Appearance of Interfaced Lambertian Microfacets
using STD Distribution

M. Ribardièere, D. Meneveaux, B. Bringier, L. Simonot

University of Poitiers, XLIM (CNRS UMR7252) and PPRIME (UPR3346)
Contents

1. BRDFs and Microfacet Theory
 - Microfacet BRDFs
 - Issues and Needs

2. Interfaced Lambertian Materials
 - Model definition
 - Appearance and discussion

3. Student’s T-Distribution
 - Definition
 - Discussion

4. Combination of IL with STD
 - Influence on appearance

5. Conclusion and Future Work
BRDF Models

Many existing models [Phong, Ward, CT82, ON94, Ash00, Jak14, Wu15, Bel17, etc.]
- Only few parameters, more or less intuitive and easy to control
- Some are designed specifically for fitting parameters

Some of them aim designed for physically-based applications
- (Energy conservation and reciprocity)
 - ⇒ Microfacet-based models often employed

$$L(i, o, n) = \frac{d^2 \phi_o(i, o)}{dS \cos \theta_o d\omega_o}$$

$$f(i, o, n) = \frac{dL(o, n)}{dE(i, n)}$$
Microfacet Representation

General Equation [ON94,Walt07]:

\[
f(i, o, n) = \int_{\Omega_+} \left| \frac{\mathbf{im}}{\mathbf{in}} \right| f^\mu(i, o, m) \left| \frac{\mathbf{om}}{\mathbf{on}} \right| D(m) G(i, o, m) d\omega_m. \tag{1}
\]

⇒ All microfacets may contribute
⇒ Rough surfaces imply multiple light reflections

Simplifies with specular microfacets \(f^\mu \) [TS67,CT82,Walt07]:

\[
f(i, o, n) = \frac{F(i, h) D(h) G(i, o, h)}{4|\mathbf{in}||\mathbf{on}|}, \tag{2}
\]

⇒ Only one microfacet orientation can contribute
⇒ Multiple light reflections are ignored

Many authors have discussed:

- Relationships between D and GAF [TS67,Ash00,SB,Heitz,etc.]
- Energy conservation with specular microfacets [Kel01,TVCG17]
- Multiple scattering [Heitz,TVCG17]
Microfacet Representation

- Playing with f^μ offers a large panel of different materials.
Microfacet Representation

- Playing with f^μ offers a large panel of different materials.
- Geometrical Attenuation Factor (GAF).

Torrance-Sparrow (V-cavity profile)
Smith-Bourlier (Uncorrelated microfacets)
Microfacet Representation

- Playing with f^μ offers a large panel of different materials.
- Geometrical Attenuation Factor (GAF).
- Normal Distribution Functions.

Beckmann distribution
GGX or Trowbridge-Reitz
Microfacet Representation

- Playing with f^μ offers a large panel of different materials.
- Geometrical Attenuation Factor (GAF).
- Normal Distribution Functions.
- Multiple scattering between microfacets.

(image from [Heitz16])
Interfaced Lambertian (IL) Model [TVCG17]

Several observations can be made:

- The glossy term increases according to incidence angle
- Thus, a constant Lambertian term is not adapted to energy conservation
- Solution: Rough Lambertian background covered with a flat Fresnel interface

\[
\frac{1}{\pi n_i^2} T(i, m) T(o, m) \frac{K_d}{(1 - K_d r_i)} ,
\]

\(r_i \) for multiple scattering (analytical cf. [TVCG17])
Flat IL Material

- Flat surface: Analytical representation, including multiple light scattering
- Body term decreases according to incidence angles, and specularity
- Decreases also at grazing observation angles

\[
\begin{array}{c|c|c|c}
\theta_i & n_i = 1.0 & n_i = 1.2 & n_i = 1.33 & n_i = 1.5 \\
\hline
0^\circ & \\ \\
45^\circ & \\
90^\circ & \\
\end{array}
\]
Rough IL Material

The general BRDF equation should be integrated, with:

\[
f(i, o, n) = \int_{\Omega^+} \frac{|im|}{|in|} \left[f_s^\mu(i, o, m) + f_b^\mu(i, o, m) \right] \frac{|om|}{|on|} D(m) G(i, o, m) d\omega_m
\]

(3)

- The first integral corresponding to \(f_s \) corresponds to the glossy term

\[
f_s(i, o, n) = \frac{F(i, m)D(m)G(i, o, m)}{4|in||on|},
\]

