect with
any other atom is in a valid position, all other fixed probe spheres
are discarded. Our algorithm is specifically designed to exploit the
massive parallel computational potential of modern GPU. The main
part is the parallel computation of the intersection points (i.e., the
valid fixed probes) of all combinations of three SAS spheres to de-
rive the SES. From these intersections, the three graphical prim-
itives that constitute the SES can be derived (spherical patches,
spherical triangles, and toroidal patches). After this, the SES can
be rendered. Figure 2 shows the SES of a protein.

To make use of the huge potential of modern GPUs, the algo-
rithm has to be divided into multiple tasks with a moderate com-
putational load. A GPU can perform a massive number of tasks in
parallel in comparison to a CPU due to the much higher number of
cores, but the resources per core are much more limited. The cru-
cial Single Instruction Multiple Data (SIMD) architecture of GPUs
is used to run an instruction in form of a CUDA kernel on mul-
tiple data via different threads [Fly72]. Therefore, all steps of our
algorithm are designed to run in a highly parallel environment.

Figure 3 gives an overview of our algorithm. The first step of
our algorithmic pipeline is to find all neighboring atoms of each
atom. To do this efficiently, we need to construct a spatial acceler-
ation structure. A grid-based data structure is a good choice since
it maps well to the GPU and it can be computed quite fast, which
is important when dealing with dynamic data. Using this neigh-
bor search grid, we then execute a nearest neighbor search for each
atom a;. N; is the set of all neighbor atoms a; that are within a ra-
dius of r;+r;+2-rp, where r; is the VAW radius of atom a;, r; is
the VAW radius of atom a;, and r}, is the probe radius. That is, N;
contains all neighboring atoms a; that are no more than one probe
diameter away from atom g;, which means that the SAS spheres of
the two atoms are at least touching each other.

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

Data —— Neighbor Search — Nearest — Triplet
T Grid ~™ Neighbor Search ~ Preparation

1

']
1

|

i Fixed Probes

|

1

1

1

Torus Axes
-I_: Rendering

Probe Neighbor
Search !

Calculation

Figure 3: Flow chart of our algorithmic pipeline. At the beginning,
the data (orange oval) is uploaded to the GPU. All subsequent pro-
cessing steps are executed entirely on the GPU by CUDA kernels
(blue boxes). The final rendering step uses OpenGL (yellow box).

The neighbor information is required for the next step, where
we need to find all combinations of three SAS spheres that might
intersect each other. For each atom q;, two neighbors a; € N; and
ay € N; with i # j are chosen from the list of neighbors. If the
SAS spheres of these atoms are also at least touching (||a; —a|| <
rj+ry+2-rp), we have found a potential triplet of intersecting
atoms. To calculate the two intersection points the spheres coordi-
nates have to be transformed for S; to (0,0,0), for S; to (d,0,0)
and for Sy to (e, f,0) as a necessary simplification that allows to
formulated the following three equations for the spheres [Mah15]:

=x+y+2 ()
r%:(x—d)-l-yz-i-zz 2)
B=@—e)+(—f)+7 3)

After the equations are solved, the coordinates have to be trans-
formed back to get the correct coordinates [Mah15]. Both intersec-
tion points are potentially the centers of probes in a fixed position,
as mentioned before. An alternative approach to compute the two
potential fixed probe positions was given by Connolly [Con83]. To
check if a probe position p is valid, it has to be tested for inter-
section with all other neighboring atoms a; € N; : I # j,1 # k. This
intersection test is a simple distance test: |p — a;|| > rp +r;. Only
valid fixed probe positions are stored for further processing, all oth-
ers are discarded.

As mentioned above, the valid fixed probes found in the previ-
ous step define the spherical triangles. Each spherical triangle is
mathematically defined by a fixed probe and the three correspond-
ing atoms a;, a, and a;. To render the spherical triangles correctly,
we also have to take care of the so-called singularities, which oc-
cur due to probe-probe intersections. These intersections can lead
to spherical triangle patches that intersect each other. The singular-
ities are the parts of the spherical triangles that are within the other
probe and have to be removed. Therefore, we use a second nearest
neighbor search to find all intersecting fixed probes for each fixed
probe. Here, the nearest neighbor search radius is just 2 - r,.

In addition, the information about the spherical triangles can be
used to derive the toroidal patches: each pair of atoms ((ai,a j),
(aj,ay), (a j,ak)) defines a torus axis. The analytic equations to
compute the parameters for the tori were also given by Con-
nolly [Con83]. Finally, the convex spherical patches that are part
of the SES are simply the VAW spheres of the atoms. Thus, the

4 M. Schiifer & M. Krone / A Massively Parallel CUDA Algorithm to Compute and Visualize the Solvent Excluded Surface

SES can be constructed by rendering the spherical triangles, the
toroidal patches, and the VAW spheres of the atoms.

