
MLVis: Machine Learning Methods in Visualisation for Big Data (2024)
Daniel Archambault, Ian Nabney, and Jaakko Peltonen (Editors)

Introducing Fairness in Graph Visualization via Gradient Descent

Seok-Hee Hong1 , Giuseppe Liotta2† , Fabrizio Montecchiani2‡ , Martin Nöllenburg3 and Tommaso Piselli2

1 seokhee.hong@sydney.edu.au - The University of Sydney, Australia
2 {name.surname}@unipg.it - University of Perugia, Italy
3 noellenburg@ac.tuwien.ac.at - TU Vienna, Austria

Abstract
Motivated by the need for decision-making systems that avoid bias and discrimination, the concept of fairness recently gained
traction in the broad field of artificial intelligence, stimulating new research also within the information visualization commu-
nity. In this paper, we introduce a notion of fairness in network visualization, specifically for straight-line drawings of graphs, a
foundational paradigm in the field. We empirically investigate the following research questions: (i) What is the price of incorpo-
rating fairness constraints in straight-line drawings? (ii) How unfair is a straight-line drawing that does not optimize fairness
as a primary objective? To tackle these questions, we implement an algorithm based on gradient-descent that can compute
straight-line drawings of graphs by optimizing multi-objective functions. We experimentally show that one can significantly
increase the fairness of a drawing by paying a relatively small amount in terms of reduced readability.

CCS Concepts
• Human-centered computing → Visualization; • Theory of computation → Design and analysis of algorithms;

1. Introduction

In a recent survey concerning bias in machine learning, Mehrabi
et al. [MMS∗22] defined fairness as the absence of any prej-
udice or favoritism toward an individual or a group based on
their inherent or acquired characteristics. As data-driven decision-
making systems are becoming pervasive in our lives, it is indeed
of great importance to avoid intentional or unintentional discrim-
ination against certain groups or individuals. Within the broad
field of artificial intelligence, the adoption of fairness constraints
has been investigated for several algorithmic problems, such as
clustering [FKN22, GSV21, KSAM19] and dimensionality reduc-
tion [STM∗18, TSS∗19].

Information visualization tools are the tip of many data-driven
decision making systems that require human feedback. Despite the
rich body of literature studying fairness in artificial intelligence
and related areas, fairness issues in the visualization of informa-
tion have been surprisingly disregarded. The aim of this paper is to
propose a novel research direction on this topic, focused on fair
visualizations of graphs. Borrowing an example from [FKN22],

† Work of Giuseppe Liotta supported in part by MUR of Italy, under PRIN
Project n. 2022TS4Y3N - EXPAND.
‡ Work of Fabrizio Montecchiani supported in part by MUR of Italy, under
PRIN Project n. 2022ME9Z78 - NextGRAAL, and in part by University of
Perugia, Fondo di Ricerca di Ateneo 2022, under Project “MiRA: Mixed
Reality and AI Methodologies for Immersive Robotics”.

imagine two competing parties, the reds and the blues. Also, sup-
pose we are given a visualization of the graph modeling the rela-
tionships among the parties’ members. Using recent graph draw-
ing algorithms, we can effectively optimize a desired set of aes-
thetic criteria (see, e.g., [ALD∗22] for a recent approach), hence
producing a readable and effective layout of our graph. However,
the global optimization process underlying our drawing algorithm
will not give us any guarantee that the readability of the visual-
ization “around” red vertices will be of the same quality as for
blue vertices. In fact, while substantially every graph drawing al-
gorithm optimizes global metrics of the computed layout and can
easily incorporate local constraints (i.e., at vertex or edge level),
only few algorithms can deal with more general constraints at sub-
group level [Dwy09, DMW08, HBH18]. In contrast, a fair visual-
ization should guarantee that no party is favored in terms of read-
ability, that is, the possible visual complexity of the representation
is equally charged to the two sets, which becomes particularly chal-
lenging in the case the cardinalities of the two sets are unbalanced.
While a fair drawing might be suboptimal in terms of global read-
ability, it provides greater insight to end users since it balances the
readability for the two vertex groups. Figure 1 illustrates an exam-
ple of the impact of fairness on the readability of a straight-line
drawing of a graph with several blue vertices and few red vertices.

