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Figure 1: a) Meteogram for mean sea level pressure forecast near New York City before the passage of hurricane Sandy, initialised 25
October 2012, 00 UTC. The control line represents the control member, i.e., the unperturbed simulation run. Mean and standard deviation
are commonly used to assess the ensemble forecast and its uncertainty. b) Most relevant components view displaying automatically revealed
modes by our method. c) Life span plot, indicating the relevance of assuming 1, 2, 3, or 4 modes at each instant according to our algorithm.

Abstract
Ensemble methods are widely used to simulate complex non-linear systems and to estimate forecast uncertainty. However,
visualizing and analyzing ensemble data is challenging, in particular when multimodality arises, i.e., distinct likely outcomes.
We propose a graph-based approach that explores multimodality in univariate ensemble data from weather prediction. Our
solution utilizes clustering and a novel concept of life span associated with each cluster. We applied our method to historical
predictions of extreme weather events and illustrate that our method aids the understanding of the respective ensemble forecasts.

CCS Concepts
• Applied computing → Earth and atmospheric sciences; • Human-centered computing → Visual analytics; • Computing
methodologies → Unsupervised learning;

1. Introduction

Scientific disciplines and modern applications dealing with com-
plex non-linear systems commonly resort to stochastic ensemble
methods to provide an overview of physically possible outcomes,
where the ensemble spread originates from slightly varied initial

conditions as well as model imperfections. While ensemble meth-
ods have become a well-established tool to estimate the uncer-
tainty of predictions, their analysis, interpretation, and visualization
still provide major challenges [WHLS18]. Given that the computed
simulations, each referred to as a member of the ensemble, contain
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a wealth of information, it is non-trivial to informatively summa-
rize the collective nature of the ensemble. This is especially true in
the case of distinct likely outcomes, i.e., multimodality.

The prevalent method to summarise an ensemble prediction is to
report the mean as the most likely outcome and the standard de-
viation as an assessment of uncertainty. This implicitly assumes a
unimodal Gaussian distribution and therefore discards crucial in-
formation in the case of multimodality. Exploring multimodality
in weather forecasting is of great socio-economic importance, as
it can provide a more nuanced assessment of the forecast. In par-
ticular, it allows domain experts and users to identify potentially
threatening weather outcomes that might not be discernible with a
classical unimodal approach [PDRHW05].

In this paper, we focus on univariate meteograms, i.e., ensembles
of N univariate time-series of common length T . Such ensembles
are computationally expensive and typically only around 50 mem-
bers are simulated. Meteograms are a common visualisation in the
domain to provide an overview of the possible evolution of a given
variable of interest at a fixed geographic point (e.g., Fig.1). In this
work, we focus on exploring and analyzing the possible situation
of multimodality in such ensemble data; in particular, we address
the following tasks:

T1 Estimate the number of modes at each time step
T2 Derive summary statistics for each mode at each time step
T3 Determine when distinct modes appear and/or disappear
T4 Determine all possible connections between consecutive modes

To support these tasks, we provide a new solution based on a graph
resulting from clustering and the concept of life span. Our three-
fold contribution is to: a) introduce the concept of life span for
each mode, a proxy of its relevance; b) provide a visualization tool
revealing all possible clusters according to their relevance in one
image; c) suggest an interpretation of the distribution.

2. Related work

Visualizing ensembles is challenging as it needs to cope with the
additional member dimension [WHLS18]. Potter et al., with En-
sembleVis, and Nocke et al., with SimEnvVis, proposed interactive
visualization solutions to help experts with understanding ensem-
ble simulations [PWB∗09,NFB07]. Multimodality is not explicitly
treated in these frameworks, although non-unimodal behavior can
be deduced using Plume Charts. Parameter space analysis is one
objective of ensemble visualization and both interactive and au-
tomated methods exist [SMG∗15, WLSL16]. Although associated
challenges and solutions are ensemble-related, our task is closer to
what Wang et al. [WHLS18] defined as ensemble trend analysis
and comparison. Here, current challenges include to reveal differ-
ent trends using as few assumptions as possible [FKRW16,OBJ15],
faithfully representing these trends [FKRW16], and illustrating the
reasons for selecting these trends [JKW16].