All steps of our algorithmic pipeline are designed to run in par-
allel on the GPU. In the next section, we describe a possible imple-
mentation of this algorithm.

4. Implementation Details

Our prototypical implementation of the algorithm described in Sec-
tion 3 runs entirely on the GPU. We used CUDA for the computa-
tional part and OpenGL with GLSL shaders for rendering. Our im-
plementation is designed for maximum speed, but also avoids data
duplication and unnecessary copying of data. Especially memory
transfer between host (CPU) and device (GPU) can still be a bot-
tleneck. Therefore, the only data that is transferred to the GPU are
the atomic positions and radii, and the per-atom colors. All further
described operations use this data and derived data, which are only
processed by the GPU.

4.1. Neighbor Search Grid

The first step after uploading the atomic properties (position, ra-
dius, color) to the GPU is to sort them into a grid for fast near-
est neighbor retrieval. This neighbor search grid spans the entire
bounding box of the molecule, that is, the maximum and minimum
values of the Cartesian coordinates in (x,y,z) direction have to be
determined. We use a uniform grid with cubic grid cells that have a
side length

8dim =2-rp+4 C)

where rp, is the probe radius. The goal is to construct the grid such
that a neighboring atom a; satisfying the above mentioned neighbor
criterion |la; —aj|| < ri+rj+2-rp is either located in the same
grid cell as atom g; or in one of the neighboring cells. Therefore,
the factor of 4 is a conservative estimate of the sum of atom radii
ri+r;j (since we are focusingo on protein data sets, the VAW radius
of all atoms will be below 2 A).

Our neighbor search grid construction follows the counting sort
CUDA implementation proposed by Hoetzlein [Hoel4]. A CUDA
kernel that is executed in parallel for all atoms is used to assign
the corresponding grid cell index to each atom (each grid cell is
addressed via an individual hash value). In this step, the number
of atoms per cell is determined by using an atomic operation for
addition. This is necessary to guarantee the avoidance of race con-
ditions, meaning that no other thread can increase the counter for
the atoms before the current thread finishes its incrementation’.

From the previous step, we have all the atoms and the assigned
grid cell with the total count of atoms per cell. Next, the atoms
have to be sorted into the assigned grid cells. Therefore, a paral-
lelized prefix sum over the atom counts per cell is computed using
the inclusive_scan function provided by the Thrust library?,

f cuba Programming Guide: B.12. Atomic Functions https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#atomic-functions (last accessed 03/07/2019).

¥ Thrust Parallel Algorithms Library https://thrust.github.
io/ (last accessed 03/07/2019).

which is part of the CUDA Toolkit. The following counting sort
step uses this sum to put the atoms in the correct regions of the
sorted array. The result of the prefix sum provides us with the array
index range that is available for the atoms located in a specific grid
cell. An atom a; is assigned to cell g;, which has the prefix sum
s;. That is, the atom a; will be stored at position s; and s; will be
decreased by one. Note that we only store the index of an atom in
the sorted array to save memory. To later access the atoms located
within a specific grid cell, we also need to store the start and end of
each grid cell in a separate array. For more details about the count-
ing sort grid construction, we refer to the original description by
Hoetzlein [Hoel4].

4.2. Nearest Neighbor Search

We execute a nearest neighbor search in parallel for all atoms to get
all neighboring atoms and write them to an array. Since the num-
ber of neighbors can be different for each atom, this step in theory
requires a dynamic data structure. Since this would not map well
to the CUDA API, we reserve space for 150 possible neighbors for
each atom. This is an empirical number, which we found to be suf-
ficient on our tests. For each atom g;, the neighbors a; are searched
for in the grid cell that contains a; and the directly neighboring cells
(3 x 3 x 3 grid cells). As explained above, the neighbor criterion is
defined as

lai—ajll <ritrj+2-rp (&)

That is, each potential neighbor a; found within one of the visited
grid cells that satisfies this criterion is added to the list of actual
neighbors. Two separate lists of neighbors are written: the first one
is the complete list of all neighbors, the second one only contains
neighbors where the atom index j is greater than the index i of the
actual atom. This is an optimization to avoid redundant computa-
tions in later steps. The neighbors that satisfy the condition j > i are
referred to as reduced neighbors throughout the rest of the paper.

