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Figure 1: Overview of the visual analysis pipeline used to understand and discover the effect hyper-parameters have on neural network
model performance. The test accuracy overview provides means for selecting good or bad network trainings. The most significant parameter
combinations involved in the filtered selection can be detected through a heat-map matrix. Further analysis of the impact of a selected
parameter with respect to all other parameters is enabled through small multiples plots of parameter setting aggregates.

Abstract
We present an analysis of the impact of hyper-parameters for an ensemble of neural networks using tailored visualization tech-
niques to understand the complicated relationship between hyper-parameters and model performance. The high-dimensional
error surface spanned by the wide range of hyper-parameters used to specify and optimize neural networks is difficult to
characterize – it is non-convex and discontinuous, and there could be complex local dependencies between hyper-parameters.
To explore these dependencies, we make use of a large number of sampled relations between hyper-parameters and end
performance, retrieved from thousands of individually trained convolutional neural network classifiers. We use a structured
selection of visualization techniques to analyze the impact of different combinations of hyper-parameters. The results reveal how
complicated dependencies between hyper-parameters influence the end performance, demonstrating how the complete picture
painted by considering a large number of trainings simultaneously can aid in understanding the impact of hyper-parameter
combinations.

CCS Concepts
• Computing methodologies → Neural networks; • Human-centered computing → Visual analytics;

1. Introduction

The last decade has seen a surge in usage of neural networks for
solving a wide variety of tasks, from medical diagnosis to lan-
guage translation. For example, deep convolutional neural net-
works (CNNs) enable powerful modeling of natural image tasks
such as classification, by learning complex relations through a lay-
ered structure of learnable weights. However, the optimization of
neural networks is challenging, where millions of weights should

be updated by observing data. Thus, the tuning of the training
setup and the optimization procedure is of critical importance,
and is predominantly a manual effort. The tuning is performed
by selecting a number of hyper-parameters, for example to de-
cide on model behavior, initial values of weights, and optimiza-
tion strategy [PBB19]. While recent development in deep learning
has brought forward techniques that can successfully optimize deep
neural networks in a wide range of situations, there is still signifi-
cant room for performance improvement by fine-tuning the hyper-
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parameters. However, it is not feasible to exhaustively explore all
possible combinations of hyper-parameters for each case. Instead,
we must understand their interconnected behavior to come up with
best-practices.

The problematic nature of hyper-parameter exploration can be
explained from the highly non-convex error surface spanned by the
hyper-parameters, where the different hyper-parameters can be in
tight dependence on each other. Also, many hyper-parameters are
categorical and not suitable for gradient-based optimization. Thus,
it is not feasible to use conventional methods for optimizing and
exploring hyper-parameters, which is further emphasized by the
fact that random searches have proven to be more efficient [BB12].
While hyper-parameter search aims at finding the optimal combi-
nation of parameters [BBBK11], our goal is to provide a better un-
derstanding of the impact of different hyper-parameters in terms
of model performance. For this purpose, we use a visual analysis
approach to explore the differences over multiple dimensions of
hyper-parameters, for thousands of trained neural networks.

The main objective of this paper is to distill general knowledge
about the relation between hyper-parameters and model perfor-
mance through analysis of a large number of trained CNNs. Thus,
in this work, we are less concerned about the details of a spe-
cific network. We do this by visually presenting statistics of the
training performance of the neural weight space dataset [EJR∗20].
Overview is provided through interactive distribution views, linked
to a heat-matrix for parameter combination impact overview. Fur-
ther details are presented in small-multiples plots of parameter
setting aggregates for analysis and comparison of interconnected
hyper-parameters.

The main questions investigated and answered by our analysis
are: 1) how can we visually present statistics of the results from a
large number of trained neural networks, and convey information
that is not visible from incremental sampling of hyper-parameters
as is done in conventional hyper-parameter optimization methods?
and 2) which parameter combinations have the most positive or
negative impact on the test accuracy, and how do different combi-
nations relate to each other?

Throughout the paper, we use a broad definition of hyper-
parameters, which include both architectural (size/depth, activation
function), and optimization parameters (initialization, optimizer,
batch size, etc.), and even comprising the dataset used for training.

2. Related Work

There is a large amount of existing work considering the impor-
tance of different hyper-parameters and approaches to optimize
them [HHLB14,CdM15,vRH18], e.g. using techniques such as ran-
dom search [BB12] and Bayesian optimization [BBBK11,Moc12].
While these methods mostly focus on optimizing the hyper-
parameter selection and speeding up the training process, in this
work we are more interested in understanding how different hyper-
parameters relate to each other, and how visual analysis can aid in
explaining such information.

