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Abstract
Explaining the predictions of a deep neural network (DNN) in image classification is an active area of research. Many methods
focus on localizing pixels, or groups of pixels, which maximize a relevance metric for the prediction. Others aim at creating
local "proxy" explainers which aim to account for an individual prediction of a model. We aim to explore "why" a model made
a prediction by perturbing inputs to robust classifiers and interpreting the semantically meaningful results. For such an expla-
nation to be useful for humans it is desirable for it to be sparse; however, generating sparse perturbations can computationally
expensive and infeasible on high resolution data. Here we introduce controllably sparse explanations that can be efficiently gen-
erated on higher resolution data to provide improved counter-factual explanations. Further we use these controllably sparse
explanations to probe what the robust classifier has learned. These explanations could provide insight for model developers as
well as assist in detecting dataset bias.

CCS Concepts
• Computing methodologies → Machine learning; Artificial intelligence;

1. Introduction

Deep Convolutional Neural Networks (CNNs) have revolutionized
the field of computer vision [LBH15] and are increasingly being
deployed across high stakes domains such as autonomous driving,
medical diagnosis, and many others. Despite such proliferation, the
high capacity complex nature of CNNs has made an encompassing
theory of how they make their decisions elusive, with many end
users treating CNNs as a "black box". This has led to thrusts in both
academia and industry to establish frameworks of reliability and
transparency for artificial intelligence as a whole [Pic18, Mic19,
Lop20]. An additional concern for such high capacity models is
their decisions may be unstable. Small perturbations of inputs can
dramatically change a model’s predictions [GSS15]. This work has
been studied extensively in the field with many defenses proposed
to make models robust to such attacks [KGB17,RDV18,MMS∗18,
MDUFF19].

Adversarial robustness conveys benefits beyond its original in-
tent and may improve a wide class of explainability techniques.
The improvement robustness provides to saliency maps has been
studied before [ELMS19]. Figure 1 shows examples of common
pixel attribution based methods, [STY17,STK∗17] and how robust-
ness leads improved visualizations over than their standard coun-
terparts. Local linear proxy models have been used as explana-
tion techniques [RSG16b,AMJ18,PASC∗20]. There is ample work

Figure 1: A comparison of standard (top) and robust (bottom) mod-
els for various saliency explanation methods.

suggesting that the mechanism underlying adversarial robustness
is the regularity (or local linearity) of the loss landscape for the
model [LHL15, RDV18, MDUFF19, QMG∗19], which can aid the
search for these proxies. Finally, it has also been observed that ro-
bust models exhibit generative features that align with those a hu-
man would use to classify an image [STT∗19, IST∗19, EIS∗19].
For these reasons we leverage adversarially robust models for xAI
techniques that capture meaningful semantics.

1.1. Related Works

Many visual explanation techniques for image classification fo-
cus on pixel importance via gradient methods for prediction im-
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portance [STY17, STK∗17] or class importance in deep features
[BBM∗15, SCD∗19]. These methods attempt to answer the ques-
tion "Where was the model focusing to make the prediction?".
SUMMIT [HPRPC20] extends this work by providing attribution
through the layers of activations in a network allowing users to vi-
sualize the representation hierarchy. Another interesting class of
techniques is incorporating interpretable proxy models that mir-
ror a model’s prediction in a local neighborhood of an example
[RSG16a, AMJ18, PASC∗20, LAMJ18]. These methods translate
questions about the model into questions about semantically mean-
ingful features of the proxy models. A common issue with the
above methods is the need to handle both instability of the predic-
tions and explanations provided. This is ameliorated when using
robust models as a starting point as we do here, or incorporating
robustness into the explainability framework itself [AMJ18]. Our
work is most similar to the image synthesis work in [STT∗19] in
that we are using a single robust classifier to generate images. How-
ever, our focus in this paper is on generating images for the purpose
of explaining model predictions and probing for learned concepts.

1.2. Contributions

The primary goal of this paper is to demonstrate some explainabil-
ity benefits of using robust image classifiers. We do this by giving
examples of how to generate visual explanations using such mod-
els. Concretely we:

1. Demonstrate the `1-q sparse perturbations as a human inter-
pretable efficient technique for generating visual counter-factual
explanations

2. Provide a method for visualizing the concepts learned by a clas-
sifier using gradient-based optimization

2. Methods

Here we describe our algorithm for generating visual explanations
of model predictions using the generative properties of robust clas-
sifiers [TSE∗19, SIT∗19]. Our explanations are perturbations of an
input to the model which will make the model more or less con-
fident in its prediction. Though optimizing the components of the
logits or softmax layer of a network can be used for this we find
that the cross entropy loss serves as a suitable surrogate and so in
practice we aim to increase / decrease the loss in order to decrease
/ increase the model’s confidence. Such perturbations are similar
to, and in the case of increasing loss indeed are, adversarial at-
tacks which for robust models generate perturbations and images
that contain semantically meaningful features [WMR18, SHG20].