4.3. Preparation of SAS Sphere Triplets

The total number of reduced neighbors allows us to compute the
number of theoretically possible combinations of three intersecting
SAS spheres. In general, the number of possible k-tupels from a set
of n items can be calculated using the combination formula (7). In
our case, we need to compute the number of triplets for g;, that is,
we need all possible combinations of two neighbors (k = 2). The
number of theoretically possible SAS sphere triplets for g; can then
be calculated as follows:

O e

where n is the number of neighbors of a;. We compute this num-
ber of triplets in parallel for each atom and store the numbers in an
array. Subsequently, a prefix sum over this array is computed us-
ing thrust::inclusive_scan. This prefix sum is again re-
quired to get the total amount of memory that we need to allocate to
store the actual triplets as well as to get the array indices, where we
store these triplets. The triplets are determined using the reduced
neighbors lists and two nested for-loops. The first position of the
combination is the current atom ¢; and the remaining two positions

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://thrust.github.io/
https://thrust.github.io/

M. Schiifer & M. Krone / A Massively Parallel CUDA Algorithm to Compute and Visualize the Solvent Excluded Surface 5

Figure 4: Transparent spheres representing the SAS spheres of
three atoms with their centers (S;, Sj, S). The three colored circles
show the course of the cut surfaces from the spheres. They meet
each other in two points (I, I), which are the intersection points.
(Image based on [Mahl5])

are filled with its neighbors. Note that we are avoiding redundant
triplets by using the reduced neighbors. For example, if atom a3 has
the neighbors a; and ag, we do not generate the triplet (a3,a;,ag),
since 1 < 6 (that is, neighbor a; would not be available in the re-
duced neighbor list). This triplet was already generated for a; as
triplet (a1, as,ae), which is sufficient since the order of the atoms
does not matter for the following calculation.

4.4. Computation of Fixed Probe Positions

In this step, the actual intersection tests for the previously stored
triplets of atom indices are computed. The define S;, S;, Si as the
SAS spheres corresponding to the atoms a;, a;, ai, that is, they are
at the same position but the radii of these spheres is the VAW radius
of the atom plus the probe radius r,. An obvious requirement for
an intersection of three SAS spheres is that they all overlap with
each other. Because we know that §; and Sy are neighbors of §;, we
only have to test whether S and Sy overlap. Triplets that do not ful-
fill that criterion are excluded from further computations. Next, we
check whether the two intersection points /; and I, (see Figure 4)
for the current triplet (S,-,S j,Sk) actually exist and compute their
position as described in Section 3. For each intersection point, we
also have to check whether it lies within another neighboring SAS
sphere S;. Here, the list of all neighbors has to be used, not just the
reduced neighbor list (see Section 4.2). Only intersections that are
outside of all neighbor SAS spheres are valid fixed probe positions
that will be stored in a list for further processing.

In theory, we have to reserve enough memory to store both in-
tersections for all triplets, which would require a large amount of
memory. However, most of the triplets do not intersect at all or
the intersection points are not valid probe positions, since they are
cut away by neighboring SAS spheres. Therefore, the required size
for the fixed probe position array is based on an empirically deter-
mined value in our implementation. In our tests, the final number
of valid probe positions is less than one percent of the theoretical
number of triplets (see Section 4.3). Consequently, we only allocate

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

enough memory to store the fixed probe positions for one percent
of the triplets. Since we compute the intersections of all triplets in
parallel, we have to make sure that no intersection is lost due to
race conditions between concurrent CUDA kernels. Therefore, we
again use an atomic counter to store the fixed probe positions in the
global array (see Section 4.1). If a valid fixed probe positions was
found, the atomic counter is incremented and the position is written
to the previously stored index.

4.5. Probe Neighbor Search for Singularity Handling

To avoid singularities of the spherical triangles in the final SES ren-
dering, it is important to find fixed probes that are intersecting with
neighboring fixed probes. Here, the same neighbor search proce-
dure as for the atoms is used: the fixed probe positions are sorted
into a uniform neighbor search grid (see Section 4.1), and then the
actual neighbor search is performed (see Section 4.2). That is, for
each probe p;, all intersecting neighboring probes are stored. This
list of probe neighbors will be used during rendering for the singu-
larity handling of the spherical triangles.

4.6. Torus Axes

The torus axes are determined using the fixed probe positions. For
each fixed probe, the atom index triplet (i, j, k) is stored. All three
pairs of atoms define the axis of a torus (i.e., (aj,a;), (ai,ax),
(a j,ak)). Thus, we write all these torus axes to an array using a
CUDA kernel. After that, there are duplicates, since each combina-
tion will occur twice. To get rid of these duplicates, the torus axes
are first sorted using thrust : : sort and then the duplicates are
removed by using thrust: :unique, which removes consecu-
tive duplicates in an array. Since all Thrust functions are running
parallelized on the GPU, these steps are very fast.

4.7. GPU Memory Management and Rendering

We implemented our algorithm as a new plugin for the open source
visualization framework MegaMol [GKM*15]. MegaMol already
provides 10 routines for molecular data (e.g., PDB file loading) and
SES rendering using the fast GPU-based ray casting presented by
Krone et al. [KBE09,KSES12]. Instead of triangulating the patches
of the SES, special GLSL shaders compute the actual ray-object
intersections during rendering, resulting in a pixel-perfect image of
the patches. For the three types of SES patches (spherical, spheri-
cal triangles, toroidal), three different GLSL shaders are used. For
details, please refer to the original publication [KBE(09]. Below, we
explain how we modified these shaders for our implementation.