Clustering is a broad topic and an active area of research that
has applications in numerous domains. Javed et al. recently car-
ried out a benchmark study specifically on time series clustering
using 112 different time series datasets and the most popular clus-
tering methods [JLR20]. Typical approaches for time series cluster-
ing are distance-based and most of them use either the Euclidean

distance or dynamical time warping (DTW) [HHB15, WLSL16],
among others such as shape-based distances [PG15]. Using dis-
tance measures that match the requirements of the application do-
main is of particular importance [LGZY16]. In their study, Javed
et al. [JLR20] assumed that the number of clusters was known.
Several techniques exist to estimate this number k of clusters in a
dataset, such as the elbow and silhouette methods [KR09,SKRR15]
or the gap statistic [TWH01]. Similarly, methods exist that find the
number of clusters automatically such as DBSCAN [EKSX96] or
kNN [CH67]. However, the reasons that lead to a final k value might
depend on other hyper-parameters in complex ways.

3. Revealing Multimodality

In what follows, we first explain the design of our solution, before
then detailing the new algorithm and visualization specifics.

3.1. Design and Overview

Based on the tasks T1–T4 and the state of the art as outlined above,
we arrived at the following design rationales:

DR1: The ensemble distribution can have any shape. No a priori
information is available concerning the underlying distribution of
the ensemble. In particular, the number of modes and type of prob-
ability distribution of each mode are unknown.

DR2: All ensemble members matter. Prediction ensembles, as
studied here, are typically small (N ≈ 50) and the notion of out-
liers must be considered cautiously, as each ensemble member can
describe the actual outcome best-possibly, no matter how different
it is from the other members. Furthermore, clear communication is
essential for weather forecasting, as it concerns not only meteorolo-
gists but also users whose decisions depend on the prediction. As a
consequence, while simplicity and readability should be favoured,
it remains of great importance to not ignore singularities in the en-
semble distribution, especially if they describe extreme scenarios.

DR3: All scales matter. In the atmosphere, large and small scales
co-exist in space and time, describing distinct phenomena (diurnal
cycle, seasonality, etc.). To ensure an accurate representation, one
scale should not be pre-selected at the expense of another. Conse-
quently, thresholds of any kind are to be avoided, where possible.

DR4: Not a black box. After discussing with meteorologists, we
agreed that one correct number of modes k does not exist. Thus, the
process of determining k together with its uncertainty and the con-
sequences of choosing a particular value of k over another should
remain transparent. The underlying motivation is that only experts
in the application domain can make an informed decision regarding
the most meaningful number of clusters in ambiguous cases.

Based on these rationales, we arrived at the following design of
our solution: study the members at each time step t separately, then
try all the possible values of k for each t, and summarize the ob-
tained outcome for each t and each k simultaneously in one image.
This simultaneous visualization remains comprehensible using the
concept of life span that emphasizes modes that live longer.

3.2. Algorithm

Given the ensemble denoted as members, a clustering model with
parameter number k of clusters (e.g., k-means) is devised and a
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monotonic score function that returns a real-valued quality mea-
sure, given a set of clusters (e.g., cluster inertia). The algorithm
completes 3 main tasks (see Algorithm 1) that result in a graph. The
first task is motivated by DR1: at each time step t, apply model to
the N data-points for all possible values of k∈ {1, . . . , N}. For each
t and k, model returns a list of clusters such that each member be-
longs to exactly one of the k clusters. Then, for each time t, each k is
associated with its normalized score s(k, t), and a life span l(k, t),
defined as l(k, t) = s(k, t)− s(k+1, t). Thirdly, the corresponding
vertices and edges are created in the graph. Each vertex vi stands
for a cluster and stores the associated members, ti and ki (time t
and value k at creation), its normalized score si = s(ki, ti) and life
span li = l(ki, ti). Edges connect vertices between t and t+1, pro-
vided that vertex v j corresponds to vertex vi in terms of the score,
i.e., [si, si+li[ ∩ [s j, s j+l j[ 6= ∅. The life span of the resulting edge
is defined as the length of this intersection. The members of the
edge are members belonging to both vi and v j (see Figure 2).

The normalization process follows DR3, by adapting the method
to time-related changes of score scales due to error growth with
increasing lead time in the forecast.