Contribution. Our main results are as follows:

• We provide a conceptual contribution by formalizing the no-
tion of fair straight-line graph drawings, based on the concept of
stress, a well-known and widely adopted quality function (see,
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Figure 1: Two straight-line drawings of the same graph. Figure (a) is obtained by optimizing the stress function (a well-known quality
function), while Fig. (b) is obtained starting from (a) and by subsequently optimizing the fairness function without worsening the stress of the
drawing by more than 20%. One can observe (see the zoomed windows) the increase on the readability around the two red vertices u and v
when optimizing fairness (the red vertices are fewer than the blue ones). In particular, in Fig. (a), the edge incident to vertex u overlaps with
a blue vertex, while vertex v overlaps with an edge between two blue vertices. Both ambiguities are resolved in Fig. (b).

e.g., [GKN04, MWH21]). We recall that the stress of a graph
drawing measures the difference between the geometric distance
and the graph-theoretic distance over all pairs of vertices. Thus,
based on the well-accepted idea that having low stress makes
a straight-line drawing more readable, we define a notion of
fairness for straight-line drawings. Clearly, the concept of fair
straight-line drawings can be transferred to other aesthetic crite-
ria (e.g., number of crossings), as well as to other graph drawing
paradigms (e.g., orthogonal drawings). Therefore, several new
problems of both theoretical and practical interest naturally arise
from our research and are discussed at the end of the paper.

• We provide empirical results concerning the price of fairness
to be paid in terms of additional stress with respect to stress-
minimal (but potentially unfair) solutions. Namely, we describe
the outcome of an experimental analysis aimed at understanding
what is the actual price of fairness on a set of benchmark graphs.
To this aim, we implement a gradient-descent based algorithm,
following recent ideas in [DAL∗19,ADD∗20,ALD∗22], that can
optimize multiple drawing criteria. Our investigation reveals that
multi-objective functions that optimize fairness and stress to-
gether can output straight-line drawings with good fairness at
the expenses of a relatively small increment of stress.

Paper organization. In Section 2, we briefly summarize the main
literature related to our research. In Section 3, we formalize our no-
tion of fairness in straight-line drawings based on the stress func-
tion. In Section 4, we describe our algorithm and the experiments
we performed. Section 5 discusses possible future directions.

2. Related work

The design of visualizations that promote transparency and fair-
ness has stimulated new research within the Visualization com-

munity [AL20, CEH∗19, DS22, WXC∗21], see also the survey by
Chatzimparmpas et al. [CMJ∗20] about the adoption of visualiza-
tion to enhance trust in machine learning. Different from our work,
such a research stream does not deal with the problem of comput-
ing graph visualizations that are fair in terms of readability with re-
spect to different subgroups. Indeed, as it will be formalized in the
next section, we aim to balance the readability of a graph visualiza-
tion when considering two distinct subgroups of vertices (or edges).
This might be translated into a layout constraint at the subgroup
level. In this direction, the graph drawing literature offers a wide
range of theoretical and practical research on constrained layouts.
For instance, Bläsius et al. [BLR16] consider orthogonal drawings
with constraints on the number of bends per edge, while Kief-
fer et al. [KDMW13] (among others) incorporate alignment and
grid-like constraints in force-directed methods. Notably, the Set-
CoLa system proposed by Hoffswell et al. [HBH18] incorporates
a domain-specific language for describing high-level constraints,
such as alignment, position, and order constraints. While these
methods can be used to improve the visual quality of the repre-
sentation of subgroups of vertices or edges in a graph visualization,
they do not directly capture the notion of fair drawings proposed
in this paper. From a different perspective, the problem of comput-
ing low-dimensional representations of high-dimensional data with
fairness constraints has been recently studied [PXNN23, TSS∗19].