Instead of using traditional Vertex Arrays (VA) or Vertex Buffer
Objects (VBO), we store the data that has to be passed to the
GLSL shader in Shader Storage Buffer Objects (SSBO). SSBOs
have the convenient property that a GLSL shader has random
access to the values stored in them. After allocating an SSBO
via OpenGL, it can be registered by CUDA to get a resource
(cudaGraphicsGLRegisterBuffer). This resource can
then be mapped to CUDA (cudaGraphicsMapResources).
From the mapped resource, a device pointer that allows read and
write access to the SSBO memory from a CUDA kernel can be

Figure 5: Solvent Excluded Surface of a chaperonin complex (PDB
ID: 1aon) for a probe radius of 1.4 A.

obtained (cudaGraphicsResourceGetMappedPointer).
Prior to rendering, the resource must be unmapped again in order
to be able to bind the SSBO for the GLSL shader. By writing all
information that is required for rendering directly to a SSBO via
CUDA kernels, we can completely avoid costly host-device mem-
ory copies or data duplication on the GPU. A further optimization
is that the CUDA arrays and SSBOs are only resized if the current
computation needs more memory, otherwise, the already allocated
memory is re-used. To reduce the number of reallocations due to
varying memory requirements (which can occur for dynamic data
where the molecule deforms), all arrays and buffer objects are allo-
cated with 10% excess. Since the amount of memory usually does
not increase very much, this is usually sufficient to avoid a costly
reallocation in every time step of a simulation.

The previous SES implementation available in MegaMol uses
VA and VBO to transfer data to GPU memory for rendering. We
modified all the existing shaders to use SSBOs. For the spherical
patches, two SSBOs have to be created: one storing the atomic co-
ordinates and VdW radii, and one for the atom colors. These data
is used to render all atoms as colored spheres, that is, the spherical
patches that are part of the SES.

Previously, all parameters required for rendering the spherical
triangles and toroidal patches were precomputed and also passed to
the GPU as VA or VBO. For our new SES rendering, we compute
these parameters in the vertex and fragment shaders, which reduces
the required amount of memory. As mentioned in Section 3, the
necessary equations were given by Connolly [Con83]. The data for
the spherical triangles consists of five SSBOs: atom positions +
radii, atom colors, fixed probe positions, the corresponding triplets,
and the list of probe neighbors for singularity handling. Note that
the SSBO for the triplets contains only the atom indices through
which the actual positions stored in the first SSBO can be accessed.
The rendering of the toroidal patches requires three SSBOs: atom
positions + radii, atom colors, and the torus axes. The torus axes
SSBO also just stores atom indices. The two SSBOs containing the
atom positions + radii and the colors can of course be re-used by

M. Schiifer & M. Krone / A Massively Parallel CUDA Algorithm to Compute and Visualize the Solvent Excluded Surface

Table 1: Performance measurements for different data sets. Atoms:
number of atoms; SES Share: percentage of atoms that are actually
part of the SES; overall Run Time of the SES calculation. Addi-
tionally, the required GPU memory (VRAM) and the frames per
second (FPS) for rendering the final SES are listed. Note that the
FPS include the time for recomputing the SES in each frame.

Data Set Atoms SES Share Run Time VRAM FPS

[10% [ms] [GB]
logz 0.9 69% 6 0.12 1187
1vis 25 60% 11 0.13 786
4x01 42 64% 14 0.15 60.1
1af6 10.0 61% 26 0.18 33.1
1mmo 21.3 49% 82 028 120
laon 58.7 68% 147 0.46 6.7
5tzs 98.5 92% 125 0.63 7.8
6hiv 99.4 71% 200 0.69 49
4vdj 147.1 69% 365 1.01 2.8
ribo01 1472 65% 366 1.03 2.7
CCMV 2144 62% 479 1.36 2.1

all shaders, thus further reducing the amount of memory that has to
be transferred to the GPU for rendering.

5. Results & Discussion

‘We measured the performance of our implementation on a test sys-
tem running Windows 10 and equipped with an Intel i5-8600k CPU
(6 x ~3.6GHz), 16 GB RAM, and a NVIDIA Geforce GTX 1080
(8 GB VRAM, 2560 CUDA cores). Table 1 shows the timings for
test data sets of various sizes obtained from the PDB [BWF*00].
The resolution was set to FullHD (1920 x 1080) to measure the
rendering performance. Please note that we treated the data as if
it was dynamic, that is, the whole SES computation was run in
each frame. Only the memory allocation was not done for every
iteration. Our method is able to compute the SES interactively for
molecular complex of more than 20k atoms (maintaining a frame
rate of more than 12 fps on our test system). Even for our largest
test data set (CCMV), a virus capsid of more than 200 k atoms, our
implementation takes less than 500 ms for the SES computation,
consequently reaching more than 2 fps. Figure 5 shows one of our
test data sets, a chaperonin complex with ~58 k atoms.

