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Abstract
In this paper, we investigate to which degree the human should be involved into the model design and how good the empirical
model can be with more careful design. To find out, we extended our previously published Mahalanobis brush (the best current
empirical model in terms of accuracy for brushing points in a scatterplot) by further incorporating the data distribution infor-
mation that is captured by the kernel density estimation (KDE). Based on this work, we then include a short discussion between
the empirical model, designed in detail by an expert and the deep learning-based model that is learned from user data directly.

CCS Concepts
• Human-centered computing → Interaction techniques; • Computing methodologies → Optimization algorithms;

1. Introduction

Linking and brushing is a prevalent interaction technique for data
exploration and analysis in coordinated multiple views. Becker and
Cleveland [BC87] were the first to come up with a theory of brush-
ing, defined as an interactive method to select data points by using
simple geometries (square, circle, or a polygon).

Since brushing is central in modern visual analytics systems, it
has attracted a considerable amount of research and most of the
proposed techniques can be evaluated by the following two criteria.
• efficiency—how fast is the brushing interaction; does it enable a

fluid data exploration [EVMJ∗11,TKBH17]? Clicking one point,
for example, is a minimal interaction that is also most efficient.
• accuracy—to which degree does the brushing interaction lead to

an accurate selection of the data subset, which the user actually
wished to select? The lasso, for example, is a brushing tool which
can be used to specify the brush region with 100% accuracy.

In order to optimize both criteria in one technique as well as pos-
sible, data-driven interaction techniques became popular recently.
This type of method is usually based on a fast, sketch-based user in-
teraction (for example, click-and-drag) and a heuristic, which trans-
forms the sketching interaction into the actual data selection, based
on the underlying data visualization. To improve the accuracy, the
parameters of the technique can be automatically optimized by us-
ing data from a user study.

Our previously published work—Mahalanobis brush [FH17]—
is a typical example of a data-driven technique, taking the local
covariance information into account, forming the basis for a local
Mahalanobis metric. The parameters are then optimized based on
data from a user study. The quantitative evaluation shows that it

can achieve ≈92% accuracy based on a fast interaction (click-and-
drag). Later, inspired by the success of deep learning methods in
a wide range of fields, we developed a CNN-based brushing tech-
nique [FH18] and achieved the so far best accuracy (≈97%). For
this method, we converted the interaction and data information into
an image-based input to the network and allowed the network to
learn a model itself.

As machine learning [FH18] had outperformed empirical model-
ing [FH17], we were curious about how much the empirical model
can be improved with a more sophisticated design and whether it
can beat the deep learning approach. In this paper, we report our
attempt to construct a best-possible empirical model by further ex-
tending the Mahalanobis brush, incorporating kernel density esti-
mation (KDE) [Par62], and informing a clustering step that returns
one of the clusters as the data selection. The main contribution of
this paper includes our extension of the empirical model for brush-
ing points in a scatterplot, and a comparison of the two approaches,
as well as an according discussion.

2. Related work

Brushing in scatterplots is often based on simple geometric shapes
such as a rectangle or an ellipse to select data items, or a lasso is
used to specify the brush accurately. Several extensions to simple
brushing have been proposed over the years,

Martin and Ward [MW95] suggest logical combinations of
brushes, including unions, intersections, negations, and XOR op-
erations, enabling the user to configure composite brushes.

MyBrush was suggested by Koytek et al. [KPV∗17] in order to
extend brushing and linking by incorporating personal agency. It
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Figure 1: Overview of our KDE brushing technique: the user clicks
into the middle of the data subset to be selected and drags the
pointer to the border of the subset (sketching interaction); then a
selection of points around the click-point is determined, based on
the KDE values of the data. Two parameters, α and β, related to
the sample size, and the size of the KDE bandwidth, influence the
results and we optimize them using a user study (50 participants).

offers users the flexibility to configure the source, link, and target
of multiple brushes.

Similarity brushing [NH06b,MKO∗08] is a classical example of
sketch-based brushing, which is based on a fast and simple sketch-
ing interaction—the user uses a swift and approximate gesture (for
ex., drawing an approximate shape that the data should follow) and
then a similarity measure is designed to identify, which data items
actually are brushed.