Figure 2: Schematic diagram of normalized scores for selected k at
times t and t+1, showing scores and life spans of nodes and edges.

Algorithm 1: Graph construction
Input: members (T ×N array), a score function, a

clustering model
Output: a graph summarizing the clustering outcome for

each k and t
1 for t = 0 .. (T -1) do
2 X = members[t];
3 for k = 1 .. N do
4 Fit model(k) to X , store clusters in clusters[t, k];
5 scores[t, k] = score(clusters[t, k]) ;

6 for k = 1 .. N do
7 s(t, k) = scores[t,k]−mink(scores[t,k])

maxk(scores[t, k])−mink(scores[t, k]) ;

8 l(t, k) = s(k+1, t) − s(k, t);

9 Create a vertex for each cluster in clusters[t, k] ;
10 Create an edge vi→ v j if at least one member is in vertex vi

at t and in v j at t+1, and if v j corresponds to vi in terms of
their score (see also Fig. 2)

3.3. Visualization

We provide two main visualization solutions: the entire graph and
the most relevant components view. In both views, the x-axis repre-
sents time and y the considered physical value. Vertices are placed
at their corresponding time step and their y-value is defined as the
mean of the members it represents. The shaded area around a com-
ponent (vertex or edge) corresponds to the standard deviation of
its members. Although each member represents a similarly likely
outcome, the proportion of members in each mode retains essential
information. Consequently, the more members in a component the
thicker the component. Furthermore, to distinguish between the dif-
ferent assumptions for k (that is to say, how many clusters were as-
sumed when a specific cluster was created), we identify each choice
k with a color (colors from ColorBrewer [HB03]).

The entire graph view shows the output of the clustering model
for all values of k. To ensure readability without discarding crucial
information, the opacity of the components is based on their life
span, thus revealing only the most relevant components. As the oc-
currence of multiple values of k is meaningful, their corresponding
output is concurrently displayed. This allows an effortless explo-
ration using no assumptions nor thresholds, thus following DR2.
This visualization leads to an unusual combination of a categorical
color scale, associated with ordered data (k = 1,2, ..N), so that the
colors remain distinguishable even across largely varying opacities.

To guide the exploration, we provide two additional views: a) a
life span plot showing the life span of each k assumption and each
t; b) a suggestion bar displaying the most long-lived clustering k
for each time step. This provides quantitative information to the
user while facilitating the decision-making process as motivated by
DR4. The user can either predetermine the number of modes, or let
the algorithm decide.

The most relevant components view shows only one value of k at
each time step, which is thought to be the most relevant (either cho-
sen automatically as in the suggestion bar or manually re-adjusted
by the user). As there is no concurrent display on this plot, the
opacity of the components can be set to 1. This view contains less
information than the entire graph and favours readability.

Both views can be seen as the final product of our graph-based
method. While some users appreciate the information-rich and
transparent nature of the entire graph (with the suggestion bar and
life span plot), others prefer the more classical visual summary pro-
vided by the most relevant components view.

4. Weather forecasting case studies

The needs and challenges of ensemble analysis and visualization
meet in weather prediction due to the diversity of its audience, their
manifold objectives and the complex nature of the atmospheric sys-
tem. Further, this application is prone to multimodality due to the
combination of chaos and stability in the atmosphere. We limit our
focus here on extreme weather events, as they demand a detailed as-
sessment of uncertainty and risk, where the users have a particular
interest in potentially multimodal outcomes that might be attached
to significant socio-economic risks. For simplicity and consistency,
we used k-means as clustering model and inertia as score for all
case studies. More options are available in our implementation.
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Figure 3: a) Meteogram for 2m temperature forecast near Bergen,
Norway, initialised 21 July 2019 00 UTC during the 2019 heat-
wave. b) Entire graph view, showing all assumptions about the
number of clusters with the suggestion bar and the life span plot.
Starting 27 July, the bimodality is so clear that the unimodal as-
sumption (blue line) almost disappears. c) Boxplots representing
interpretations A and B for 27 July at noon.