Table 2 and Figure 6 show a more detailed breakdown of the
timings for the individual steps of our algorithmic pipeline. As ob-
servable, the parallel computation of fixed probe positions, which is
the core of our algorithm, is the most time-consuming step. This is
not surprising, since it has to check all the possible triplets of SAS
spheres for each atom. The other parts play a subordinate role. On
average, preparing the triplets and computing the fixed probes takes
more than 80% of the whole computation time. As observable, the
total runtime of our algorithm scales linearly with the number of
atoms. An exception is the data set 5tzs, which has a very special
atomic configuration (see Figure 7) and, therefore, exhibits an ir-
regular runtime. We will discuss this outlier case in Section 5.1.

We also measured the VRAM consumption (see Table 1). In gen-
eral, the memory requirements of our method are reasonably low

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

M. Schiifer & M. Krone / A Massively Parallel CUDA Algorithm to Compute and Visualize the Solvent Excluded Surface 7

Table 2: Timings for the individual steps of our algorithmic
pipeline (all measurements in milliseconds). Grid: inserting the
atoms into the grid for neighbor search, Neighbor: nearest neigh-
bor search, Triplet: preparing the list of potentially intersecting
three SAS spheres, Probe: find valid fixed probe positions, Tori:
derive torus information from fixed probe positions, PN: search all
neighboring probes for each fixed probe position.

Data Set Grid Neighbor Triplet Probe Tori PN

logz 2.04 0.89 0.70 1.38 0.32 0.94
1vis 3.58 1.00 0.92 3.98 0.39 1.05
4x01 4.00 0.96 0.80 6.90 0.35 1.30
laf6 4.68 0.96 1.81 17.06 0.36 1.53
1mmo 591 1.68 12.30 59.70 043 1.88
laon 19.29 3.86 28.44 88.63 1.17 5.72
Stzs 21.14 3.73 25.72 5821 2.04 14.39
6hiv 13.28 5.72 4340 126.64 1.70 9.61
4v4j 26.74 9.08 80.50 231.53 225 1497
ribo01 16.43 9.48 79.69 24434 232 1336
CCMV 31.71 13.23 103.68 309.49 294 18.15
500 Neighbor Search Grid Nearest Neighbor Search ccmv
450 Triplet Preparation Fixed Probes Calculation [
M Torus Parameter M Probe Neighbor Search
400 4v4j ribo01
350 s E—
E 300
g 20 ohiv
iZ 200 —
laon
150 g 5tzs
100 1mmo B
50 logz 1vis 4x0l 1af
0 —

09 25 42 10.0 21.3 58.7 98.5 99.4 147.1 147.2 2144
Atoms [103]

Figure 6: The atoms per molecule [10°] are plotted against the
time for SES calculation [ms]. Each stacked bar is labeled with
the PDB ID of the RSCB protein data bank. ribo0O1 is a ribosome
consisting of 2WDL and 2WDK, CCMV is a virus capsid consisting
of multiple 1CWP units.

and also depend linearly on the number of atoms, except for data
set 5tzs. This outlier is again due to the fact that the memory con-
sumption also depends on the conformation of the atoms within the
molecule (see Section 5.1 for details).

5.1. Conformational Dependency

As mentioned above, the runtime and memory consumption in-
creases linearly with the number of atoms for our test data sets
(see Table 1), with the exception of data set Szs. Here, the compu-
tation time drops by about 17% compared to /aon, although 51zs
has ~68% more atoms. The computation time of the only ~1%
larger data set 6hiv is even about 60% higher than the one of 5tzs.
A closer look at Table 2 reveals that the main difference is due
to the considerably shorter execution time of the step that prepares
the triplets and finds the valid fixed probe positions. This can be ex-

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

Figure 7: SES of the yeast small subunit processome [CMBHK17]
(PDB ID: 5tzs, r), = 1.4A). Each chain is colored differently.