Our previously published Mahalanobis brush [FH17] is an ex-
tension of the original Mahalanobis brush, introduced by Rados et
al. [RSM∗16], in which the user clicks into the center of a coherent
data subset to select it. The local covariance information is used to
form a selection metric. The main drawbacks of this method are a
non-optimized selection of the local context for the Mahalanobis
computation and one off-screen parameter for the brush size. Both
issues were successfully addressed in our method [FH17].

Later, we exploited machine learning and developed CNN-based
brushing in scatterplots [FH18]. This technique uses the same in-
teraction as the Mahalanobis brush [FH17], while achieving the so
far best accuracy.

3. KDE brushing in scatterplots

Figure 1 shows an overview of the new, KDE-based brushing tech-
nique. We keep the simple click-and-drag interaction for sketching
the data subset (click into the middle of the targeted data subset and
drag the pointer to the outer boundary of the subset). The click-
point s = (sx,sy)

> and the end-point e = (ex,ey)
> of the drag-

interaction provide us with a first hint concerning the size of the
data subset, which the user wishes to brush. Similarly to the Ma-
halanobis brush [FH17], we first consider a circular data subset,
centered around the start-point of the interaction, and estimate the
shape and orientation of the data in this region by looking at the
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Figure 2: Changing the size of the kernel in KDE: bigger kernels
(to the lower right) bring forth larger structures in the data, while
smaller kernels (to the upper left) represent details.

local covariance information. We then start a short iteration that
refines this data subset selection, based on the local covariance in-
formation. After a sufficiently close convergence of this iteration,
we make a selection of data points, based on a kernel density esti-
mation of the data, using the local covariance information as a basis
for specifying the kernel. In the following, we go into more details
with respect to the individual components of our solution.

The Mahalanobis distance is a distance measure introduced by
P. C. Mahalanobis [Mah36], which is used for helping with the
identification and analysis of patterns in the data. The Mahalanobis
distance between vectors a and b can be defined by

dΣ(a,b) =
√

(a−b)>Σ−1 (a−b) (1)

Initially, we consider a circular area with the radius α · dE(s,e),
where α is a weighting factor and dE(s,e) is the Euclidean dis-
tance between s and e. All data points within this circle are used to
compute the first instance of the local covariance information, Σ1.
Next, we consider all points within a Mahalanobis ellipse, based on
Σ1 and sized according to dΣ(s,e). Usually, this leads to a new data
subset, which is similar to the data subset as determined by the ini-
tial circle, but more closely following the underlying data structure.
To obtain an even better sample, we refine the sample iteratively by
replacing them with the points in the Mahalanobis ellipse which is
updated every iteration according to the covariance of the samples
in last iteration. However, we observe that this process sometimes
can lead to small fluctuations, including/excluding a few data points
in consecutive iterations. Therefore, we stabilize the convergence
by enabling the partial consideration of data points, leading to a
solution that is based on the weighted covariance matrix [Gou09].
The details of this procedure is introduced in [FH17].

4. Kernel Density Estimation

Kernel density estimation (KDE) is a popular method for data
analysis in the field of statistics, which was introduced by Rosen-
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blatt [R∗56] and Parzen [Par62]. It is a non-parametric way to es-
timate the probability density function of a random variable. KDE
can be used, for example, to make inferences about data, based on
a finite sample.

Assuming that {xi}1≤i≤n is a sample of n d-dimensional vec-
tors drawn from a common distribution, described by a particular
density function, then KDE can be used to estimate this density
function as

fH(x) =
1
n

n

∑
i=1

KH(x−xi) (2)

with H being the d×d kernel matrix (symmetric and positive def-
inite). The choice of matrix H is the single most important factor
affecting the main characteristics of fH [WJ95]. Figure 2 shows
four results from a 2D KDE with increasing size of H.

KH is a kernel function with KH(x) = |H|−
1
2 K(H−

1
2 x), where

K(x) is a symmetric multivariate density function with K(x)≥ 0
and

∫
K(x)dx = 1. A variety of kernels has been studied, including

the uniform kernel, the triangle kernel, the normal kernel (based on
a Gaussian distribution), the Epanechnikov kernel [T∗93], and oth-
ers. The choice of the kernel function is actually not as important as
the choice of the size (and shape) of H. Being interested in the local
mode of the data distribution, we use the normal kernel [MS93].

