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Abstract
SVBRDF (spatially varying bidirectional reflectance distribution function) recovery is concerned with deriving the material
properties of an object from one or more images. This problem is particularly challenging when the images are casual rather
than calibrated captures. It makes the problem highly under specified, since an object can look quite different from different
angles and from different light directions. Yet many solutions have been attempted under varying assumptions, and the most
promising solutions to date are those which use supervised deep learning techniques. The network is first trained with a large
number of synthetically created images of surfaces, usually planar, with known values for material properties and then asked
to predict the properties for image(s) of a new object. While the results obtained are impressive as shown through renders of
the input object using recovered material properties, there is a problem in the accuracy of the recovered properties. Material
properties get entangled, specifically the diffuse and specular reflectance behaviors. Such inaccuracies would hinder various
down stream applications which use these properties. In this position paper we present this property entanglement problem.
First, we demonstrate the problem through various property map outputs obtained by running a state of the deep learning
solution. Next we analyse the present solutions, and argue that the main reason for this entanglement is the way the loss
function is defined when training the network. Lastly, we propose potential directions that could be pursued to alleviate this
problem.

Categories and Subject Descriptors (according to ACM CCS): I.4.1
[Image Procesing and Computer Vision]: Digitization and Image
Capture—Reflectance

1. Introduction

The appearance of an object depends on the view (eye or camera),
light source and the way in which light interacts with (gets scattered
by) the surface and material of the object. For an opaque surface,
this light interaction is modelled by a four-dimensional function
called as the bi-directional reflectance distribution function, BRDF
for short, which models the output light in any direction as a func-
tion of the incoming light in any direction. For heterogeneous ma-
terials, we often use the spatially varying BRDF, or SVBRDF for
short, which has a location on the surface as additional parameters.
A number of mathematical models, such as Phong, or the more
physically-based Cook-Torrance, and other variants have been pro-
posed for compact BRDF representation [KE09]. These models
have a fixed number of parameters (properties of the surface and
material), which take values to correctly model light reflectance
behavior at a surface location. BRDF recovery essentially amounts
to deriving/estimating the values of these parameters from captured
images. For example, if we wish to recover the BRDF for a planar

surface using, say the GGX micro-facet distribution model (based
on Cook-Torrance) [WMLT07] for isotropic reflectance behavior,
then we would need diffuse albedo and specular albedo for each
of the colour channels, and specular roughness. In addition, local
surface normals are often recovered to account for fine variations
in surface geometry. For an image, each pixel is taken to represent
a surface location. Hence, if we assume the RGB colour model, we
would need 3 values each for diffuse and specular albedo, 1 value
for specular roughness and 2 values for the normal direction. If ev-
ery pixel location has to be assigned these values, then we would
get 4 property maps to be recovered. Increasingly, deep learning
networks are being trained to learn prediction of SVBRDFs from
one or more casually captured images of the object, and with rea-
sonable success.

The major problem in recovering BRDF properties from an im-
age of the object arises from the following. Since the colour output
seen at a pixel is a complex function of the incident light, the view
and the different property values of the object’s surface area which
this pixel is imaging, one requires an inversion method which can
disentangle these individual property values. Otherwise the same
colour value may be obtained by a completely different set of prop-
erty values, possibly incorrectly representing the underlying phys-
ical material and surface of the object. Given just one or a few
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images in the wild, this inversion is an ill-posed problem. How-
ever, recent efforts in training deep learning networks to learn this
inversion function have shown considerable success in SVBRDF
recovery as discussed next in the related work section. Usually, in
attempting SVBRDF recovery, it is also assumed that the under-
lying surface is planar. In spite of these results, careful observa-
tion reveals that in most of these methods, even if the predicted
maps when used in rendering do yield a near identical version of
the ground truth image, the individual properties are often not the
same as the ground truth maps, particularly the diffuse albedo and
specular albedo property maps.