Neighbor Search Grid Triplet Preparation

«
g Fixed Probes Calculation H Probe Neighbor Search

% 6hiv 13ms 43 ms 127 ms m
a

el

4

& 5Stzs 21ms 26 ms 58 ms

5 [oums

%

n 0% 20% 40% 60% 80% 100%

Percentage of Calculation Time

Figure 8: Relative time consumption [%] of the different parts of
our SES algorithm compared to the total time. The two similar-
sized data sets 6hiv and 5tzs are shown. The bar length of the in-
dividual algorithm parts represents the relative time consumption.
Additionally, the labels show the absolute time [ms] for the crucial
parts. See Figure 6 for a complete description of color usage.

plained by the conformation (i.e., the atomic configuration) of 5¢zs.
This data set has more atoms as well as a higher relative number
of atoms that contributes to the SES: 92% of the atoms in 5¢zs con-
tribute to the SES (see SES Share in Table 1) compared to only 68%
for laon. Additionally, 57zs also has a larger relative spatial extent
with respect to the total number of atoms. This larger spatial extent
and the higher SES Share are due to the fact that this data set is
much sparser than a typical protein complex (having a lot of empty
space in between) and that it contains long strands of Ribonucleic
Acid (RNA) that stick out (see Figure 7). These two aspects result
in a configuration where the atoms have fewer neighbors.

The lower number of neighbors per atom for 5tzs lowers the
run time for preparing the triplets and finding the fixed probes
compared to the similar-sized 6hiv (see Figure 8). The number
of triplets depends quadratically on the number of neighbors (see
Equation 6). Consequently, a lower number of neighbors leads to
much fewer triplets per atom. That is, much fewer triplets have to
be checked to find the valid fixed probe positions. Furthermore,
for each potential probe position, much fewer neighboring atoms
have to be checked for intersection to make sure that the probe is in

8 M. Schdifer & M. Krone / A Massively Parallel CUDA Algorithm to Compute and Visualize the Solvent Excluded Surface

a valid position. The slightly longer calculation time for the fixed
probe neighbor search can be explained by the higher total number
of valid fixed probes: since the atoms are distributed more sparsely
in 51zs, more triplets will actually create valid fixed probe positions.

5.2. Discussion of the Optimization Process

In this section, we discuss the process of optimizing our implemen-
tation with respect to memory consumption as well as computation
speed. We tried different approaches until we reached the final so-
lution described in Section 4.

1. Exact Method: We tested different approaches for allocating
the minimally required GPU memory. To do so, we had to run the
calculation routine for finding fixed probe positions two times. In
the first run, the triplets for each atom were examined regarding the
fixed probes and the number of valid fixed probes was stored for
each atom. Then a prefix sum was calculated to get the total num-
ber of fixed probes, which determines the amount of memory that
needs to be allocated in order to actually store all valid fixed probes
in a second run of the computation. Using this method, only the
necessary memory size was reserved, but as the fixed probe calcu-
lation is the most time-consuming part of our algorithm, running it
two times was too expensive.

2. Sort And Unique Method: An array twice the size of the
number of all triplets was allocated, which is sufficient to store both
possible intersections for each triplet—that is, potentially all pos-
sible fixed probe positions. Next, the routine for the fixed probe
calculation was executed only once, directly writing only the valid
fixed probe positions to the array. After that, this solution array was
sorted to get all empty entries of the array to a coherent block prior
to running thrust: :unique. This compactifies the array and
gives the number of fixed probes. This method was faster than the
first approach, but requires a huge amount of memory.

3. Heuristic AtomicAdd Method: The third method is the one
described in Section 4.4, which uses atomicAdd to write valid
fixed probe positions. When comparing all three approaches, we
found that using atomic operations is actually the fastest way to
solve the problem. So, this approach not only exhibits the best per-
formance, the memory consumption is also very similar to the first,
due to the heuristic estimation of required memory.

5.3. Comparison with Previous Work

We compared our method to the GPU-parallelized Contour-
Buildup algorithm by Krone et al. [KGE11], which is available
in the open source visualization framework MegaMol [GKM*15].
The computation speed of the Contour-Buildup is only slightly
faster than our method for small data sets. However, for larger data
sets, the Contour Buildup is considerably faster and exhibits better
scaling (see Table 3, Performance). However, the Contour Buildup
implementation requires a disproportional amount of GPU mem-
ory with increasing numbers of atoms (see Table 3, VRAM). The
chaperonin /aon was actually the largest of our test data sets that
we were able to visualize using the Contour-Buildup, as the GPU
ran out of memory for the larger ones. For this data set, our imple-
mentation still requires only ~460 MB of GPU memory, while the

Table 3: Comparison of the overall performance and memory
requirements (VRAM) of our implementation and the CUDA
Contour-Buildup (CB) presented by Krone et al. [KGE11].

Data Set Atoms Performance VRAM
[107] ours CB ours CB
lvis 2.5 78.6fps 86fps 0.13GB 0.4GB
laf6 10.0 33.1fps Slfps 0.18GB 1GB
laon 58.7 6.7fps 20fps 0.46GB 5GB

Contour-Buildup requires more than 10x the memory (5 GB). That
is, the memory requirements of the CUDA Contour-Buildup imple-
mentation currently available in MegaMol are comparable to our
second approach described in Section 5.2, which makes it unfea-
sible for large data sets even though the computation speed would
still be sufficient. In contrast, our implementation still requires only
1.36 GB of VRAM even for the largest of our test data sets, the
virus capsid with more than 214 k atoms shown in Figure 1 (right).

