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Figure 1: Typical formulations of material recognition: Material instance recognition (left) is focused on finding the closest
instance in the reference database, while material category recognition (right) aims at identifying corresponding semantic
concepts. Depending on the application, the query data might consist of a single image or a set of images that show a certain,
a-priori unknown material.

Abstract
The complexity of visual material appearance as observed in the huge variation in material appearance under
different viewing and illumination conditions makes material recognition a highly challenging task. In the scope
of this paper, we discuss the facts that make material appearance that complex and provide a survey on technical
achievements towards a reliable material recognition that have been presented in the literature so far. In addition,
we discuss still open challenges that might be in the focus of future research.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Texture I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Object recognition
I.5.2 [Pattern Recognition]: Design Methodology—Pattern analysis

1. Introduction

Our interactions with the content of the surrounding envi-
ronment in daily life are primarily guided by the rich infor-
mation perceived via the human visual system. We not only
perceive the presence of objects and their spatial arrange-
ment in the scene, but are also able to infer their individual
shapes and materials which e.g. tell us where and how care-
ful to grasp a particular object. Even more, the perceived
materials provide valuable information w.r.t. properties such
as fragility, deformability and weight. These aspects are also

important for industrial applications where objects should be
handled automatically in an appropriate way as many tasks
might have to be carried out depending on the material prop-
erties. Therefore, these applications rely on the availability
of techniques that allow a reliable material recognition of in-
dividual material exemplars or semantic material classes in
single query images or queries with several images (see Fig-
ure 1). In addition, automatic material retrieval techniques
allow designers to find either a certain material or a similar
material in the databases from suppliers.
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Unfortunately, material recognition is a rather complex
problem due to the strong dependency of material appear-
ance on surface geometry as well as viewing and illumi-
nation conditions. In the scope of this paper, we provide
an analysis of the complexity of visual material appearance
which is followed by a discussion of the key aspects that
have to be considered by material recognition techniques and
a survey on the advances in the related research domain. In
particular, this includes surveys on:

• characteristic material attributes and how suitable descrip-
tors can be derived,

• characteristic material “fingerprints”, i.e. region-based
material representations, as well as “material spaces”, that
can be derived from information w.r.t. material appear-
ance under different view-light conditions, and

• recognition schemes used in the literature.

In addition, we review the improvements in establishing ma-
terial databases. Finally, we discuss still remaining chal-
lenges in the context of material recognition.

2. The Complexity of Visual Material Appearance

A closer look at the materials of objects given in daily
life scenarios immediately reveals the complexity of vi-
sual material appearance. These materials typically exhibit
significant variations in properties such as color, texture,
glossiness, specularities, translucency, transparency or sur-
face profiles that determine their appearance. Furthermore,
changes in the illumination conditions typically also lead to a
changing material appearance. The observed colors and tex-
tures are a result of the complex interplay of surface mate-
rial properties, surface geometry and illumination conditions
which determines the visual complexity of surface appear-
ance. Therefore, both the human visual system and acquisi-
tion devices are only capable of observing material appear-
ance depending on the coupling of these three modalities.

In this context, taking into account the scale-dependency
of material appearance is inevitable. The structures on the
microscopic scale, i.e. the scale of atoms and molecules,
cannot directly be observed by the human visual system
and yet they significantly contribute to material appearance.
In particular, the appearance of materials such as metals,
paper, plastics, etc. is determined on this scale. Further-
more, material appearance is also characterized by effects
of light exchange happening on a mesoscopic scale at fine
details in surface geometry such as scratches, engravings,
weave-patterns of textiles or embossing of leathers. Such
surface structures cause effects like interreflections or self-
shadowing. While the effects on these aforementioned scales
obviously represent the material characteristics and deter-
mine the material appearance, the 3D geometry of the object
with the respective, considered material also influences the
material appearance significantly. Considering this macro-
scopic scale, regular structures as e.g. given in woven cloth,

brushed metal or surface textures of certain objects might
appear distorted in the image because of the dependency on
the object geometry.