Given how ill-posed this problem is, we believe that it would
be near impossible to predict property maps exactly identical to
ground truth maps. However, accurate maps are essential when the
BRDFs are used in various downstream applications, such as the
following:

1. Material type classification - this requires matching/clustering
of BRDFs and has vital applications in remote sensing,
paint industry, food inspection, material science, recycling, etc
[GGPL18].

2. Artist editable - artists in the entertainment industry often re-
work/change the BRDF by editing the property maps [BOR06].
Inaccurate property maps would cause significant overheads and
pain.

3. Virtual object insertion in mixed reality environments - one of-
ten introduces virtual object(s) into virtual/augmented scenes.
Accurate BRDFs are essential if the virtual object(s) have to
appear realistic and natural in their environment, which would
only be possible if light interaction between the virtual object(s)
and the environment is realistically modelled [KKT11].

2. State of the Art in SVBRDF Recovery

Classical BRDF measurement approaches rely on capturing a large
number of images under different calibrated viewing and lighting
conditions using dedicated acquisition setups [MWL∗99]. While
these approaches can recover nice BRDFs, they require specialized
hardware for image acquisition in addition to a large number of
input images. Since then, there has been work on identifying an
optimal subsample of views and lighting conditions for image ac-
quisition [NJR15]. However, these methods are restricted to homo-
geneous materials and the requirement of pre-calibrated cameras
for image acquisition severely restricts their use. For this paper, we
focus on methods of spatially-varying BRDF recovery which use
light-weight image captures of materials in the wild.

As mentioned earlier, deep learning models have shown a lot
of promise in reflectance modeling from images in the wild
[LDPT17,DAD∗18,LSC18,DAD∗19]. In [LDPT17] the traditional
L2 loss over the predicted maps is used to train their deep net-
work which generates maps that do not reproduce well the ap-
pearance of ground truth renders. [DAD∗18] have shown that this
loss function does not lead to predicting very accurate BRDFs nor
ground truth render reproductions. Instead, in their work on re-
covering SVBRDF from a single flash-lit image, both [DAD∗18]
and [LSC18] found rendering loss to be a better alternative if one’s
goal is to recover accurate renders from the predicted maps. Ren-
dering loss is computed by using the L1 or L2 loss between the

Figure 1: Model trained with the rendering loss and L1 loss on
the individual maps can generate a realistic looking render despite
incorrectly assigning the red color of the material to its specular
albedo to compensate for the incorrect diffuse albedo.

rendered image using all 4 of the predicted maps and the input im-
age obtained by a rendering which uses all 4 of the ground truth
maps under the same lighting and viewing conditions. However,
in their approach the specular and diffuse albedo maps recovered
have errors when compared to ground truth maps, despite the fact
that the final rendered image(s) looks similar to the input image(s).
The success of these deep networks on predicting maps from sin-
gle images is due to the strong priors that they learn on the material
property, and thus it is not possible for these models to generalize
to images rendered from arbitrary SVBRDF maps.

Currently, the best results are obtained using multi-image deep
networks [GLD∗19, DAD∗19]. These are networks that use mul-
tiple images of the same material under different light and view
conditions as their input. In the multiple image setup, the different
views can now provide the network with more cues on what the
BRDF should be, and ideally we would like the network to rely
less on the learned priors about the material properties and more
on the visual cues in the different images as the number of views
increases. Very recent is the work by [DAD∗19] which can han-
dle an arbitrary number of input views. Similar to previous work
by [GLD∗19], [DAD∗19] found that using a combination of L1 loss
on the predicted maps and rendering loss during training helped
stabilize the training procedure. However, the individual recovered
SVBRDF maps still have inaccuracies, and there are often instances
where the network predicts incorrect maps that render to a similar
looking image, for example, by incorrectly assigning the color from
the diffuse albedo map to the specular albedo map. Figure 1 shows
an example of this case.