Visual analysis has proven important in understanding and im-
proving performance in deep learning [HKPC18]. For example, vi-

sualization is an important concept for explainable AI, which at-
tempts to shed light on how neural networks operate [SVZ13,ZF14,
YCN∗15, SCD∗17]. However, so far visualization as a tool to un-
derstand hyper-parameters has seen limited research, partly due to
the large number of trainings required to get a detailed picture of
the hyper-parameter space. Some previous works developed tools
to support hyper-parameter search and analysis via interactive vi-
sual analytics [TSM∗11,PBCR11,LCW∗18] or for verifying hyper-
parameter optimization performance [YRK∗15]. A few works also
look at comparative visualization of a larger number of models
trained with different hyper-parameters [Bre15,HDK∗19,EJR∗20],
but are limited in the number of models or hyper-parameter combi-
nations compared.

In this work, we use visual support to reveal relations between
hyper-parameter combinations applied to a large number of CNNs.
We make use of the neural weight space dataset, see [EJR∗20]
for details, which provides 13K CNNs trained to perform classifi-
cation with a diverse selection of hyper-parameters on 5 different
image datasets. The hyper-parameters are randomly sampled, and
include both architectural specifications and optimization parame-
ters. Each network has been specified with 3-5 convolutional layers,
three max-pooling layers, and 3-5 fully connected (FC) layers. Al-
though there are many hyper-parameters in the dataset, we choose
to look at a subset deemed to reveal the most interesting and com-
plex relations. The subset includes:

Dataset MNIST [LBB∗98], CIFAR-10 [KH09],
SVHN [NWC∗11], STL-10 [CNL11],
Fashion-MNIST [XRV17]

Batch size 32, 64, 128, 256
Augmentation Off, On
Optimizer ADAM [KB14], RMSProp [HSS12], Mo-

mentum SGD
Activation ReLU [NH10], ELU [CUH15], Sigmoid,

TanH
Initialization Constant, Random normal, Glorot uniform,

Glorot normal [GB10]

3. Visual Analysis Design

To facilitate exploration of the many parameters at the same time,
we utilize overview and filter techniques combined with data aggre-
gation and small multiples plots [Tuf01]. The visualization frame-
works Vega-Lite [SMWH16], Plotly [Inc15], and Inviwo [JSS∗19]
have been used during the design process and for the implemen-
tation of the visual analysis tool illustrated in Figure 1. In the fol-
lowing, we will describe the flow of going from overview to details
along with chosen visualization techniques.

3.1. Model Performance Overview

The two central parts in our exploration are input data, which
largely affect the test accuracy, and the test accuracy itself. Thus,
we provide an overview of these two central parts using a stacked
histogram depicting the distribution of the test accuracy for the dif-
ferent data sets. As can be seen in Figure 2a, the test accuracy
corresponding to each data set has its own mode (due to varying
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complexity), which means that a straight forward distribution vi-
sualization does not allow for easy comparison across data sets.
Therefore, to enable comparison across data sets, a linear normal-
ization, x′ = x−xmin

xmax−xmin
, is applied on a per-data set basis, resulting

in the histograms depicted in Figure 2b. The normalized test accu-
racy can thus be used for selection/filtering interaction of the test
accuracy range to investigate good/bad parameter combinations.

(a) Test accuracy. (b) Normalized test accuracy.

Figure 2: Depiction of test accuracy for different data sets using
(a) no normalization and (b) per-data set linear normalization.
The normalized distributions loosen the distribution skewing due to
varying input data difficulties and provides easier parameter com-
parison.

3.2. Parameter Combination Overview

Test accuracy range selection serves as a basis for exploring com-
binations of parameters. Here, a parameter combination overview,
based on the current filter, is provided by a heat-map matrix. The
perceptually linear multi-hue sequential colormap colors [Bre0x]
in the heat-map matrix represent the aggregate number of networks
included in the selection for each combination of two parameters.
Thus, as an example and illustrated to the right in Figure 3; given
a selection of high test accuracy the heat-map matrix elements de-
picting high counts indicate good parameter combinations. The ag-
gregate number of networks can be used for comparison in this way
since the parameter settings were initially randomly selected.

3.3. Parameter Combination Details

Once an interesting parameter combination has been found it may
be of interest to see more details and understand if there are ad-
ditional parameter settings affecting the test accuracy. Inspired by
the Becker’s Trellis barley plot [BCS96], a third view depicts the
averages of the test accuracy for this purpose, see Figure 4. Here,
each parameter is split by its options and a primary parameter, e.g.,
data set. This shows how the test accuracy varies depending on the
combination of each parameter and the selected primary parameter.
Additionally, a secondary parameter can be chosen and encoded
as shape/color allowing for three parameters to be analyzed at the
same time.

Note that other multidimensional visualization techniques such
as parallel coordinates were evaluated but discarded since most of
the parameters are not quantitative, which causes all lines to in-
tersect at the same point. While this can partially be remedied by
random offsets, as demonstrated in the supplementary material, it
is still difficult to see complex interdependencies between multiple
hyper-parameters.

