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Abstract
Traffic congestion causes major economic, environmental and social problems in modern cities. We present an interactive
visualization tool to assist domain experts on the identification and analysis of traffic patterns at a city scale making use of
multivariate empirical urban data and fundamental diagrams. The proposed method combines visualization techniques with an
improved local principle curves method to model traffic dynamics and facilitate comparison of traffic patterns - resorting to the
fitted curve with a confidence interval - between different road segments and for different external conditions. We demonstrate
the proposed technique in an illustrative real-world case study in the city of Porto, Portugal.

CCS Concepts
• Human-centered computing → Visual analytics; Empirical studies in visualization;
• Computing methodologies → Machine learning approaches; Modeling and simulation; Shape modeling;

1. Introduction

Traffic congestion causes major economic, environmental and so-
cial problems in modern cities. Urban traffic is impaired by a num-
ber of spatio-temporal varying phenomena, namely travel demand
(e.g. in peak hours) [OÇS∗18], meteorological conditions, special
events (e.g. soccer match) [WWL16], among other factors. Fur-
thermore, several studies [LJZ17] [LLL∗16] have demonstrated the
direct and indirect spatial interactions between adjacent road seg-
ments leading, for instance, to the propagation of traffic jams.

Traffic can be monitored resorting to static (e.g. inductive
loops) and/or mobile sensors (e.g. taxis [LLL∗16], crowdsensing
[GdA17]). Single inductive loops measure traffic volume, i.e. the
number of vehicles transversing a given road segment r in time
interval t. Mobile sensors record trajectory data to infer vehicular
speed on different road segments. The current traffic state cannot
be accurately described resorting to a single traffic variable. Fun-
damental diagrams (FDs) [AM16] are commonly used by domain
experts to describe the traffic state of road segments. FDs describe
pairwise relations between speed, volume or density variables. In
this paper, we infer link-based fundamental diagrams by fusing data
from multiple sources, namely inductive loop and taxi trajectory
data. We can achieve a better estimation of the current traffic state
on urban areas making the best use of both data sources.

Recently, much work has been devoted to understanding the
main causes of traffic congestion [WWL16] and how congestion
propagates in urban areas [LJZ17]. Visualization has also been
used as a tool to better understand this phenomena [CGW15]

[ZWC∗16]. For instance, Wang et al. [WLY∗13] [WYL∗14] pro-
posed interactive systems for visual analysis of traffic congestion
(propagation) based on trajectory data or static transportation cells.
Most works on visual analysis studied a single traffic variable (e.g.
speed) and often use table-like pixel based visualization to reveal
traffic congestion patterns, which techniques are not suitable for
spatio-temporal sparse trajectory data.

We propose a novel visual analysis system to better understand
traffic congestion in urban areas and the impact of externalities (e.g.
weather). To tackle the shortcomings of the current state of the art,
we resort to multi-source fundamental diagrams to model the
relation between pairs of traffic variables. However, modeling the
relations between traffic variables is specially challenging in urban
areas due to several externalities (e.g. weather, parking, special
events), road network design and operation (e.g. traffic lights), data
sparsity, among others, that leads to noisy data clouds. To account
for the aforementioned uncertainties and dynamics of urban scenar-
ios, we extend the Local Principles Curves (LPC) method [OE11]
to infer traffic patterns in urban areas, which has shown promising
results in less dynamic scenarios (i.e. freeways [ED11]).

The proposed visual analysis system allows addressing challeng-
ing domain questions such as: 1) identification of evolving traffic
patterns in urban areas, 2) detection of correlations between differ-
ent road segments and 3) quantification of the impact of external-
ities on traffic patterns. To achieve these goals, we provide global
and cell-based interactive views of the traffic state in urban areas
with filtering mechanisms to assist on visual exploration.
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2. Related Work

Much work has been devoted to understanding the main causes
of traffic congestion [WWL16] and how congestion propagates
in urban areas [LJZ17] using machine learning methods. Silva et
al. [SdA18] resorted to probabilistic graphical modeling to under-
stand the associations between congestion and weather conditions.

Visualization has been also used as a tool to better understand
the complex traffic phenomena. We refer the reader to [CGW15]
[ZWC∗16] for a complete review of visualization techniques for ur-
ban and traffic data. Cruz et al. [CM16] use the figurative metaphor
of pulsing blood vessels for visualizing traffic dynamics. Wang et
al. [WLY∗13] proposed an interactive system for visual analysis of
traffic congestion based on trajectory data and the construction of
traffic jam propagation graphs. Wang et al [WYL∗14] presented a
traffic visual analysis system based on static transportation cells
that accurately record traffic volume and speed data, and study the
correlations between cell patterns and route patterns. In this work,
we combine machine learning methods with visualization tools to
assist the domain expert (e.g. urban planner, traffic engineer) on
detecting and comparing traffic patterns.