6. Summary & Outlook

We presented a new massively parallel algorithm for the compu-
tation of an analytically correct SES on the GPU. Our algorithm
was mainly designed to exhaust the parallel computation capac-
ity of modern graphics hardware in order to handle dynamic data,
which requires the re-computation of the SES in each frame that
is rendered. Our prototypical CUDA implementation maintains in-
teractive frame rates for molecules of more than 20 k atoms. The
algorithm is fast, but not the fastest available implementation of a
SES calculation, however, the much lower VRAM consumption fa-
cilitates loading larger data sets and enables machines with lower
VRAM to compute the SES. As discussed in Section 5.1, the cal-
culation time depends on the spatial extents, and structural features
like cavities and tunnels that create void spaces, and, consequently,
on the number of atoms that actually contribute to the SES. How-
ever, for a typical protein, the computation time as well as the mem-
ory consumption scales linearly with the number of atoms.

In the future, our method could be combined with fast, approxi-
mate molecular surface calculations: Areas of interest such as cav-
ities and tunnels would be computed with the analytically exact
SES method and the remaining molecular surface could be calcu-
lated using a fast, approximating method like Gaussian molecular
surfaces [KSES12] to speed up the whole procedure, similar to the
approach of Parulek et al. [PJR*14]. A further possible extension
would be to use probes with different radii, depending on the pos-
sible solvents or ligands that can interact in certain areas of the
molecule. That is, the SES at interaction area x for ligand /, would
be computed with a probe radius ry, whereas area y for ligand /,
would be computed with a probe radius ry. The remaining surface
parts could be calculated using a generic probe radius (e.g., water).

Acknowledgments

This work was partially funded by German Research Foundation
(DFG) within project PROLINT.

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

M. Schiifer & M. Krone / A Massively Parallel CUDA Algorithm to Compute and Visualize the Solvent Excluded Surface 9

References

[BWF*00] BERMAN H. M., WESTBROOK J., FENG Z., GILLILAND G.,
BHAT T. N., WEISSIG H., SHINDYALOV I. N., BOURNE P. E.: The
Protein Data Bank. Nucleic Acids Research 28, 1 (2000), 235-242. URL:
http://www.pdb.org,doi:10.1093/nar/28.1.235.1,6

[CMBHK17] CHAKER-MARGOT M., BARANDUN J., HUNZIKER M.,
KLINGE S.: Architecture of the yeast small subunit processome. Sci-
ence (New York, N.Y.) 355, 6321 (2017). doi:10.1126/science.
aallgg0. 7

[Con83] CONNOLLY M. L.: Analytical Molecular Surface Calculation.
Journal of Applied Crystallography 16, 5 (1983), 548-558. doi:10.
1107/50021889883010985. 2,3,6

[EG18] EGAN R., GIBOU F.: Fast and scalable algorithms for construct-
ing Solvent-Excluded Surfaces of large biomolecules. Journal of Com-
putational Physics 374 (Dec. 2018), 91-120. doi:10.1016/7. jcp.
2018.07.035.2

[Fly72] FLYNN M. J.: Some computer organizations and their effec-
tiveness. [EEE Transactions on Computers C-21, 9 (1972), 948-960.
doi:10.1109/TC.1972.5009071. 3

[GB78] GREER]J., BUSH B. L.: Macromolecular shape and surface maps
by solvent exclusion. Proceedings of the National Academy of Sciences
75 (1978), 303-307. 2

[GKM*15] GROTTEL S., KRONE M., MULLER C., REINA G., ERTL
T.: MegaMol - A Prototyping Framework for Particle-based Visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics 21, 2
(2015), 201-214. doi:10.1109/TVCG.2014.2350479. 5,8

[HKG*17] HERMOSILLA P., KRONE M., GUALLAR V., VAZQUEZ P.-
P., VINACUA L., ROPINSKI T.: Interactive GPU-based generation of
solvent-excluded surfaces. The Visual Computer 33, 6 (2017), 869-881.
doi:10.1007/s00371-017-1397-2.2

[Hoel4] HOETZLEIN R. C.: Fast Fixed-Radius Nearest Neigh-
bors: Interactive Million-Particle Fluids. Nvidia GPU Tech-
nology Conference (talk), 2014. http://on-demand.
gputechconf.com/gtc/2014/presentations/
S4117-fast-fixed-radius—nearest-neighbor-gpu.
pdf. 4

[JPSK16] JURCIK A., PARULEK J., SOCHOR J., KOZLIKOVA B.: Ac-
celerated Visualization of Transparent Molecular Surfaces in Molecular
Dynamics. In IEEE Pacific Visualization Symposium (2016), pp. 112—
119. doi:10.1109/PACIFICVIS.2016.7465258.2