2.1. Perturbing for Visual Explanations

Given data (x,ygt) from a dataset D, model fθ, and model predic-
tion yp, our visulaizations are perturbations are defined as

δ̂(x,ya; p,ε) = argmin
δ∈Bp(ε)

L( fθ(x+δ), ya) (1)

where Bp(ε) is the `p ball of radius ε. We say the perturbation is
label targeted when ya = ygt and say it is prediction targeted

when ya = yp. In order to explain individual predictions we use
small ε so that the original features remain present. In this case the
perturbation will highlight existing features of an image or make
small changes that result in a semantically meaningful difference
in the original. To probe concepts we use a larger ε to allow the
model to generate larger more visible features. Here, entire con-
cepts may emerge, allowing us to see what features are most se-
mantically meaningful to a model’s representation of a class.

The constraint p∈ {2,∞} are commonly used for adversarial at-
tacks. Though both of these produce semantically meaningful fea-
tures they result in dense perturbations which can be hard to in-
terpret. In particular `∞ perturbations allow for equally sized per-
turbations of every pixel resulting in dense jagged images. The `2
perturbations are smoother but still dense. A natural solution to the
problem of dense perturbations is to constrain the perturbations to
the `1 ball; however, in practice such an optimization is inefficient
and scales poorly with image resolution. We present an easy-to-
implement modification of the `1 optimization that allows for effi-
cient generation of controllably sparse perturbations.

For sake of brevity we focus on error explanation and concept
probing, but note that explaining correct predictions can be done as
well. To explain errors, we use prediction targeted perturbations to
answer the questions

Why did the model make this mistake?

and label targeted perturbations to answer the question

What could have corrected this mistake?

2.2. The Optimization

In order to compute perturbations, we seek an approximate solution
to the optimization in (1). This is done by an iterative gradient-
based optimization algorithm. The common approach in adver-
sarial robustness is to use Projected Gradient Decent [MMS∗18];
however, this approach requires careful tuning of step size and
projecting onto the `1 ball is non-trivial. For these reasons we
use the Frank Wolfe (FW) approximation scheme [FW56, Jag13].
The algorithm is based on taking convex combinations of so-
lutions to a sequence of linear approximations to the the orig-
inal problem. It trivially handles the case of `1 constraints and
is not sensitive to choice of step size. Though sparse attacks us-
ing FW have been done in the context of adversarial robustness
[TB19,KSB∗19,CZYG20], to our knowledge, this is the first work
to use sparse FW perturbations as a means of explaining the pre-
dictions of robust classifiers.

A naive implementation of FW for the `1 constraint results in
an approximation which modifies at most one pixel at every it-
eration, i.e., the pixel with the maximum gradient value is modi-
fied. While this guarantees sparsity of the perturbation, it becomes
computationally prohibitive for high resolution images. Inspired
by [KSB∗19] we perform a modified FW `1 optimization wherein
the pixels which are in the top-q percentile of gradient values
are modified at each iteration. Our algorithm is simpler than that
of [KSB∗19] and so modifies the loss less aggressively, but it still
efficiently produces successful adversarial examples and more im-
portantly generates semantically meaningful visualizations. We call
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these `1-q perturbations and their generation is detailed in algo-
rithm 1.

3. Results

In this section, we demonstrate how `1-q perturbations can be used
in a counter-factual framework to help visually explain errors by
showing (1) what features led to error and (2) what features could
have corrected an error. We then demonstrate how the `1-q pertur-
bations can be used to probe concepts the model has learned by
having it perform basic generative tasks.

For all experiments we use a ResNet-50 architecture [HZRS16]
trained with adversarial training to be robust to `2 adversaries on
ImageNet [DDS∗09]. We have experimented with training `1 and
`1-q robust models on CIFAR-10 [KNH] but find that `2 robust
models produce equally useful perturbations. The models used are
hosted by MadryLab at [EIST19]. Though training such models can
be computationally intensive, generating these visualizations takes
less than 1 sec per image. Results were generated using 2 Nvidia
Volta V100s.

Algorithm 1 `1-q Perturbation PseudoCode in PyTorch Style

Input: Network fθ, input image x, target label y, max number of
steps K, maximum perturbation ε, constant c≥ 1, and percentile
q.
Result: Perturbation δ.
Initialize δ = 0
for 0≤ k < K do

γ = c/(c+ k)
δ̄ = 0
g =∇δL( fθ(x+δ),y))
top_q = torch.topk(g.abs(), q∗dim(x))
δ̄[top_q] = sgn(g)[top_q]
δ̄ = δ̄/‖δ̄‖1
δ = δ+(1− γ)δ̄

end for

3.1. Error Counterfactuals

Figures 2a and 2b show counterfactual explanations for errors made
by the model. The prediction targeted counterfactuals 2a answers
the question: Why did the model make this mistake?