Unfortunately, the consideration of these scales suffices
only for a close distance between the surface material and
the human observer. For an increasing distance, the effects
of light exchange at fine surface details such as scratches,
engravings, weave-patterns or embossing will become less
visible and finally not be perceivable as mesostructures any-
more. Hence, they might be treated as irregularities in a dif-
ferent kind of microscopic scale. In a similar way, some of
the details in the surface geometry might not be perceived
as macroscopic features anymore but rather as features on a
novel mesoscopic scale.

To give a further example, shininess of specular objects
or translucency might also depend on the distance between
object and observer. When considering a highly specular sur-
face with a rough surface profile from a close range, the reso-
lution of the human visual system is sufficient to perceive the
many surface patches with different surface normals, and the
material will appear specular. With an increasing distance to
the surface, the resolution of the visual system will become
insufficient to perceive the appearance of all the individual
surface patches with different orientations separately and, in-
stead, perceive a superposition of the appearances of several
of these patches. This will lead to a transition from specular
to diffuse appearance perception. In contrast, for flat, highly
specular surfaces, the surface will still appear highly specu-
lar with an increasing distance. In a similar way, the appear-
ance of translucent objects with a rough surface profile is
characterized by subsurface scattering effects when viewed
from a close range. For an increasing distance, such objects
might be perceived as opaque, if only the superposition of
the appearances of the individual patches with the subsur-
face scattering effects is perceived by the visual system.

This clearly indicates that the definition of scale is of dy-
namic nature. Depending on the distance between the ob-
server and the object of interest, the definition of micro-
scopic scale, mesoscopic scale or macroscopic scale might
have to be adapted. Therefore, material appearance involves
a multitude of scales . . . ⊂ Di−1 ⊂ Di ⊂ Di+1 ⊂ . . . rang-
ing from an atomic scale to the intergalactic scale [Kaj85,
MMS∗04].

3. Material Recognition Schemes

In order to allow an automatic image-based material recogni-
tion, the following challenging tasks have to be investigated.
After segmenting images into regions for the different occur-
ring materials, discriminative descriptors that reflect charac-
teristic material traits have to be extracted. Based on such
descriptors, efficient and appropriate models for the indi-
vidual materials or material categories can be computed per
region that represent characteristic material “fingerprints”.
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Typically, those compact representations are obtained based
on assigning the individual descriptors to their closest match
in a dictionary of textons that is derived by a clustering of the
descriptors extracted from the training data. Then, e.g. either
the weighted occurrences of the textons assigned to the indi-
vidual descriptors per region or the offsets of the descriptors
to their closest textons might be stored in the representations.
Based on the availability of several fingerprints extracted un-
der different view-light conditions, the more general concept
of “material spaces” can be established in order to represent
material exemplars or semantic material classes. Finally, ma-
terial recognition can be performed based on these represen-
tations using adequate training data. Figure 3 provides an
overview on such a typical recognition pipeline.

3.1. Material Attribute Descriptors

Characteristic material traits such as shininess, roughness
or homogeneity are manifested in characteristic local vi-
sual features with certain statistics of colors or textural
patterns. Local color distributions can be described by us-
ing densely sampled color patches [VZ03, VZ09, LSAR10,
SLRA13, WGK14, WK15]. Local texture characteristics
are typically captured by considering local gradient infor-
mation of the image intensities. This can be performed
by densely sampled SIFT descriptors [LSAR10, SLRA13,
WGK14, WK15], densely sampled Histogram of Oriented
Gradients (HOG) descriptors [WK15], Local Binary Pat-
terns (LBPs) [CHM05, LF12], kernel descriptors [HBR11]
or filterbanks [LM99, LM01, VZ02, VZ04, CD04, CHM05,
CHFE10,WK15] but other descriptor types such as basic im-
age features [CG08, CG10] or sorted-random-projection de-
scriptors [LFCK12] might also be used. In addition, several
approaches use different combinations of these descriptor
types to improve the accuracy of their classification frame-
works [BG06, LSAR10, HBR11, LF12, SLRA13, WGK14,
WK15]. Furthermore, learning features that are capable of
capturing the characteristics of the individual categories has
been investigated in [SN13, LF14, CMK∗14, BUSB14] and
attribute-based descriptions, that consider attributes such
as e.g. bumpy, checkered, dotted, fibrous, knitted, porous,
smeared, sprinkled, stained, striped, woven, or zigzagged,
have been used in [CMK∗14].