3. Fairness of Straight-line Drawings

A straight-line drawing Γ of a graph G = (V,E) maps each vertex
of G onto a point of the Euclidean plane, and each edge of G onto a
straight-line segment connecting the corresponding endpoints. For
a pair of vertices u,v ∈ V , let δ(u,v) be the length of any shortest
path in G between u and v. Also, let ||Γ(u)− Γ(v)||2 be the Eu-
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clidean distance of u and v in Γ. Moreover, let ω : V ×V →Q be a
weighting function. The stress of Γ is defined as follows:

stress(Γ) = ∑
u,v∈V

ω(u,v)(||Γ(u)−Γ(v)||2 −δ(u,v))2.

For a vertex v in Γ, the stress of v is defined as

stress(Γ,v) = ∑
u∈V

ω(u,v)(||Γ(u)−Γ(v)||2 −δ(u,v))2.

Assume now that the vertex set V of G is the union of two non-
empty disjoint subgroups of vertices, that is, V = VR ∪VB (with
VR ̸= ∅ and VB ̸= ∅); vertices in VR (VB) are called red (blue). Thus,
let G = (VR ∪VB,E) be a graph and let Γ be a straight-line drawing
of G. To convey the notion of fairness in Γ, we can refine the con-
cept of stress by either focusing exclusively on the red vertices or
on the blue vertices.

stressR(Γ) = ∑
u∈VR,v∈V

ω(u,v)(||Γ(u)−Γ(v)||2 −δ(u,v))2

stressB(Γ) = ∑
u∈VB,v∈V

ω(u,v)(||Γ(u)−Γ(v)||2 −δ(u,v))2

Ideally, Γ should not be unfair to any of the two sets of vertices,
that is, the difference between stressR(Γ) and stressB(Γ) normal-
ized by their cardinalities should be as close to zero as possible.
More formally, below we conveniently define the unfairness λ(Γ)
of Γ, whose minimization leads to a fair drawing

λ(Γ) =

(
stressR(Γ)

|VR|
− stressB(Γ)

|VB|

)2

.

Observe that we take the square of the difference (rather than, e.g.,
the absolute value) to obtain a differentiable function.

4. Algorithm and Experiments

We begin by describing the algorithm we developed to compute
drawings by minimizing stress and unfairness. We then describe
the experimental setup and the results of our evaluation.

4.1. An algorithmic strategy via Gradient Descent

We developed an algorithm following the ideas in [DAL∗19,
ADD∗20, ALD∗22], in which a gradient-descent approach is pro-
posed to compute drawings by optimizing multi-objective qual-
ity functions. We recall that the idea of stress minimization via
(stochastic) gradient descent have been introduced in [ZPG19], in
which however the loss function only takes stress into account. Dif-
ferently, our implementation contains the novel definition of fair-
ness discussed in this paper and it contains a scheduling strategy
specifically tailored for our experiments.

In what follows, a layout of a graph G is an assignment of co-
ordinates to all vertices of G, i.e., a matrix of size n× 2, where n
is the number of vertices of G and 2 is the number of dimensions
of the layout. A layout X of G readily defines a straight-line draw-
ing of G. We define a first loss function equal to the stress func-
tion (see Section 3). Next, we iterate the gradient descent steps, in

which the gradient of the loss function is computed and the layout
of the graph is updated accordingly. More precisely, for a layout
X , the loss function L maps X to a real value that quantifies the
quality (i.e., in this case, the stress) of the corresponding straight-
line drawing. An improved layout X ′ can be found by following
the negative gradient direction, X ′ = X − ε∇X L, where ε is a small
positive constant. We halt the computation after a predefined num-
ber of iterations and output a first straight-line drawing Γ0 with low
stress. Subsequently, we adopt as loss function the one for unfair-
ness (see Section 3) and repeat the above procedure. However, we
might stop the descent earlier if the stress of the layout reaches
a predefined threshold (whose value will be discussed later). By
this procedure, we compute a sequence of straight-line drawings
Γ0,Γ1, . . . ,Γh with decreasing values of unfairness, such that the
ratio stress(Γh)

stress(Γ0)
≤ T , for a fixed value T . We remark that, as reported

in [ALD∗22], the adoption of such a scheduling strategy is often
more effective than using a weighted combination of different loss
functions that might be in conflict with each other.

