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Abstract

In the past few years, Deep Neural Networks (DNN) have become the state-of-the-art solution in several areas, including

automatic speech recognition (ASR), unfortunately, they are generally viewed as black boxes. Recently, this started to change

as researchers have dedicated much effort into interpreting their behavior. In this work, we concentrate on visual interpretation

by depicting the hidden activation vectors of the DNN, and propose the usage of deep Autoencoders (DAE) to transform these

hidden representations for inspection. We use multiple metrics to compare our approach with other, widely-used algorithms and

the results show that our approach is quite competitive. The main advantage of using Autoencoders over the existing ones is

that after the training phase, it applies a fixed transformation that can be used to visualize any hidden activation vector without

any further optimization, which is not true for the other methods.

CCS Concepts

• Computing methodologies → Dimensionality reduction and manifold learning; Speech recognition; Neural networks;

1. Introduction

Using Deep Neural Networks (DNN) has become a common
practice in automatic speech recognition (ASR) since they can
achieve the best accuracy [HDY∗12]. With the widespread usage
of DNNs it is crucial that we develop tools and algorithms so that
users can understand when a model works correctly, and when it
fails [HKPC18]. Unfortunately, the DNNs inner workings are still
a mystery, and it is extremely hard to translate their function into
an understandable format for humans. Interpretation is also essen-
tial in verifying that a highly accurate DNN has actually learned to
use a proper problem representation, and not just exploited some
artifacts present in the training data.

Visual analytics in deep learning is a new and very important
area. Within this field, we focus on visually explaining how our
DNN-based acoustic model functions, specifically, we wanted to
see which phonetic categories were recognized by it. The task of vi-
sual interpretation is quite simple; given some test data, the hidden
representations of the network are inspected [Lip18]. To achieve
this, the hidden activation vectors of the DNN need to be trans-
formed into a low dimensional space, once this has been done, hu-
mans can visually inspect them in the hope of determining qual-
itatively what the model has learned. The main advantage of this
concept of interpretability is that we can inspect the models, with-
out modifying them. This means that there is no need to sacrifice
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predictive performance by adding a bottleneck layer to the DNN
just to improve its interpretability. Here, we compared methods that
can show the phonetic categories, which were recognized by the
DNN. Currently, several solutions exist that can be used for the vi-
sual interpretation of DNNs, in [HKPC18] we can find an extensive
survey of them. Here, we used T-Distributed Stochastic Neighbor
Embedding (t-SNE) [vdMH08], Uniform Manifold Approximation
and Projection (UMAP) [MH18]. They all focus on transferring as
much of the structural information from the high-dimensional data
to a lower-dimensional space as possible.

One of the first articles that dealt with interpreting DNNs in
ASR, investigated why their method works so well and visualized
the similarity structure of the input and the hidden activity vec-
tors using t-SNE [MHP12]. Later, in [VWS14] the authors inves-
tigated how a multilingual bottleneck affects the learning process,
and again t-SNE was used to display the learned multilingual fea-
tures. Not long ago, Nagamine et al. studied how DNNs form pho-
netic categories [NSM15]. Similarly, in [BWJR18] it was inspected
how a DNN with a bottleneck layer learns phonetic information by
using linear discriminant analysis (LDA) and t-SNE to visualize
the hidden activations of a small bottleneck layer of an acoustic
DNN. In the literature, it is quite common that a bottleneck layer
is used to assist the interpretation [BJRW15, WBR∗16, LKH15].
UMAP has also been used to visualize data in different do-
mains [MH18,BMH∗19]. The main drawback of t-SNE and UMAP
is that they rely on the optimization step that determines the best
low-dimensional layout. One problematic consequence is that after
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any modification of the data (adding or removing some vectors),
the optimization must be performed again, which might produce a
very different transformation. A further problem is that both t-SNE
and UMAP optimize the layout of the whole data globally, severely
limiting the number of vectors that we can inspect with them.To
solve these issues, we propose the general use of deep Autoen-
coders (AE) [Bal12]. AEs are well-known and widely used tools
for dimension reduction as they can extract meaningful latent fea-
tures [KH11,VLL∗10]. An AE is trained to generate the same data
as the one it received on the input layer. It consists of an encoder
and a decoder, and the two are connected through a hidden layer.