3.2. From Local Structures to Material “Fingerprints”
and Material Spaces

After extracting such descriptors for the images contained in
the training data and the query data, the next step typically
consists in the computation of compact representations for
the individual image regions covered by a certain material.
For this purpose, the descriptors extracted from the training
data are typically used to calculate a dictionary of represen-
tative descriptors denoted as textons. This allows assigning
all of the extracted descriptors within a certain image re-
gion to the respective visual words in the dictionary to get

a texton-based representation for image regions covered by
a certain material as introduced in e.g. [LM99] and [LM01]
and also followed in [VZ02, VZ04, VZ09, LSAR10, LF12,
SLRA13, WGK14, WK15]. The computation of histogram-
like fingerprints as well as the more sophisticated VLAD
representation [JDSP10] are illustrated in Figure 2. Further-
more, instead of a hard quantization of the individual de-
scriptors to their closest texton, it is also possible to use a soft
quantization that introduces weights according to the dis-
tances of the descriptors to their closest texton [vGVSG10].
This results in soft-histograms or Fisher vectors [PD07]. Op-
tionally, a dimensionality reduction technique such as PCA
can be applied to compress the region-based representations.
Based on such “fingerprints” of a certain material observed
under multiple different view-light-conditions, a character-
istic material space can be derived. Furthermore, the region
representations of several different material samples belong-
ing to the same semantic concept can be used to define rep-
resentations for semantic categories.

Codebook 
ℎ(𝑖) 

𝑖 4 6 2 4 

Histogram: 

VLAD: 

𝑣𝑗 =  𝑥𝑖 − 𝑐𝑗
𝑥𝑖  𝑁𝑁 𝑥𝑖 =𝑐𝑗

 

Figure 2: Illustration of two widely used image region rep-
resentations. Based on densely extracted descriptors a dic-
tionary might be calculated. This allows to represent the de-
scriptors extracted for a certain image region to be quan-
tized in the form of histograms, where the occurrences are
counted, or VLADs [JDSP10], where the offset vectors to
the dictionary entries are stored.

3.3. Recognition Schemes

The resulting texton-based image region representations
can then be classified using nearest neighbor classi-
fiers, Bayesian frameworks [VZ04, LSAR10], Markov ran-
dom fields (MRFs) [VZ03], support vector machines
(SVMs) [HCFE04, CHM05, LF12, LYG13, WGK14], ran-
dom forests [Bre01], etc..

While most investigations focused on single-image-based
material classification, some acquisition devices also offer
the possibility to easily acquire several images under sev-
eral view-light configurations, which might significantly fa-
cilitate material classification. In [LM99] and [LM01], his-
tograms have been concatenated to form a single vector
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Figure 3: Typical material recognition scheme: Descriptors are extracted for both the training and the query data. The descrip-
tors extracted from the reference data can be used to compute a dictionary that allows the quantization of the descriptors into a
compressed representation. Material recognition is typically carried out based on these compressed representations. The refer-
ence data consists of several image collections that capture the appearance variations of either individual material exemplars
(gray) or semantic material categories (red).

for each particular material, which imposes that materials
are represented by a fixed ordering of the configurations
within the combined vector where all the individual im-
age representations have to be carefully registered. Com-
paring materials based on these vector-based representations
hence requires that exactly the same view-light configura-
tions are considered in each vector with the same fixed or-
dering. Furthermore, material classification based on BRDF
slices has been proposed in [WGSD09]. Bidirectional fea-
ture histogram manifolds as introduced in [CD04] overcome
the need for considering exactly the same view-light con-
figurations for all materials but still rely on a densely sam-
pled set of view-light configurations. The method described
in [WK15] aims at classifying material instances using only
a few images by representing materials based on convex hull
models or affine hull models similar to [CT10]. Recognition
can then be performed based on the distances between the
convex hulls or affine hulls of the individual materials. Their
method yields significantly better recognition rates than pre-
vious methods while using smaller numbers of view-light
configurations.