As first case, we consider the temperature meteogram for
Bergen, Norway, during the July 2019 heatwave (Fig. 3). This syn-
optic condition is linked to a weather situation known as Scandina-
vian blocking, imposing significant forecasting challenges [PH03].
A large diurnal temperature range is evident, featuring an alterna-
tion between uni- and bi-modality, revealing that the nighttime tem-
perature forecast is more certain than its daytime counterpart. From
July 27, a clear bi-modality emerges with a misleading “mean and
standard deviation” interpretation: "22.3±4.7°C, i.e., a [17.6, 27.0]
range" that suggests great uncertainty. Our method implies a 51%
(respectively 49%) probability of being inside [16.4, 19.6] (resp.
[25.2, 27.2]), which yields a more accurate description consider-
ing the distribution of all members. A similar analysis of the ensu-
ing day shows that 20% of the members are actually higher than
the upper bound (22.8°C) of the predicted range, with some mem-
bers reaching up to 29.3°C. While our method is capable of reveal-
ing this situation appropriately, a standard, unimodal interpretation
would have missed to provide a meaningful explanation.

As a second case, we show the meteogram for New York City,
encompassing hurricane Sandy in October 2012, causing disas-
trous damage as it was about to undergo extratropical transi-
tion [EWA∗17]. Forecasting such transitions is a well-known chal-
lenge and a regular source of multimodality in ensemble prediction:
“Will a given tropical cyclone transition to become extratropical
or not?”. The bimodality for Sandy illustrates that mode detection
does not simply rely on the spread, as the spread is wider on 10/30
than on 10/28, yet 10/30 is considered unimodal while 10/28 is de-
tected as bimodal (Fig. 1, page 1). Our method is able to clearly
and accurately represent the creation and fusion of modes.

As a third case, the European winter storm Lothar caused severe
socio-economic consequences for large parts of central Europe and
was relatively poorly forecasted [PDRHW05]. This case (Fig. 4)
demonstrates the importance of transparency in the interpretation
of the member distribution. In the meteogram, we clearly see that
almost all members agree on the outcome for Dec. 27 and that only
a few predict severe wind speed. While considering the distribu-
tion as an asymmetric mode with a long tail would be appropriate
from a statistical viewpoint, the potential hazard associated with
the long tail represents a significant risk. Thus, from the meteoro-
logical viewpoint, it might be preferred to distinguish between 2

Figure 4: a) Meteogram for forecast of wind speed near Paris,
initialised 25 Dec. 1999 00 UTC before the passage of the storm
Lothar. b) Entire graph view, suggesting that unimodality is the
most relevant interpretation for 27 Dec., while revealing a threaten-
ing peak in wind speed if bimodality were to be assumed. c) Most
relevant components view, where the user followed the method sug-
gestions except for one time step, where k = 2 was specified instead
of k = 1, emphasizing the potential risk. These observations support
DR2 & DR3: a sudden variation predicted by few members.

scenarios: one relatively harmless, composed of the majority of the
members, and a second, less likely, but rather severe scenario de-
picted by few members. Although our method suggests that there
is only one mode, the entire graph view allows experts to observe
that considering 2 modes could be a pertinent choice, revealing a
dangerous situation that would be ignored if assuming unimodality.
We provide experts with the ability to tune the most relevant num-
ber of modes, choosing for example two modes for 27 Dec. The
most relevant components view will then be automatically updated
so that 2 modes are considered that day (Fig. 4.c).

5. Conclusion and future work

As result of a long-term interdisciplinary collaboration between
meteorology and data science, we introduce a new, graph-based
solution, based on clustering and the concept of life span, that suc-
cessfully reveals multimodality in ensemble weather prediction, to-
gether with its imminent uncertainty. We demonstrate the perfor-
mance of our method in the context of three case studies, all fea-
turing extreme weather events for which a detailed risk assessment
is imperative. Our method integrates a carefully designed compu-
tational approach (graph construction based on clustering) with a
visualization solution that enables the user to bring in the necessary
level of expert judgement, e.g., when considering unusual ensemble
members.

Our main future objective is to adapt the algorithm and visu-
alization to multivariate and spatio-temporal ensembles. Further-
more, even though instant-wise mode evolution is a feature of our
method, we aim at allowing the user to use a time window in order
to emphasize general patterns. In the meantime, we plan to pro-
vide new interactive tools to enhance the graph exploration while
proposing fully automated suggestions.
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