4. Results

With the presented tool for visual analysis, it is possible to dis-
cover many different properties of how hyper-parameter combina-
tions impact performance. Here, for space-limitation reasons, de-
tailed information is provided for a few such findings. The most
obvious pattern is the importance of good initialization, optimizer,
and activation function, highlighting the impact development in op-
timization techniques has had during the last decade. For example,
a modern initialization scheme (Glorot uniform/normal) and acti-
vation function (ReLU/ELU) has a profound effect on the success
of training. However, in order to demonstrate more complex rela-
tions between hyper-parameters, which can be revealed with the
aid of visual analysis, we will give some examples of less obvious
nature. While these relations could potentially be found by training
and testing individual combinations of hyper-parameters, this could
be difficult without prior knowledge on what to search for, and the
visual analysis of many trainings aid in discovering novel patterns.

Augmentation At a first inspection it seems that augmentation has
a small impact on the results, which is also supported by the sim-
pler correlation analysis in [EJR∗20]. However, this does not re-
veal the complete picture, as the augmentation has different im-
pacts depending on the other hyper-parameters and on the dataset.
First of all, augmentation has less effect on the more “artificial”
datasets (MNIST, Fashion-MNIST, SVHN). By selecting only the
more difficult datasets of natural images, CIFAR-10 and STL-10,
we can explore the distribution of hyper-parameter combinations
across different test accuracies. If we only select the trainings cen-
tered around the main mode of performance, i.e. the most frequent
training outcomes, “no augmentation” is most common, see Fig-
ure 3 (top). However, selecting only the top models, there is a clear
benefit in using augmentation (Figure 3 (bottom)). This indicates
that only the more difficult optimization problems effectively make
use of augmentation and does so in a limited number of trainings.
It is clear how a good combination of optimizer (ADAM), initial-
ization (Glorot), and activation function (ELU) is essential to reach
the top performance. At the same time, it is also not a guarantee
that the top percentile of possible performance will be reached if
these hyper-parameters are used.

Optimizer One of the most evident correlations between hyper-
parameter and performance is the optimizer, where modern tech-
niques such as ADAM and RMSprop clearly outperform a con-
ventional momentum SGD optimizer. However, the situation is
more complex than a global correlation; the performance of mo-
mentum SGD is tightly connected to the combination of other
hyper-parameters, such as activation function and initialization
scheme. Figure 4 shows two examples of how three different hyper-
parameters relate to each other. In the left plot, it can be seen that
while both ADAM and RMSProp generate results invariant to the
batch size, the conventional momentum SGD creates a negative
correlation between batch size and accuracy, i.e., the performance
is better for smaller batch sizes. In the right plot, comparing opti-
mizers, initialization schemes, and activation functions, the sensi-
tivity of conventional momentum SGD to both initialization and ac-
tivation function is revealed. For example, if ELU activation is used
together with Glorot initialization, then this optimizer performs on
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Figure 3: Analysis of the distribution of hyper-parameters for different ranges of end test accuracy of CIFAR-10 and STL-10. (Top) the main
mode of the accuracy distribution, indicated by the colored selection in the histogram, does not benefit from the augmentation, while the best
performing models show the opposite pattern (bottom). The center images have been extracted from their respective heat-map matrix for
presentation purposes.

par with the state-of-the-art optimizers, whereas there is a large dis-
crepancy between the optimizers when constant or random normal
initialization is used. It should be noted that the momentum SGD
optimizer has been used with a constant momentum term, and that
the results could be different if this is tuned differently.

Activation function Initialization and activation function is a sen-
sitive combination. While a Sigmoid function is inferior together
with a naive intitialization – most trainings are even non-convergent
if constant initialization is used – it is equally efficient as ReLU
when Glorot initialization is used. In fact, Figure 4 (right) shows
that Sigmoid performs slightly better than ReLU for the Glorot nor-
mal initialization scheme. Another interesting observation is how
the ELU activation definition shows a consistent small improve-
ment over the widely used ReLU in most circumstances.

5. Conclusions

We have introduced a set of tailored visual analysis tools for reveal-
ing detailed information on the interplay between neural network
hyper-parameters. We used the tools to study the performance of
13K CNNs, and reported a selection of interesting dependencies
between hyper-parameters. We saw how the most optimal combina-
tion of optimizer, activation function and initialization, in conjunc-
tion with augmented training data, is required to reach the highest
accuracy on natural images. However, it is still only a fraction of the
trainings with these settings that actually reach top performance.

While visual analysis is a powerful tool for exploring hyper-
parameters, one of the main limitations is that it also runs the risk
of revealing patterns that are not statistically significant. Thus, a
possible direction for future work is to provide statistical analysis
along with the visualizations [JBF∗19]. Another direction is to an-
alyze even more intricate dependencies between hyper-parameters

Figure 4: Behavior of different optimizers for different initializa-
tion schemes, batch sizes, and activation functions. The plots reveal
the sensitivity of conventional momentum SGD to batch size (left)
and activation function (right), but the sensitivity is only apparent
when a naive initialization scheme is used.

using the tools presented. For this purpose, it would be of inter-
est to explore a more automated visual analysis pipeline, where in-
teresting patterns in the data can be found without manual effort.
We believe that visual support for understanding the complicated
multi-dimensional nature of hyper-parameters will be an important
concept in machine learning, in both research and development ap-
plications.
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