For example in the third column the model mistakes a sidewinder
snake for a horned viper. To become more confident in this er-
ror the model makes the spikes on the eyes of the sidewinder
more pronounced, making it appear more like the horned viper.
This suggests that the model learned the characteristic that horned
vipers have horn shaped eyes and that the pointy eyes common in
sidewinders confused the model. The second column suggests that
the ships under the bridge were mistaken as pier pilings.

Figure 2b shows label targeted counter-factuals, which aim to
answer the question: What could have corrected this mistake?

We see the model corrects its prediction that the image is of a
sidewinder if the image has more pronounced splotch patterns com-
mon in sidewinder snakes. However, the perturbations are rather

(a) Prediction Targeted

(b) Label Targeted

Figure 2: Prediction (a) and Label (b) targeted counterfactual ex-
planations of errors using an `2 attack with, ε = 12, and 30 itera-
tions. The Perturbations row has been magnified 5x for visibility.

diffuse. This indicates that the sidewinder-horned viper distinction
may be a difficult one for the model. In the second column the sus-
pension bridge prediction would have benefited from a more pro-
nounced suspension cable. Of particular interest is the first column
where the model misidentifies a mosque. It appears that the model
would be more confident if there were a minaret emanating from
the mosque dome. This suggests that mosques in the dataset may
be biased towards having minarets.

3.2. Visual Concept Probing

In order to probe what concepts a model has learned we ask the
model to draw a picture of a given class on a "blank" image. A
litany of more complex generative tasks have been demonstrated

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

3



J. Roberts & T. Tsiligkaridis / Controllably Sparse Pert.

in [STT∗19]; however, here we focus on a very general problem
of visualizing the learned features of the model and further the
`1-q perturbations constrain the perturbation to be localized which
makes them easier to interpret than their `2 or `∞ counterparts. For
each experiment we perform a label targeted `1-q perturbation of a
"blank" input image. Since the `1-q algorithm is deterministic we
choose input images who’s components are drawn form a standard
normal distribution and then perform a min-max scaling to force
the pixel values into [0, 1].

For these experiments we also include the `2 perturbations as
they have shown additional texture like features not present in the
`1-q perturbations. All attacks are performed with a 30 steps of FW
optimization. The `2 attacks use ε2 = 35 and the `1-q attacks us
ε1 = ε2 ∗224∗

√
3. The scaling is chosen so that the corners of the

`1 ball intersect with the ε2 `2 ball.

We present the resulting images in Figure 3 for four classes (Jay,
Rhinoceros Beetle, White Shark, and Mushroom). For each class
we show an example input and the `1-q perturbations on the top row
and the `2 perturbations on the bottom row. We note that these ex-
amples were minimally curated and due to the stability provided
by robust models the phenomena is quite generic. Both the `1-q
and `2 perturbations produce features that are semantically mean-
ingful. The `1-q perturbations are more localized than those of the
`2 which seem to capture more textures.

A few features are particularly noteworthy. Firstly, we can see
that in the case of the rhinoceros beetle, both perturbations pro-
duced the distinctive horn feature. In the case of the jay, both pertur-
bations contain the correct color (blue) and the correct wing stripe
patterns that distinguish the jay from other common birds. This
provides evidence that the model has learned these discriminating
features. The white shark and mushroom perturbations are interest-
ing because the `1-q and `2 perturbations are quite different. When
forced to localize the perturbations (`1-q) we see for white sharks
that the model produces a fin and the distinctive black-white pat-
ter of a white shark body, and for mushrooms we get fully formed
fungi with caps and stems. However, the `2 perturbations of white
sharks seem to add a dive-cage. This suggests that the white shark
class may have a bias as to being viewed from behind a shark cage.
In the case of the mushrooms the `2 perturbations are mostly the gill
texture and the colors are diffuse, suggesting the model has learned
not only the general shape of mushrooms but their structures such
as gills.

4. Conclusion

In this work we present a method for generating sparse input per-
turbations with controllable degree of sparsity. We couple this tech-
nique with the generative properties of robust models to explore
a counterfactual framework for explaining individual predictions,
and a generative method for probing the concepts learned by the
model. We believe these techniques can be used as a starting point
to better understand what a model has learned, discover biases in a
training dataset, identify common failure cases, and provide users
with salient features used in a predictions. Future work may focus
on aggregating the concepts across a set of examples to improve
our understanding of deep learning models.

Figure 3: Visualizing concepts for various ImageNet Classes. For
each class we show label targeted `1-q (top row) and `2 (bottom
row) perturbations. Each column is generated with a different ran-
dom image with minimal curation.
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