Since we wish to consider the local data distribution when mod-
eling an appropriate kernel matrix H, we can make direct use
of the converged covariance matrix Σ, leading to the following
(anisotropic) kernel function [Ton12]

KH(x) =
e−

1
2 x>Σ x√

(2π)d |Σ|
(3)

In order to realize an appropriate scaling of our kernel, we make
use of an eigendecomposition of Σ = VΛV> with eigenvectors V
and eigenvalues Λ. This leads to the following, scaled versions of
|H|−

1
2 and H−

1
2 :

|H|−
1
2 = |βφΛ|−

1
2 & H−

1
2 = (βφΛ)−

1
2 V> (4)

Used with an isotropic kernel function K(x) = (2π)−
d
2 e−

1
2 x>x, this

amounts to a KDE with an accordingly scaled kernel matrix. We
find the best possible scaling of H by choosing the two scaling pa-
rameters φ and β based on two separate solutions: On the one hand,
we use a data-driven approach to determine φ (see section 4.2). On
the other hand, we optimize β as a general parameter using the data
from the user study (see section 6).

4.1. Selecting a data subset using clustering

The modes of the KDE represent groups of data items (at the scale
determined by the size of H). We use clustering (each mode leading
to one cluster) to identify the one group of data items, which is
associated with the click-and-drag interaction, and select it.

For clustering, we use a watershed algorithm [BM92, NH06a,
FH11, FH10]: Starting with the mode with the highest KDE value,
we iteratively include neighboring locations into the corresponding
cluster, lowering the KDE threshold for doing so iteratively. For
every new threshold, we either join a neighboring location to an
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Figure 3: A: KDE of a dataset (relatively small kernel). B: Clus-
tering related to the modes of the KDE, indicated by the small blue
triangles. C: The one cluster, which corresponds to the KDE mode
near to s determines, which data points are selected (indicated as
green points).

existing cluster, or create a new one, if the corresponding location
is not adjacent to an existing cluster. Figure 3B shows an according
clustering result for a KDE with a particular kernel (Figure 3A).
Figure 3C shows how data points are then selected.

4.2. Automatic adaption of the KDE kernel size

In general, the number of modes in a KDE is directly related to the
kernel size: the bigger the kernel, the fewer modes [MS93]. Thus,
there is a strong relation between the size of the kernel and the
size of the cluster, which is used to select the data points. In the
following, we describe a data-driven approach to determining an
appropriate scaling factor φ.

Since we aim at a KDE that will provide one cluster in order to
select the targeted data points, we optimize the size of the band-
width kernel so that the size of the resulting cluster matches the
size of the Mahalanobis ellipse around s and through e—as a mea-
sure of comparison, we are using the dice coefficient between the
Mahalanobis ellipse E and the KDE cluster C(φ) [Dic45]:

s(φ) =
2 |E∩C(φ)|
|E|+ |C(φ)| (5)

where |E| and |C(φ)| are the sizes of the Mahalanobis ellipse and
the KDE cluster, respectively (evaluated as a grid-based measure).

The example shown in Figure 4 demonstrates the influence of
different kernel sizes on the brushing results. The true positives
(correctly selected), true negatives (correctly non-selected), false
positives (falsely selected) and the false negatives (falsely left out)
are colored in yellow, white, pink and purple, accordingly. We see
that there are more false negatives when the kernel size is too small
(showed in the left) with a low similarity between the gray KDE
cluster and the Mahalanobis ellipse. Conversely, more false posi-
tives appear when the kernel size is too big (on the right).
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Figure 4: Clustering based on different kernel sizes. Left: too small
kernel, s(φ) = 0.63; Middle: the optimal size of the kernel, s(φ) =
0.72; Right: too big kernel, s(φ) = 0.64.

5. User study

Our technique, as described so far, has two not-yet-optimized pa-
rameters: α (initial selection, determining the context of local data
shape analysis; too small values of α lead to underselection while
too large values to overselection) and β (overall scaling parame-
ter on top of φ, influencing the kernel size). In order to achieve
as accurate as possible brushing, we have to get information about
how users would use our technique to brush and what they actually
wanted to select from the dataset (ground truth). As the interaction
and brushing target designed in our method are same as the pre-
viously published Mahalanobis brush [FH17], we directly use the
data from the published user study. Based on this information, we
then did an optimization of α and β.