In this paper, the AE-based method is compared with two stan-
dard algorithms, namely with t-SNE and UMAP. Even though we
used these methods to inspect acoustic DNNs, they are general
methods and can be used to visualize the hidden representations
of any network. Naturally, it is hard to compare these methods
as they optimize different losses. Previously, Procrustes Distance
(PD) [Ken89] was used to compare UMAP with t-SNE, and it was
shown that it can measure the stability of the overall structure of
the embedding [MH18]. Furthermore, to ensure that we compare
the approaches appropriately, we also calculated Mutual Informa-
tion (MI) [CT91] and Distance Correlation (DC) [SR09] between
the data and its visualization to determine the quality of the em-
beddings. The results indicate that AEs are applicable for visual
interpretation. Furthermore, once trained, the learned transforma-
tion (the encoder part) can be reused to visualize new data, without
any optimization, which is the main advantage of our system over
the others.

2. Methods for visualizing the hidden representations

There are many ways of explaining the behavior of a DNN. In this
work, we focus on visualization techniques that can be used to ex-
plain the decisions of the networks. The main goal of these ap-
proaches is to show us what happens inside the network. Usually,
it is achieved by transforming the outputs of the hidden layers into
a two-dimensional space so that they can be examined. Finding an
appropriate transformation is quite difficult, as it needs to take into
account that similar vectors in the original high-dimensional space
must have projections close to each other in the embedded space.

2.1. T-Distributed Stochastic Neighbor Embedding

Perhaps the best-known option is t-SNE, which was proposed as a
dimension reduction method in 2008 [vdMH08]. Since then, it has
become a widely used tool for visually interpreting DNNs. The al-
gorithm has two main steps; first, it calculates a similarity measure
between the points in the original space, then using an optimizer
method, it places them into the embedded space. In the first step,
t-SNE calculates a conditional probability for each pair of points
that reflects how likely it is that one chooses the other as its near-
est neighbor. The algorithm calculates pairwise distances (d) using
these probabilities, then the vectors are projected into a low dimen-
sional space by some initial transformation. Afterward, we measure
the pairwise distances of the low dimensional vectors (q), and to get
the best layout, t-SNE optimizes the transformation by minimizing
the Kullback-Leibler divergence between d and q. In recent years,

T-SNE has been widely used to interpret DNNs trained for image
processing [EKN∗17], natural language processing [NKB15], and
speech recognition [BWJR18].

2.2. Uniform Manifold Approximation and Projection

The Uniform Manifold Approximation and Projection (UMAP)
method [MH18] is a recently proposed manifold learning technique
for dimension reduction. The first step of the algorithm is to find a
Riemannian manifold on which the data-points are uniformly dis-
tributed. The requirement of uniformity is quite problematic since
real data sets rarely behave like this. Fortunately, with a Rieman-
nian metric that is not inherited from the ambient space, we can
achieve this. In the next step, a fuzzy topological representation
needs to be constructed, to achieve this the algorithm patches to-
gether the local fuzzy simplicial set representations of local man-
ifold approximations. The same algorithm is used to calculate the
fuzzy topological representation of the initial low-dimensional rep-
resentations too. In the optimization phase, UMAP modifies the
layout of the embeddings to minimize the cross-entropy between
the two topological representations (the original one and the low-
dimensional one). Unlike t-SNE, UMAP can be fitted on some
training data and used later on other test data, without approximat-
ing a new manifold. Still, an optimization step needs to be per-
formed on the test data.

2.3. Autoencoders

As an alternative, we propose the use of AEs [Bal12] to perform the
transformation of hidden representations into a 2D space for visual
inspection. AEs are a very special type of Neural Networks, they
are trained in a self-supervised manner, and their most important
property is that their expected output is the same as their input.
These networks aim to learn some meaningful representation of
the data. The network is split into two parts; the encoder part, which
learns to extract the compact features, while the decoder part is used
to reconstruct the input from these features. The activation values
of the hidden layer located at the intersection of the encoder and
decoder parts will form the new feature vector.