- The second term \(f_b \) has no analytical solution

Monte Carlo for the rendering Equation:

\[
L_o(x, o, n) = L_e(x, o, n) + \int_{\Omega^+} L_i(x, i, n) f(i, o, n)|in|d\omega_i,
\]

(4)

where \(f \) is given by Equation 3, which includes

\[
f_b^\mu(i, o, n) = \frac{1}{\pi n_i^2} T(i, m) T(o, m) \frac{K_d}{(1 - K_d r_i)}
\]

(5)
Rough IL Material

Solution: use Monte Carlo process again.
- Importance sampling of one microfacet for the body term
- Slightly increases noise (since increases integral dimension)
- But allows to handle multiple scattering between microfacets [Heitz16,TVCG17]

⇒ Inherently accounts for anisotropy, given anisotropic distributions
Appearance

General model, accounts for:

- Flat Lambertian \((\sigma = 0.0, n_i = 1.0) \)
- Rough Lambertian \((n_i = 1.0) \), with backscattering
- Rough dielectric mirrors \((K_d = 0.0) \)
- Rough interfaced Lambertian (general case)

⇒ Illustrated on next slide

An approximate model is proposed in [TVCG17], with:

- Beckmann and Gauss distributions
- Torrance-Sparrow’s GAF

⇒ Makes it possible to use with interactive applications and fitting

Note that:

- Surface and substrate roughnesses are the same
- Light scattering between microfacets should be handled
IL BRDF lobes

Distributions and GAFs for various values of n_i and σ, illustrated at $\theta_i = 60^\circ$ (log scale).
With Beckmann Distribution and Smith GAF

\(n_i = 1.5 \)

\(n_i = 1.33 \)

\(n_i = 1.2 \)

\(n_i = 1.0 \)

\(\sigma = 0.001 \)

\(\sigma = 0.005 \)

\(\sigma = 0.1 \)

\(\sigma = 0.3 \)
IL BRDF lobes: approximate model

Comparison between Monte Carlo BRDF estimation of Lambertian (L) and interfaced Lambertian (IL) materials and our approximate model, with Gaussian (G) and Beckmann (B) distributions, and Torrance-Sparrow (TS) GAF (log scale).
Discussion

- Management of metals (conductors) ?
 ⇒ *Nothing new [CT82], since almost no transmission*

- Generalization of approximate models ?
 ⇒ *much more complicated...*
 ⇒ *Approximation relies on both D and G*
 ⇒ *Our method extends [ON94], based on Gaussian/Beckman distributions*

- Generalization of distribution and GAF
 - Many existing distributions
 - Without analytical GAF and/or analytical importance sampling
 ⇒ *This presentation provides some results with STD (next slides)*

- Management of light scattering between microfacets
 - Two existing contributions: [Heitz16] with SB GAF; [TVCG17] with TS GAF
 - Path tracing implementation
 ⇒ *Both applied to STD and IL in this presentation*
Student’s T-Distribution

Introduced at EG 2017 [EG17]:

\[
D^{STD}(m) = \frac{(\gamma - 1)^{\gamma} \sigma^2 \gamma - 2}{\pi \cos^4 \theta_m (\gamma - 1) \sigma^2 + \tan^2 \theta_m)^\gamma}
\] \hspace{1cm} (6)

- Inspired from GTR (Generalized Towbridge Reitz) [TR75, Walter07]
- Includes both GGX and Beckmann’s distributions
- With analytical GAF formulation following the Smith’s formulation
- With analytical importance sampling

![Graphs showing the distribution for different values of \(\sigma\) and \(\gamma\)]
Influence on appearance

⇒ Anisotropy also handled (rough aluminium in this case)
Influence on appearance

Visual impact of STD

\[\gamma = 2 \quad \sigma = 0.01 \]
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 2 \quad \sigma = 0.1 \]

- \(\gamma = 2 \) (GGX)
- Beckmann
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 2 \quad \sigma = 0.2 \]

- \(\gamma = 2 \) (GGX)
- Beckmann
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 2 \quad \sigma = 0.3 \]

- \(\gamma = 2 \) (GGX)
- Beckmann
Influence on appearance

Visual impact of STD

\[\gamma = 2 \quad \sigma = 0.4 \]
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 2 \quad \sigma = 0.5 \]
Influence on appearance

Visual impact of STD

\[\gamma = 2 \quad \sigma = 0.6 \]
Influence on appearance

Visual impact of STD

$\gamma = 2 \quad \sigma = 0.7$
Influence on appearance

Visual impact of STD

\[\gamma = 2 \quad \sigma = 0.9 \]
Influence on appearance

Visual impact of STD

\[\sigma = 0.9 \]
Influence on appearance

Visual impact of STD

Surface profile

\[\sigma = 0.7 \]