In the previously published user study, six representative datasets
are provided. The datasets selected for the user study are based on
scagnostics [TT88], aiming at a healthy spread of scatterplots of
different type. For the user study, 50 participants were invited and
asked to do 12 selections each. In every case, a particular scatterplot
(one out of six) and a particular request (choose a large cluster/a
small cluster/an elongated cluster) were given. Then the participant
was instructed to choose a target data subset to select (ground truth,
reported by the participants using a lasso tool), then also providing
the corresponding click-and-drag interaction, which this participant
would use to select the target group. Accordingly, 600 brushing
cases were collected from the user study.

6. Optimization and Evaluation

From the 600 selections that we got from the published user study,
we randomly chose 400 selections as training data. As a measure
for how well the computed selection (S(α,β)) agrees with the user
goal (G), we compute the dice coefficient of these two sets:

s(α,β) =
2|G∩S(α,β)|
|G|+ |S(α,β)| (6)

If the computed selection S(α,β) matches the user goal G perfectly,
s(α,β) = 1; in the case of a complete mismatch, s(α,β) = 0.

Having collected the ground truth (lasso data) from the study
and the click- and release-points from the sketching interaction, we
were able to conduct an optimization of α and β according to the
following procedure (not involving users anymore): Based on vary-
ing choices of α and β, we could execute our selection heuristic,
using the datasets from the user study and the recorded interaction

data, leading to a particular S(α,β)—this was then straight-forward
to compare to G as collected during the user study, leading to a cor-
responding s(α,β). We started with a large matrix of different com-
binations of the two parameters, covering a domain, which for sure
was big enough. Inspecting the s-values for all these combination
lead us to further examining a more detailed subset of the parameter
space (basically, we refined our optimization hierarchically, doing
the refinement manually). Eventually, we ended up with the fol-
lowing optimal values for both parameters: α = 1.05 and β = 1.05.
The whole optimization process is done offline once and it takes 4
hours for the computation.

Using the optimized parameters, we did an accuracy comparison
with the previously published Mahalanobis brush [FH17] using the
interaction information from the published study. The overall accu-
racy for the new technique is ≈90% which is slightly lower than
the one of the Mahalanobis brush (≈92%) and does neither out-
perform the CNN-based brush [FH18] with its accuracy of ≈97%.
So far, we have been unable to evaluate, why this the case – we
had assumed that more carefully considering the local data distri-
bution should help to further improve the technique’s accuracy (as
a nonlinear method, the KDE should have better power to adapt
to nonlinear structures in the data). Unfortunately, we cannot rule
out that we have overlooked another limitation when realizing the
KDE-based approach – either a conceptual one, or a limitation of
our implementation. Accordingly, we imagine that another solution
can in fact achieve a further improved accuracy.

As another point of this discussion, we note that empirical mod-
eling comes with the advantage of being explainable (for example,
we know how different values of α and β influence the results in
our approach), while the excellent performance of the deep learn-
ing model comes at the price of a poor interpretability (including
some uncertainty concerning the stability of its predictive power).
This comparison leads to the interesting question of how much ac-
curacy we are willing to sacrifice for a good interpretability.

7. Conclusion and future work

In this paper, we present our attempt to improve the Mahalanobis
brush by incorporating KDE to further improve its accuracy and we
investigate the influence of human expertise during model design.
Although more information is taken into account for modeling the
KDE-based model, we have not seen an improvement compared to
the simpler Mahalanobis brush. Based on this result, we realize that
the incremental cost of incorporating KDE could be an over-design
problem. In addition, when compared with deep learning, we found
that its black-box mechanism leads to a poor interpretability, while
the results based on the empirical model are explainable. It is un-
clear, however, how to weigh this factor in, when comparing the
overall performance.

In the future, we see potential in taking innovative advantage of
both sides—empirical modeling and machine learning. We imag-
ine, for example, to automatically learn the kernel size or to design
the deep learning input on the basis of the KDE. In addition, we
are also interested to investigate the reasons why the KDE-based
method performs worst than the Mahalanobis brush.
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