AEs are known to produce representations that retain the struc-
ture of the original data. This is why they are widely used for di-
mension reduction tasks, such as word embedding. Naturally, the
question arises; how do AEs preserve the local structure of the
data? A recent article has already tackled this question by using
an advanced information-theoretic methodology to understand the
dynamics of learning and the design of AEs [YP19]. They extend
the Data Processing Inequality [BR12] to deep AEs and show that
if the structure is symmetric and a linear activation is used in the
bottleneck layer, then the role of the AE is to maximize the entropy
in the hidden layers (if it is well trained with backpropagation).
This explains why the latent vectors, extracted by the encoder, rep-
resents the original data so well.

For visualization a special network structure can be used in
which the feature extractor layer has only two neurons. In our ex-
periments, we opted for a special architecture; each hidden layer
reduces the dimension, first from 1000 to 100, then to 10, and fi-
nally, the last hidden layer in the encoder has two neurons. The
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decoder is symmetric to the encoder. We trained the AEs by mini-
mizing the mean squared error (MSE) between its input and output.
After training, only the encoder part is needed to transform new
vectors, and no further optimization is needed. As a result of this,
AEs are much faster than the other methods, and they produce the
same embedding for a given vector, regardless of what other data
we use during the visualization step.

3. Experimental setup

The DNN interpreted here is a fully connected rectifier net-
work [GBB11] that has five hidden layers, each containing 1000
hidden neurons. It was trained as a phoneme recognizer on the Wall
Street Journal corpus (si-284 set) [PB92] using a GMM-free algo-
rithm [GGT17].For visualization, we randomly choose three files
from the test set (these files will be referred to as the test data).

The AEs were trained with TensorFlow [AAB∗15]. As input,
they received the hidden state vectors calculated by using the train-
ing data. We trained one AE for each inspected layer. The other
methods performed the optimization step using the test data. The
only exception was the UMAP method, which provided a way of
estimating the manifold using some training data. Due to the mem-
ory limitations, we could not use all the training data, so we ran-
domly selected 300 training utterances. Please note that the opti-
mization step was still performed using the three test files.

During visual interpretation, we checked how well the main
phone categories (silence, vowel, semivowels, and consonants)
were separated from each other. Then, we inspected the consonants
to show which subcategories were recognized by the hidden layers.

3.1. Evaluation metrics

Since all three algorithms optimize different metrics to perform the
transformation, we need metrics that can be used to compare the
performances objectively. Here, we used three different metrics as
there is no established metric for this task.

Procrustes Distance (PD) can be used to match two configura-
tions of points and measure their similarities. The embeddings and
the high dimensional data are used to find an optimal transforma-
tion (T ) between them. Let us denote the original points by X and
their embedding by Y . The algorithm optimizes T by minimizing
the mean squared error (MSE) between X and TY . Once the opti-
mization is done, PD is defined as the MSE of the best T .

Mutual Information (MI) is a standard metric, which measures
the mutual dependence between two variables. Formally, it is de-
fined as MI(X ,Y ) = E(X) +E(Y )−E(X ,Y ), where E is the en-
tropy function. As the exact probability distributions were not avail-
able, the Kraskov-Stögbauer-Grassberger method (KSG) [KSG04]
was utilized to estimate the entropy. KSG estimates are based on
the distances between k nearest neighbors (here, we used k = 10).

Distance Correlation (DC) [SR09] is a metric that measures the
correlation between paired vectors of arbitrary dimension. First, it
calculates the pairwise distances between the vectors, separately
for the two sets. Then, DC is defined as the correlation between
pairwise distances.

Table 1: Results got by applying different visualization methods

layer metric t-SNE UMAP UMAP-train AE

1
PD 0.909 0.919 0.923 0.896

MI 0.341 0.460 0.429 0.392
DC 0.755 0.823 0.828 0.793

2
PD 0.936 0.948 0.939 0.928

MI 0.402 0.470 0.559 0.544
DC 0.640 0.813 0.838 0.871

3
PD 0.970 0.960 0.955 0.948

MI 0.407 0.485 0.453 0.503

DC 0.497 0.804 0.807 0.882

4
PD 0.976 0.968 0.965 0.952

MI 0.499 0.586 0.491 0.495
DC 0.431 0.797 0.804 0.871

5
PD 0.977 0.968 0.966 0.938

MI 0.433 0.497 0.502 0.518

DC 0.461 0.805 0.796 0.791

Regarding these metrics, one might argue that PD favors the AE-
based approach as it measures how well the original data can be
reconstructed from the embeddings. Meanwhile, MI focuses on the
preservation of the local structures, which is the strength of both
t-SNE and UMAP. Lastly, DC measures the similarity between the
global structure of the original and projected data.