Alternative approaches include learning optimal illumina-
tion for material classification [JSJ10], material classifica-
tion based on learning coded illumination to directly mea-
sure discriminative features such as projections of spectral
BRDFs [GL12, LG14] or learning discriminative illumina-

tion patterns and texture filters to directly measure optimal
projections of BTFs [LYG13].

4. Databases for Material Recognition

Training an appropriate classifier requires having adequate
training datasets which representatively cover the appear-
ance variations of a huge multitude of different material
exemplars under a large variety of different viewing con-
ditions, illumination conditions and surface geometries ex-
pected to be encountered in the query data. If material in-
stances are to be recognized, a class is defined by images
depicting the appearance of the respective sample under
the aforementioned varying conditions. In contrast, when
the objective consists in recognizing semantic categories in-
stead of single exemplars, data of several exemplars that ad-
equately define the intra-class variations of the respective
semantic class has to be taken into account. Consequently,
defining a single category adequately might easily require
several thousands of images.

The CUReT database [DvGNK96] is probably the first
database with a large set of 61 material samples that
have been systematically acquired under 205 different
view-light configurations. In the scope of the KTH-TIPS
database [HCFE04], this database has been extended by
also adding scale information for material appearance by
varying the distance of the acquired samples to the cam-
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era. Furthermore, the ALOT database [BG09] offers sig-
nificantly more and also a wider range of different mate-
rial types, which have additionally been observed under il-
lumination with different colors. However, only a few im-
ages have been taken per material sample. In addition, in
all of these databases the individual material categories are
defined based on appearance variations per material exem-
plar. Aiming for a generalization to classifying object cate-
gories, the KTH-TIPS database has been further extended by
adding measurements of different samples of the same ma-
terial category and also considering ambient lighting in the
KTH-TIPS2 database [CHM05]. However, taking only four
samples per category still limits the representation of the
intra-class variance of materials observed in real-world sce-
narios. More recently, a spectral material database has been
presented in [LYG13] for multi-spectral material recogni-
tion. However, the samples are imaged from only one single
viewpoint. A common limitation of all these databases is the
rather limited number of measurements, which are further-
more acquired in a lab environment. Hence, the influence of
the complexity of real-world environment conditions is not
taken into account, and, therefore, material recognition un-
der natural illumination cannot be performed based on such
training data.

Other databases are designed to capture the large intra-
class variation in the appearance of materials in com-
plex real-world scenarios. The Flickr Material Database
(FMD) [SRA09] contains images that have been down-
loaded from Flickr.com and show different associated ma-
terial samples under uncontrolled viewing and illumination
conditions and compositions. Even larger collections are
given by the OpenSurfaces dataset [BUSB13] or the Ma-
terials in Context Database (MINC) [BUSB14]. However,
annotations and segmentations of the images of these col-
lections require plenty of work in a time-consuming pro-
cess and are typically obtained by costly crowdsourcing ser-
vices such as Amazon Mechanical Turk (AMT) [BUSB13,
BUSB14, CMK∗14]. In addition, while manual segmenta-
tions are available, these masks are not always accurate,
leading to the inclusion of background appearance and prob-
lematic artifacts for material classification. Obviously, the
significantly more complex variations of material appear-
ance encountered under natural illumination make mate-
rial classification much more challenging and only recog-
nition rates far below the ones obtained for databases ac-
quired under controlled lab conditions have been reached so
far [LSAR10,SLRA13]. The main reason for this is that it is
more complex to include the possibly encountered variations
on material appearance in the training data than for mate-
rial classification under controlled illumination data, where
a smaller subset of training data might already be sufficient.
Furthermore, a different approach has been presented with
the Describable Textures Dataset (DTD) [CMK∗14]. While
the aforementioned databases establish classes for different
material instances or more general semantic material cate-

gories, this database considers semantic material attributes
as classes. This allows to represent materials in terms of how
well they match the individual attributes.