We conclude by noting that we do not compute the gradient ana-
lytically, as it is computed automatically via automatic differentia-
tion. Our implementation is written in Python and it is based on the
PyTorch library; the source code is publicly available at the follow-
ing URL: https://t.ly/Hzw7g

4.2. Experimental setup

We aim to investigate the following questions:

Q1 (PRICE OF FAIRNESS): With respect to a stress-minimum
straight-line drawing of a graph, how large is the increase of
stress required to compute a straight-line drawing with minimum
unfairness for the same graph?

Q2 (UNFAIRNESS OF GLOBALLY OPTIMAL DRAWINGS): How
unfair are stress-minimum straight-line drawings of graphs?

Our experimental analysis, described below, is intrinsically limited
by the fact that we do not use exact methods to optimize stress
and fairness; nevertheless, our experiments shed light on both ques-
tions.

We tested our code on an MSI Vector GP76 with a 2.7 GHz Intel
Core i7, an Nvidia 3080Ti (Laptop) GPU and 16 GB of RAM. Our
benchmark is constructed by selecting 30 graphs from the Sparse
Matrix Collection [DH11]. Their sizes in terms of vertices range
from about 100 to 6,000, and in terms of edges range from about
500 to 14,000. The dataset is available at the public link given
above. The same graph collection has been used in previous papers
evaluating stress-based layout algorithms [ZPG19, ALD∗22].

For each graph in our dataset, we pre-compute the shortest paths
between all pairs of vertices (which is needed to compute the loss
function). Then, we initialize the positions of the vertices with 10
different random assignments. For each assignment, we compute
the first drawing Γ0 with minimum stress (see also the previous
section). Next, for each graph, we randomly sample vertices with
probability in the set {0.1,0.2,0.3,0.4,0.5}, and color those ver-
tices red, while the unpicked vertices are blue. To straighten our
findings, we added an additional coloring configuration in which
we took the 10% of vertices with larger stress according to Γ0 and
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Γ0 Γ1 Γ2

p AVG STRESS AVG UNFAIR. AVG STRESS VAR. AVG UNFAIR. VAR. AVG STRESS VAR. AVG UNFAIR. VAR.

0.1 6.31 · 10−2 1.46 · 10−9 +0.57% -96.2% +0.77% -97.9%
0.2 6.31 · 10−2 6.08 · 10−10 +0.43% -94.1% +0.46% -94.5%
0.3 6.31 · 10−2 4.77 · 10−10 +0.34% -92.9% +0.38% -93.9%
0.4 6.31 · 10−2 4.51 · 10−10 +0.34% -92.5% +0.38% -93.4%
0.5 6.31 · 10−2 3.40 · 10−10 +0.28% -92.2% +0.29% -92.2%
⋄ 6.31 · 10−2 5.82 · 10−8 +2.47% -57.9% +8.11% -80.4%

Table 1: Results of the experiments. For each configuration, the table reports the stress and the unfairness of Γ0, as well as the stress
and unfairness variation of Γ1 and Γ2. The first five rows refer to the random vertex coloring scenario, the drawings are grouped by the
percentage of red vertices (p), and the values are averaged over all drawings in the same group. The last row (⋄) refers to the scenario in
which the red vertices are 10% of those with larger stress in Γ0, and the values are averaged over all drawings in this group.

colored them red, while the remaining vertices are blue. This choice
is a very challenging scenario for our model, as optimizing fairness
in this case is likely to require a substantial redrawing of the graph.