4. Results

We tested four different visualization approaches. UMAP denotes
the embeddings that we created using just the test data and UMAP-
train was first fitted using the 300 utterances selected from the train
set and then optimized on the test data. Table 1 shows the results of
all four approaches. Keep in mind that AEs were not trained on the
test data, while the other systems were explicitly optimized on it.

Based on the PD values, AEs produced the best results, and
UMAP outperformed t-SNE in most cases. We also calculated the
PD values of random coordinates; on average, it was 0.99, slightly
worse than those of the four methods, mainly because of the opti-
mization step in the PD calculation. This indicates that PD might
not be a good choice to measure the quality of embeddings. In terms
of MI, we can see that the UMAP-based methods achieved the best
results, except for the third layer, and AEs came second, meaning
that it managed to keep a sufficient amount of information. Inter-
estingly, using more data to estimate the manifold (UMAP-train)
is not always beneficial. Observing the DC values, we can say that
AE and the UMAP methods perform well, while t-SNE produces
markedly worse results.

4.1. Visual interpretation

After the objective comparison, we inspected the embeddings visu-
ally. Figure 1 shows the outputs of the four approaches for the first
hidden layer, which processed the input directly. The silent parts
were separated from the other categories by the first layer, and it
also started to distinguish vowels from consonants to some degree.

Another important part of a DNN is the last hidden layer, as

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

27



Tamás Grósz & Mikko Kurimo / Visual Interpretation of DNN-based Acoustic Modelsusing Deep Autoencoders

(a) t-SNE (b) UMAP (c) UMAP-train (d) Autoencoder

Silence, Consonants, Semivowels, Vowels

Figure 1: Visual representations of the activation vectors outputted by the first hidden layer that processes the input directly. Coordinates

are determined by the visualization method and color is assigned to each point based on the force aligned labels.

(a) t-SNE (b) UMAP (c) UMAP-train (d) Autoencoder

Silence, Consonants, Semivowels, Vowels

Figure 2: Visual representations of the activation vectors outputted by the final hidden layer.

the output layer makes decisions based on the output of this layer.
In this case (see Figure 2) we once again notice that the silence
parts were recognized accurately. Here, we would like to point out
that UMAP and UMAP-train visualize the same test data, the only
difference being that UMAP-train utilizes some additional data in
the manifold approximation step. In theory, these images should be
very similar. However, as can be observed, they are quite different
as a result of data change. From the AE-based image, it is clear that
consonants were isolated from vowels, but the other methods do
not reinforce this observation. One possible reason for this might be
that the other methods did not use enough data. To test our hypoth-
esis, we generated new visualizations by using the 303 utterances
during the optimization step of UMAP. This new image showed
vowel and consonant groups formed similarly to the AE. Based on
this observation, we can say that using more data gives more accu-
rate visualization, at the cost of increased processing time. Inspect-
ing the vowels, we saw that no groups have formed, which means
that the DNN did not differentiate between the vowel categories.

Lastly, we checked the consonants to see if any other structure
was learned by the DNN. Figure 3 tells us that nasal phones formed
a separate group, and stop phones and fricative ones were also sep-
arated to some degree. These effects could be observed when using
AEs. On the other hand, t-SNE did not show such separation; nei-
ther did UMAP when we used only the test data. Once we used
more data (303 utterances) to perform the UMAP embeddings, the
observation that the stop, nasal and fricative categories are sepa-
rated was confirmed. Based on this, we can assume that the last

Stop, Fricative, Affricative, Nasal, Aspirate

Figure 3: Embeddings of consonants produced by autoencoder

hidden layer learned to recognize nasal, fricative, and stop conso-
nants as a side effect of the phoneme classification task.

5. Conclusions

In this study, we showed that DAEs could be used to visually in-
terpret DNNs. We compared our approach with two other popular
methods and found that it is competitive, even though it does not
optimize the layout of the data that we want to visualize. A great
advantage of the AE-based visualization is that we can train them
with a large amount of data, and after training, the encoder applies
a fixed transformation to produce the coordinates. This also means
that the visualization will not be affected by artifacts present only
in the data that we wish to inspect as the layout is not optimized
using this data.
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