The estimation of fundamental diagrams has historically (i) fo-
cused mostly on highway or freeway scenarios (e.g. [QWZ15]),
and (ii) made use of a single data source. Single-source FD estima-
tion using trajectory data is challenging due to the dynamic human
mobility patterns that traduces into variable probe penetration lev-
els, spatio-temporal coverage, among others as show in [DRG16].
More recently, few works [AM16] [DRG16] estimated FDs in ur-
ban area. The number of studies estimating empirical fundamen-
tal diagrams in urban areas resorting to both data sources is very
reduced. Geroliminis et al. [GD08] have demonstrated the exis-
tence of well-defined macroscopic fundamental diagrams in urban
areas. [GS11b] has shown that the spatial variability of vehicle den-
sity can affect the shape, the scatter and the existence of a well-
defined macroscopic fundamental diagram.

Our work distinguishes from the current state-of-the-art in 1) use
of multi-source traffic and environmental data, 2) enhanced funda-
mental diagrams as a visualization tool to infer traffic patterns and
3) a machine learning method to model the relationship between
traffic variables and scatter around defined local principle curves.

3. Visual Analysis of Multivariate Urban Traffic Data

3.1. Input Data

We consider that there exist static (e.g. inductive loop) and mo-
bile (e.g. taxi) sensors measuring traffic variables, namely vehicu-
lar speed (v) and traffic volume (q). In addition there might exist
additional sensors measuring urban data, such as meteorological
conditions or pollutant emissions. Specifically, in this study, we use
trajectory data collected by a fleet of taxis in the city of Porto, Por-
tugal. Trajectory data refers to a sequence of ordered, timestamped
geo-spatial position estimates obtained using GPS: T = {(t,ϕ,λ)},
where t is the timestamp, ϕ latitude and λ longitude. Road network
data is used to match trajectory data to a sequence of road seg-
ments to estimate traffic variables. A road network is represented
as a directed graph G = (V,E), where V is the set of vertices (i.e.
intersections) and E is the set of edges (i.e. roads). Traffic volume
is acquired by inductive loops installed in key locations in the city.
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Figure 1: Our system pipeline: raw data→ preprocessing→mod-
eling of fundamental diagrams using Local Principal Curves →
visual exploration.

3.2. Methodology

The main goal of this work is to provide an informative and intu-
itive tool for domain experts to better understand traffic congestion
in urban areas through visualization techniques augmented by ma-
chine learning methods. We target the identification of traffic pat-
terns in urban areas and improved understanding of the impact of
externalities and spatial interrelations (i.e. adjacent roads) on these
traffic patterns. Fig. 1. depicts the proposed methodology that con-
sists of three main modules: (1) data pre-processing, (2) data fusion
to infer and model fundamental diagrams through Local Principle
Curves (LPC) and (3) multi-level and filterable visual exploration.

3.3. M1: Preprocessing

In this stage, we clean and calculate traffic metrics from urban data.
Speed estimation is performed resorting to taxi trajectory data con-
ducting the following steps: (1) sensor-related outlier removal (e.g.
arising from GPS multipath errors), (2) map matching of trajec-
tory data to a sequence of road segments of the network graph, (3)
smooth speed time series by applying an Hampel filter to remove
additional data outliers and (4) speed estimation in different road
segments and time intervals (vt

r) by aggregating the corresponding
sub-trajectories.

Volume estimation is performed making use of data collected by
inductive loops. Data collected by these static sensors is often cor-
rupted and noisy (e.g. due to sensor malfunction, parked vehicle).
To improve data quality, we apply two outlier detection and filter-
ing mechanisms in sequence, namely Hampel filter for removing
local outliers and Tukey’s filter to filter extreme values.

3.4. M2: Modeling of the Fundamental Diagrams (FD)

FD estimation: Road traffic is characterized by a state defined by
the flow rate (q), mean vehicle speed (v) and density (k). The traffic
state can be described graphically by three fundamental diagrams
of traffic flow (i.e. q− v, q− k and v− k diagrams) inferred by
fusing speed and traffic volume data from multiple sources. Tra-
jectory data collected from mobile probes allows accurately deter-
mining the mean vehicle speed in road segment r given sufficient
sampling rate. On the other hand, single inductive loops provide
accurate traffic volume data but these are sparsely deployed in the

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

14



C. Silva & P. M. d’Orey & A. Aguiar / Visual Analysis of Multivariate Urban Traffic Data Resorting to Local Principal Curves

city. Merging pre-processed data collected by different sensors al-
lows improving the accuracy of the fundamental diagrams estima-
tion by making the best use of both datasets. Since no occupancy
data is available, we infer vehicle density through the following
fundamental traffic theory (approximate) relation k = q

v . This step
generates a 2D point cloud for each fundamental diagram type.