- \(\gamma = 2 \) (GGX)
- Beckmann
Influence on appearance

Visual impact of STD

Surface profile

\[\sigma = 0.6 \]

\(\gamma = 2 \) (GGX)

Beckmann
Influence on appearance

Visual impact of STD

Surface profile

$\sigma = 0.5$

- $\gamma = 2$ (GGX)
- Beckmann
Influence on appearance

Visual impact of STD

Surface profile

\[\sigma = 0.4 \]

- \(\gamma = 2 \) (GGX)
- Beckmann
Influence on appearance

Visual impact of STD

Surface profile

\[\sigma = 0.3 \]

\(\gamma = 2 \) (GGX)

Beckmann
Influence on appearance
Influence on appearance

Visual impact of STD

Surface profile

\[\sigma = 0.1 \]

\[\gamma = 2 \text{ (GGX)} \]

Beckmann
Influence on appearance

Visual impact of STD

Surface profile

\[\sigma = 0.01 \]

- \(\gamma = 2 \) (GGX)
- Beckmann
Influence on appearance

Visual impact of STD

Surface profile

$\sigma = 0.3$

$\gamma = 2$ (GGX)

Beckmann
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 20 \quad \sigma = 0.3 \]
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 10 \quad \sigma = 0.3 \]
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 6 \quad \sigma = 0.3 \]

- \(\gamma = 2 \) (GGX)
- \(\gamma = 6 \)
- Beckmann
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 4 \quad \sigma = 0.3 \]
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 3 \quad \sigma = 0.3 \]
Influence on appearance

Visual impact of STD

Surface profile

$\gamma = 2$, $\sigma = 0.3$
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 1.75 \quad \sigma = 0.3 \]
Influence on appearance

Visual impact of STD

Surface profile

\[\gamma = 1.51 \quad \sigma = 0.3 \]
Discussion

Advantages of STD:

- Accurate control of roughness
- Interesting use for fitting (combines the advantages of GGX and Beckmann)
Fitting with STD

log(\text{fit. error})

RMSE (rendering)
Discussion

Advantages of STD:

- Accurate control of roughness
- Interesting use for fitting (combines the advantages of GGX and Beckmann)
- Provides a general tool for choosing distribution
Discussion

Advantages of STD:
- Accurate control of roughness
- Interesting use for fitting (combines the advantages of GGX and Beckmann)
- Provides a general tool for choosing distribution

Advantages of combining IL with STD:
- Accounts for a physical representation of body scattering
- Combines advantages of both
- Further generalizes both
Discussion

Advantages of STD:
- Accurate control of roughness
- Interesting use for fitting (combines the advantages of GGX and Beckmann)
- Provides a general tool for choosing distribution

Advantages of combining IL with STD:
- Accounts for a physical representation of body scattering
- Combines advantages of both
- Further generalizes both

Implementation issues:
- Does not make any difference for IL
- Possible to include the combination in any Monte Carlo rendering system
- Also possible to handle multiple scattering
Influence on appearance

According to γ, with two different roughnesses σ (Smith GAF with $n_i = 1.5$):

- $\sigma = 0.1$, $\gamma = 1.55$
- $\sigma = 0.1$, $\gamma = 8$
- $\sigma = 0.3$, $\gamma = 1.55$
- $\sigma = 0.3$, $\gamma = 8$
Influence on appearance

When changing GAF ($\gamma = 1.75$, $n_i = 1.5$ and $\sigma = 0.7$):

For grazing observation angles:

- Torrance-Sparrow’s GAF tends to overestimate gloss [Heitz14]
- Glossy effects remain high despite increasing roughness
Influence on appearance

Comparisons with and without multiple scattering between microfacets:

- Rough Lambertian \((n_i = 1.0)\)
- \(\gamma = 8, \sigma = 0.7\)
- Smith-Bourlier GAF
Influence on appearance

Comparisons with and without multiple scattering between microfacets:

- Interfacet Lambertian microfacets ($n_i = 1.5$)
- $\gamma = 1.75, \sigma = 0.5$
- Smith-Bourlier GAF
Conclusion and Future Work

STD with interfaced Lambertian microfacets:

- Physically based model
- Management of specular and body reflections
- Only few parameters
- Extends the range of rendered materials

Future work:

- Better STD importance sampling
 ⇒ *What about Visible Normals Importance Sampling?*

- In depth fitting analysis
- Correlation between the interface and the substrate roughness in IL
- Any other idea?