[KBE0O9] KRONE M., BIDMON K., ERTL T.: Interactive Visualization of
Molecular Surface Dynamics. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 1391-1398. do1:10.1109/TVCG.
2009.157.2,5

[KGE11] KRONE M., GROTTEL S., ERTL T.: Parallel Contour-Buildup
Algorithm for the Molecular Surface. In IEEE Symposium on Biologi-
cal Data Visualization (2011), pp. 17-22. doi:10.1109/BioVis.
2011.6094043. 2,8

[KKF*17] KozLiKOVA B., KRONE M., FALK M., LINDOW N.,
BAADEN M., BAUM D., VIOLA 1., PARULEK J., HEGE H.-C.: Visual-
ization of Biomolecular Structures: State of the Art Revisited. Computer
Graphics Forum 36, 8 (2017), 178-204. doi:10.1111/cgf.13072.
2

[KSES12] KRONE M., STONE J. E., ERTL T., SCHULTEN K.: Fast Vi-
sualization of Gaussian Density Surfaces for Molecular Dynamics and
Particle System Trajectories. In EuroVis - Short Papers (2012), pp. 67—
71. doi:10.2312/PE/EuroVisShort/EuroVisShort2012/
067-071.5,8

[LBPH10] LINDOW N., BAUM D., PROHASKA S., HEGE H.-C.: Accel-
erated Visualization of Dynamic Molecular Surfaces. Computer Graph-
ics Forum 29, 3 (2010), 943-952. doi:10.1111/3.1467-8659.
2009.01693.x%. 2

[Mahl5] MAHIEU E.: Trilateration and the intersection of

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

three spheres: http://demonstrations.wolfram.com/
TrilaterationAndTheIntersectionOfThreeSpheres/:
Wolfram demonstrations project. 3, 5

[PJR*14] PARULEKJ., JONSSON D., ROPINSKI T., BRUCKNER S., YN-
NERMAN A., VIOLA I.: Continuous Levels-of-Detail and Visual Ab-
straction for Seamless Molecular Visualization. Computer Graphics Fo-
rum 33, 6 (2014), 276-287. 8

[Ric77] RICHARDS F. M.: Areas, Volumes, Packing, and Protein Struc-
ture. Annual Review of Biophysics and Bioengineering 6, 1 (1977), 151—
176. doi:10.1146/annurev.bb.06.060177.001055. 2

[TA95] TOTROV M., ABAGYAN R.: The Contour-Buildup Algorithm
to Calculate the Analytical Molecular Surface. Journal of Structural
Biology 116 (1995), 138-143. d0i:10.1006/3sb1.1996.0022.
2

[XZ09] Xu D., ZHANG Y.: Generating Triangulated Macromolecular
Surfaces by Euclidean Distance Transform. PLOS ONE 4, 12 (Feb.
2009), e8140. doi:10.1371/journal .pone.0008140. 2

http://www.pdb.org
http://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.1126/science.aal1880
http://dx.doi.org/10.1126/science.aal1880
http://dx.doi.org/10.1107/S0021889883010985
http://dx.doi.org/10.1107/S0021889883010985
http://dx.doi.org/10.1016/j.jcp.2018.07.035
http://dx.doi.org/10.1016/j.jcp.2018.07.035
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TVCG.2014.2350479
http://dx.doi.org/10.1007/s00371-017-1397-2
http://on-demand.gputechconf.com/gtc/2014/presentations/S4117-fast-fixed-radius-nearest-neighbor-gpu.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4117-fast-fixed-radius-nearest-neighbor-gpu.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4117-fast-fixed-radius-nearest-neighbor-gpu.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4117-fast-fixed-radius-nearest-neighbor-gpu.pdf
http://dx.doi.org/10.1109/PACIFICVIS.2016.7465258
http://dx.doi.org/10.1109/TVCG.2009.157
http://dx.doi.org/10.1109/TVCG.2009.157
http://dx.doi.org/10.1109/BioVis.2011.6094043
http://dx.doi.org/10.1109/BioVis.2011.6094043
http://dx.doi.org/10.1111/cgf.13072
http://dx.doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/067-071
http://dx.doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/067-071
http://dx.doi.org/10.1111/j.1467-8659.2009.01693.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01693.x
http://demonstrations.wolfram.com/TrilaterationAndTheIntersectionOfThreeSpheres/
http://demonstrations.wolfram.com/TrilaterationAndTheIntersectionOfThreeSpheres/
http://dx.doi.org/10.1146/annurev.bb.06.060177.001055
http://dx.doi.org/10.1006/jsbi.1996.0022
http://dx.doi.org/10.1371/journal.pone.0008140