FD modeling using LPC: we model the fundamental diagrams
describing the traffic state using the LPC method. Principal Curves
are smooth curves passing through the middle of the distribution
of a data cloud [ED11]. The LPC method is described in detail
in Algorithm 1. After variable normalization, this algorithm iter-
atively calculates local centers of mass and a first local principal
component updating x until the convergence criteria is met (i.e., µx

remains approximately constant). The calculation of local center of
mass and the principal component is weighted by wx

i , where H is a
bandwidth matrix and KH is a d-dimensional kernel function,

wx
i = KH

(xi− x)
∑

n
i=1(xi− x)

(1)

The resulting principal curve is composed by the series of local
centers of mass µx. The LPC input parameters with critical impor-
tance on the system performance are 1) starting point x0, 2) step
length t0 and 3) bandwidth h. Given the dynamicity of urban traf-
fic flow the input parameters must be tuned for the different road
segments, contrary to what is mentioned in [ED11] for freeways.
The parameter x0 is selected automatically based on a local density
estimate. The parameters t0 and h are selected according to an au-
tomatic method proposed in [Ein11]. Angle penalization α is not
considered because the data clouds do not form crossings locally.

To understand varying traffic phenomena (e.g. traffic hystere-
sis [GS11a]), we extend the LPC algorithm to also model data dis-
persion around the defined Principal Curve. The proposed method
described in Algorithm 2 is composed of two main parts: (1) de-
termination of the closest center of mass for each data cloud point
using an euclidean distance metric (steps 2-12) and (2) computation
of confidence bounds of the LPC curve (steps 13-16) resorting to a
variability measure (e.g. nth quantile) based on the set of euclidean
distances between a center of mass µx and all its associated data
points. Fig. 2 shows an illustrative example of the calculated LPC
and the association of data points to the closest center of mass.

Algorithm 1 Modified Local principal Curves (LPC)
Input: x0, t0, h, scaled = True
Output: fitted curve within a confidence interval

1: procedure LPC(xn) . data cloud
2: x← x0, x0 ∈ R2 and t0 > 0 . Initialization
3: repeat
4: µx← ∑

n
i=1 wx

i xi . Calculate local centre of mass
5: ∑

x← (σx
jk) ∈ R2×2 . Calculate covariance matrix

6: via σ
x
jk← ∑

n
i=1 wx

i (xi j−µx
j)(xik−µx

k)

7: γ
x← ev(∑x) . Calculate 1st eigenvector of ∑

x

8: x← µx + t0γ
x . New center of mass

9: until µx remains constant . End of data cloud
10: BOUNDS(µx,xn) . Confidence bounds calculation
11: end procedure

Algorithm 2 Confidence Bounds Calculation

1: procedure BOUNDS(µx,xn) . Centers of mass and points
2: v←{}
3: for i = 1 to |xn| do . Assign each x to closest µx

4: distance←∞
5: for j = 1 to |µx| do
6: tmp← dist(µx,xn,”euclidean”)
7: if tmp < distance then
8: distance← tmp
9: end if

10: end for
11: v.append(distance, xn, µx)
12: end for
13: for z = 1 to |µx| do
14: d← quantile(distance,nth)
15: add d to y coordinate of µx

16: end for
17: return xn,µx . Coordinates within a confidence interval
18: end procedure
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Figure 2: Confidence Bounds Calculation (e.g. v−q FD).

3.5. M3: Visual Exploration

We consider a visual exploration stage with three main steps:

• city-level exploration (Fig. 3): presents a high level view of the
current traffic situation in the city in terms of vehicular speed and
flow in a given time period. This stage allows the user to identify
road segments or city zones for further exploration.
• road-level exploration (e.g. Fig 5a): presents the traffic state

at each individual road resorting to three fundamental diagrams
(q− v, q− k and v− k). This view allows the user to detect ab-
normal traffic patterns and to assess - through filtering - how
externalities (e.g. weather) and temporal aspects (e.g. time of the
day) impact the traffic patterns.
• zone-level exploration (e.g. Fig 5): focuses on the comparison

of the traffic patterns in adjacent or close by road segments. The
main aim is to understand if these traffic patterns co-evolve or not
under certain conditions through the application of the temporal
and externalities filters.