At this point, for each graph, for each initial drawing Γ0, and
for each vertex coloring, we apply our algorithm to compute a se-
quence of two additional straight-line drawings, Γ1 and Γ2, such
that stress(Γ1)

stress(Γ0)
≤ 0.05 and stress(Γ2)

stress(Γ0)
≤ 0.2. In other words, starting

from Γ0, we optimize fairness ensuring that the stress of the result-
ing drawing has not increased by more than 5% in Γ1 and by more
than 20% in Γ2. Drawing Γ1 is a visualization in which the fairness
is best possible constrained to the fact that the stress should remain
almost the same as in Γ0 – the 5% factor only allows for a little bit
of freedom to explore solutions around Γ0 with better fairness. On
the other hand, Γ2 is a drawing in which the fairness is best pos-
sible constrained to the fact that the stress should remain within a
reasonable factor with respect to Γ0. Thus, Γ2 and Γ1 can be used
to investigate questions Q1 and Q2, respectively.

We conclude the discussion of the experimental setup by men-
tioning that we set the maximum number of iterations of the algo-
rithm to 1.5 · 103, the learning rate ε to 0.01, and we exploited the
Adam optimizer available in PyTorch. This tuning of the parame-
ters have been obtained by a preliminary experimental validation,
also taking into account the diversity of the graphs.

4.3. Results

We first report the results for the scenario in which the red vertices
are randomly sampled with probability in {0.1,0.2,0.3,0.4,0.5};
see Table 1. The first notable fact is that the unfairness value of Γ0
is already rather small, and it goes down to almost zero already in
Γ1. The second fact that strikes from the table is that the fraction of
additional stress with respect to Γ0 in both Γ1 and Γ2 is less than
0.8%, i.e., the algorithm often halts after a maximum number of
iterations and hence Γ1 = Γ2 for many instances.

We next report the results for the scenario in which the vertices
are ranked by descending stress in Γ0 and the red vertices are the
first 10% in this ranking; refer to the last row (⋄) of Table 1, and see
for instance Figure 1 which shows one pair Γ0 and Γ2 computed for
this experiment. As expected, this scenario is more challenging and
both Γ1 and Γ2 often meet their thresholds in terms of additional
stress fraction with respect to Γ0. Also, the unfairness of Γ0 is rel-

atively larger than in the previous scenario, but it drops down on
average by more than 57% in Γ1 and by more than 80% in Γ2.

Finally, while computational efficiency is not a goal of our experi-
ment, we report that each computation took on average 75 seconds,
ranging from few seconds to, for a couple of outliers, 12 minutes.

4.4. Discussion and limitations

Our experiments suggest that stress-minimum drawings may orig-
inally be suboptimal in terms of fairness (especially in our sec-
ond scenario), but incorporating fairness in the optimization pro-
cess can effectively lead to notable improvements (Q2). Also, if
one is willing to pay a small fraction of additional stress in the
drawing, unfairness can be further minimized and brought down to
almost zero (Q1). Therefore, for sensitive applications, our experi-
ments support the introduction of fairness constraints. On the other
hand, we only considered medium-size graphs with up to few thou-
sands of elements; we plan to extend our analysis to larger graphs.
To this aim, it would be interesting to design more efficient algo-
rithms that make use of stochastic gradient descent. For this pur-
pose, we should sample the batches in a way that respects the ratio
between red and blue vertices. Also, it should be noted that even a
small fraction of additional stress may cause visible distortions in
the drawings of very regular graphs, for example, grid graphs.

5. Conclusions

We have introduced a notion of fairness for straight-line graph
drawings, and proposed a gradient-descent based algorithmic strat-
egy to compute drawings by optimizing both stress and fairness.
While our definition of fairness captures the need for drawings in
which the visual complexity is balanced around red and blue ver-
tices, it is arguably not the only possible one. Indeed, since fairness
is certainly an elusive and multifaceted concept that may depend on
multiple features of a visualization, it would be of great interest to
design human experiments aimed at investigating cognitive aspects
of how humans perceive different subgroups (potentially more than
two) in a network visualization. Finally, the concept of fairness can
be studied for other graph drawing paradigms, such as orthogonal
drawings, where one can consider the number of bends along the
edges as a natural optimization criterion. In this regard, also chal-
lenging theoretical questions concerning the computational com-
plexity of optimizing both fairness and bends can be addressed.
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