3. The Causes for Errors in Property Recovery

It should be noted that a single or a few images by themselves may
not contain enough cues for one to be able to infer material prop-
erties precisely. Thus recovering material properties from a single
image, or even a few images, is an ill-posed problem. Arbitrarily in-
creasing the number of input images with different view and light
directions leads to larger data collection requirements but not nec-
essarily better quality results. Hence, one of the major goals in new
research would be to recover more accurate property maps by train-
ing with a few casually captured images. As per our analysis of
current deep learning solutions, there are a few causes for these
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Figure 2: Using render loss leads to the recovery of maps which
create similar renders to the ground truth, despite incorrect prop-
erty maps.

inaccuracies, mainly arising from the way the loss function is de-
fined.

• Emphasis in training is on rendered image similarity rather than
material properties.
• No effort at disentangled learning of properties.
• Dependence on a few views for render comparison.

As mentioned earlier, rendering loss was shown to be more ef-
fective and hence gets used in all recent work. [DAD∗18, LSC18,
LXR∗18,GLD∗19,DAD∗19]. Using this loss as opposed to the tra-
ditional L1 or L2 loss on predicted maps lets the physical meanings
of each map and the interplay between them to be relegated to the
update steps. Formally, the rendering loss is given by:

LR(~l,~v) = |RN,D,R,S(~l,~v)−RN̂,D̂,R̂,Ŝ(
~l,~v)| (1)

Where LR(~l,~v) is the rendering loss under some light direction ~l
and view direction ~v, RN,D,R,S(~l,~v) is the rendering function pa-
rameterized by the 4 material maps N, D, R and S which are the
predicted normal, diffuse albedo, specular roughness and specu-
lar albedo maps respectively, and N̂, D̂, R̂ and Ŝ are the ground
truths for those maps respecively. Since the rendering loss is light
and view dependent, in practice the average of the rendering loss
over multiple randomly sampled light and view directions is used
for training. We note that this is the Monte Carlo method for ap-
proximating E~l,~v[LR(~l,~v)]. This definition of the rendering loss has
several major drawbacks.

Firstly, the rendering loss under limited light and view direc-
tions has multiple global minima. This is because two very different
combinations of SVBRDF maps can generate the same rendering
under limited light and view directions. As a direct implication of
this, models trained with rendering loss tend to compensate for the
incorrectness in one of the predicted maps by modifying another
map in a way that would give a similar render. An example of this
is shown in Figure 2, where a model trained with rendering loss
predicts a pinkish color as part of the specular map to compensate
for the incorrect diffuse albedo and roughness map predictions.

Secondly, the many-to-one nature of the rendering function im-
plies that the gradient is either zero or non-zero with respect to all
4 property maps. E.g. If during training of the network has already

learned to predict three of the four maps correctly and has a mistake
in one of them which causes the render to look different, the ren-
dering loss will have non-zero gradients with respect to all 4 maps,
thus making the network forget about maps it has already learned.

Thirdly, the number of light and view directions is a heuristic
that needs to be selected empirically. Sampling more light and view
directions would make the approximation of El,v[LR(l,v)] more ac-
curate, albeit at the cost of more computation. Using a single render
to compute loss with presents many loss minima possible, shown in
Figure 3, so most recent works use 9 (a heuristic) renders to com-
pute the loss with as they find it has the best computation to test
render accuracy trade-off.

4. Alleviation

1. Disentanglement: Various fields of research have shown that
disentangling parameters in complex tasks helps to train the
network to better understand the problem, which then leads to
the network learning more accurate solutions for unseen data.
Some examples of disentangled tasks includes learning from
videos [D∗17] and face image editing [SYH∗17]. We believe
that corresponding strategies should be attempted to disentan-
gle material maps.

2. Loss and training strategy: One could look at ways to define
the loss function differently, so that the network is trained to
learn each property separately while at the same time using all
the properties for rendering. The dependence on a discrete num-
ber of views could be eliminated if one could define the loss in-
tegrated over all light and view directions over the hemisphere.

3. Continual learning: Continual learning attempts to address the
network problem of forgetfulness [LAM∗19]. One could con-
sider applying this strategy by treating learning of different ma-
terial properties as a sequence of tasks.
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