We resort to the following visualization techniques:

• city-level exploration: provides a city-level map view of the
traffic state. For each road, we represent the traffic state using a
colored and variable radius circle in which the traffic speed and
volume is encoded by color (red and green color represents low
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Figure 3: Global Visual Exploration View: traffic speed and vol-
ume represented by circle color and radius, respectively.

Figure 4: Temporal Filtering (e.g. Traffic Volume Data).

and high speed, respectively) and circle radius (larger radius for
higher traffic volume), respectively. The map view is updated by
modifying the temporal and externalities (e.g. weather) filter.
• road and zone-level: fundamental diagrams represent the traf-

fic behaviour in individual road segments. Each point in the data
cloud represents the observed traffic state in terms of v, q and k
pairs for a given time interval (in this paper we consider a 15-min
time interval). The LPC approximates the data cloud distribution
and dispersion (through the confidence bound) to facilitate com-
parison of: 1) for a given road segment (e.g. to compare peak and
non-peak hours - see 2 curves in Fig. 5b) or 2) between differ-
ent road links (e.g. compare curves in Fig. 5a and Fig. 5b for the
same time interval) using the aforementioned filters.

When the user applies filtering, the processing pipeline is re-
computed, and the map views and the fundamental diagrams are
updated. We consider the following filters for visual exploration:

• temporal: to assist the user in defining critical temporal periods,
namely 1) filtering by the hour of the day (e.g. 8-10 h to represent
peak traffic), 2) day of the week (e.g. weekdays vs weekend) to
isolate traffic patterns, 3) temporal window to study or detect, for
instance, special events, among many other possibilities.
• externalities: to assess the impact of externalities (e.g. weather)

on the traffic patterns and existence of local phenomena. For in-
stance, the user could compare conventional traffic patterns with
the ones from extreme weather events (e.g. heavy snow).

4. Case Study

In this section, we present a simple illustrative use case demon-
strating the proposed visual analysis system. Assume that the user
is interested comparing the traffic patterns between peak and non-
peak periods. First, the user could make use of the map view to

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
10

20
30

40

k (vehicles/km)

v 
(k

m
/h

)

1

Z_3 | S_9

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

1

Z_3 | S_9

8h − 10h
14h − 16h

(a)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

● ●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

0 20 40 60 80

0
10

20
30

40
50

k (vehicles/km)

v 
(k

m
/h

)

1

Z_3 | S_11

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

Z_3 | S_11

8h − 10h
15h − 17h

(b)
Figure 5: Road and Zone-level Visual Exploration (e.g. v− k dia-
grams inferred in the city of Porto, Portugal)

select two road segments of interest according to an expert-defined
criteria. Afterwards, the expert would resort to time series data (e.g.
similar to Fig 4) to define the peak (e.g. 8-10 h) and non-peak hours
(e.g. 14-16h) for applying the temporal filter (type: hour of the day).
Following, the visual exploration system would be triggered to up-
date the fundamental diagram views for the selected road segments.

Fig. 5 depicts the the k− v fundamental diagrams for two road
segments in the city of Porto, Portugal, that were approximated by
LPC and the corresponding confidence bounds. The k− v diagram
shows how sharply the vehicular speed (v) decreases for increasing
vehicle density (k). Typically, the speed reaches the lowest values
when the density equals the jam density (i.e.when a large number of
vehicles are very close and unable to move or moving very slowly).
This diagram is particular useful to translate the traffic condition of
a segment. The shape of the FDs depends on network topology and
control parameters (e.g. traffic light settings).

Analyzing a given road segment (e.g. Fig 5a) we observe that
there exist similarities between the LPC curves but the decay rate
of LPC and the data dispersion is considerably higher for the morn-
ing peak period. This results is expected given the more complex
traffic dynamics during peak hours. Comparing both road segments
(Fig 5a vs Fig 5b) we clearly see that the traffic patterns of one road
segment is clearly more impacted during peak hours. A domain ex-
pert or further visual exploration (e.g. applying different data filter-
ing) could provide insights for this discrepancy.

5. Conclusions

We have presented an interactive visualization tool to analyze traf-
fic patterns at a city scale resorting to multivariate urban (traffic)
data. The proposed method combined visualization techniques with
the local principle curves method to facilitate visual exploration
and comparison of traffic data patterns. Filtering mechanism sup-
port the discovery of relations between traffic variables and external
factors (e.g., weather).
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