The required manual processes for capturing exemplars
as well as for segmenting and annotating materials in im-
ages severely limit the number of images per material cat-
egory in all of the above-mentioned databases. As an alter-
native, the potential of computer graphics has been investi-
gated to introduce a new promising trend of using synthe-
sized training data. In seminal work, the virtual MPI-VIPS
database has been introduced to approach material recogni-
tion based on synthetic data [LF12]. This database contains
images of virtual materials that are synthesized under view-
light configurations similar to the ones given in the KTH-
TIPS2 database. The renderings are created based on rather
simple BRDF shaders and the local mesostructure of the ma-
terial surface is simulated via bump maps to improve the
shading effects. Unfortunately, the use of such approximate
material models results in a less realistic depiction of several
materials as the complexity of the reflectance characteristics
of many materials has not been adequately considered. In
particular, mesoscopic effects that contribute to the appear-
ance materials such as textiles, bread or cork are not mod-
eled. As demonstrated in [WGK14], the approach for syn-
thesizing virtual samples matters. The UBO2014 database
(see Figure 4 and Figure 5) presented in the scope of this
investigation is based on BTFs to also model mesoscopic
effects. In addition, the intra-class variance of semantic ma-
terial categories is covered in a better way and significantly
more viewing and lighting configurations are included than
in any of the other systematically acquired databases. These
dense measurements are required for the realistic depiction
of many materials with their characteristic traits in a virtual
scene via BTFs to preserve the mesoscopic effects in the syn-
thesized data. Furthermore, using synthesized training data
automatically provides annotations and segmentations per
image and, hence, overcomes the need for time-consuming
and costly annotations and segmentations as performed for
the FMD [SRA09], the OpenSurfaces dataset [BUSB13] or
the MINC database [BUSB14].

5. Open Challenges

Despite the remarkable progress that has already been
achieved in the domain of material recognition several as-
pects still require further investigations.

Further effort might be spent on the investigation of better
material-specific descriptors. In this context, it might also be
worth to analyze the subjective perception criteria such as
warm/cold, rough/soft, etc. in addition to semantic, visual
features such as glossiness or roughness as these attributes
guide the material selection process of designers as well as
the material editing. Therefore, even more effort has to be
spent on the development of attribute-based datasets such as
the Describable Texture Dataset [CMK∗14] which consider
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Figure 4: Material samples in the UBO2014 database [WGK14].

Figure 5: Renderings of cylinders with some of the virtual materials in the UBO2014 database [WGK14].

the variations in the appearance of the attributes in a better
way. Considering the material reflectance in different spectra
such as the near infrared [SFS09] or the ultra-violet spectral
range as well as illuminating material samples with differ-
ent wavelengths [LYG13] might additionally contribute to a
more robust material recognition, as materials might be dis-
tinguished more easily than in the RGB channels.

Furthermore, even larger material databases are required
to recognize the typical materials we encounter in daily life.
This might involve either a costly manual acquisition, seg-
mentation and annotation of huge masses of data via crowd-
sourcing or creating larger datasets via synthesis following
approaches such as in [WGK14]. The latter approach might
become more practical with the advances towards more ef-
ficient automatic acquisition of material samples. Having
huge masses of data, i.e. many images, there is an addi-
tional need for efficient large-scale learning techniques that

can train per-class models based on a high number of im-
ages in a reasonable time. The aforementioned approach of
synthesizing data might also be an important practical step
towards learning which of the view-light-configurations are
most informative regarding material recognition.

A further challenge is the automatic segmentation of ma-
terials within images which reduces the involved manual
work significantly. In this context, more investigations to-
wards color segmentation strategies with robustness w.r.t.
shadows, highlights, and textures such as the one in [VB-
vdWV11] will have to be carried out.

Another important objective for future research can be
identified in the development of suitable material metrics
to efficiently assess similarity or dissimilarity of materials
based on distinctive material characteristics. This might al-
low a more practical material retrieval and material recog-
nition. While similar efforts have long reached maturity in

c© 2015 The Author(s)
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color science for comparing colors, the massive increase in
physical degrees of freedom imposes significant challenges
for the generalization of color metrics to general material
appearance.
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