
High-Performance Graphics (2023)
J. Bikker and C. Gribble (Editors)

Massively Parallel Adaptive Collapsing of Edges for Unstructured
Tetrahedral Meshes

D. Ströter1 , A. Stork1,2 and D. W. Fellner1,2,3

1Technical University of Darmstadt, Germany 2Fraunhofer IGD, Germany
3Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization, Austria

Figure 1: Using our fast edge collapsing method, we are able to coarsen the high-resolution Robot mesh with 503k tetrahedra (left) to a
coarser version with 190k tetrahedra (right) within 981 milliseconds. The Robot is part of the Thingi10k data set [ZJ16] (file ID 255172).

Abstract
Many tasks in computer graphics and engineering involve unstructured tetrahedral meshes. Numerical methods such as the
finite element method (FEM) oftentimes use tetrahedral meshes to compute a solution for complex problems such as physically-
based simulation or shape deformation. As each tetrahedron costs computationally, coarsening tetrahedral meshes typically
reduces the overhead of numerical methods, which is attractive for interactive applications. In order to enable reduction of the
tetrahedron count, we present a quick adaptive coarsening method for unstructured tetrahedral meshes. Our method collapses
edges using the massively parallel processing power of present day graphics processing units (GPU)s to achieve run times
of up to one order of magnitude faster than sequential collapsing. For efficient exploitation of parallel processing power, we
contribute a quick method for finding a compact set of conflict-free sub-meshes, which results in up to 59% fewer parallel
collapsing iterations compared to the state of the art massively parallel conflict detection.

CCS Concepts
• Theory of computation → Massively parallel algorithms; • Computing methodologies → Volumetric models; Simulation
tools; Physical simulation; • Mathematics of computing → Mesh generation;

1. Introduction

Many applications in computer graphics and engineering compute
a solution for a partial differential equation (PDE) over a volumet-

ric domain Ω by discretizing Ω with a mesh. Due to its robustness,
unstructured tetrahedral meshing is well-established for approxi-
mating volumetric domains [Lo14]. For this reason, many numer-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/hpg.20231139 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-2672-7377
https://orcid.org/0000-0001-7538-7674
https://orcid.org/0000-0001-7756-0901
https://doi.org/10.2312/hpg.20231139

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

ical methods for solving PDEs such as the FEM use tetrahedral
meshes. Hence, the use of unstructured tetrahedral meshes is part
of a wide range of applications including physically-based simula-
tion [WBS*12] and 3D shape deformation [WJBK15].

The generation of tetrahedral meshes is not only concerned with
discretizing Ω, because the number and quality of elements affect
the accuracy of numerical methods. Element quality refers to the
shape of elements [She02]. Typically, increasing the resolution of
meshes improves the accuracy but reduces run time performance, as
each element costs computationally. Mesh adaptation is a method
to adaptively control the mesh resolution. Mesh adaptation algo-
rithms involve iterative cycles of adaptive refinement and coarsen-
ing. Many iterations of refining and coarsening are usual and im-
pose high run times. Additionally, the shape quality of elements
needs to be sufficient for the application. In fact, one single ill-
shaped element, i.e. low-quality element, can lead numerical meth-
ods to fail [She02]. Element quality can be improved by optimiza-
tion algorithms, which oftentimes impose a dominant overhead in
mesh generation. Mesh adaptation and optimization typically in-
volve edge collapse operations. Furthermore, collapsing edges in
meshes is used to reduce the size of large data sets for visualiza-
tion [CCM*00; NE04]. GPU-memory efficient rendering of large
unstructured meshes is an ongoing research topic [ZWMW23].

In order to improve run times, the parallelization of re-meshing
operations and numerical methods is important. Performing nu-
merical methods on complex meshes is one of the driving fac-
tors of high performance computing [RGD22], where many ma-
chines are orchestrated as nodes of a cluster. Partitioning of meshes
with domain decomposition enables parallelization among the ma-
chines of a cluster, while each machine should fully exploit its par-
allel processing power for fast run times. Due to the impressive
aggregated processing power of GPUs, current mesh adaptation
tools, e.g., NASA’s Refine [Par22] or Sandia National Laboratories’
Omega_h [Iba22], adopt CUDA to boost on-node parallelism. The
literature provides parallelization strategies for many re-meshing
operations (see section 2.3), whereas fine-grained parallelization
of edge collapsing on GPUs remains a challenge. Thus, our work
extends the state of the art by a massively parallel edge collaps-
ing method to quickly coarsen unstructured tetrahedral meshes
(see fig. 1). This paper provides the following contributions:

• Massively parallel adaptive algorithm for collapsing edges
• Fast conflict detection for fine-grained parallel re-meshing
• Massively parallel boundary preserving robust coarsening of un-

structured tetrahedral meshes

2. Background and Related Work

The literature on coarsening of tetrahedral meshes is vast. Sec-
tion 2.1 describes the foundational concepts. An overview over im-
portant applications of tetrahedral meshes appears in section 2.2.
We review prior work on parallel re-meshing in section 2.3.

2.1. Edge Collapse in Tetrahedral Meshes

Pioneering works about coarsening triangle meshes such as the
progressive meshes by Hoppe [Hop96] inspired many publications

admissible inadmissible

Figure 2: Collapsing is inadmissible if the set intersection of the
two one rings of edge vertices includes simplices that do not con-
tain the to-be-collapsed edge.

about the coarsening of tetrahedral meshes. Staadt et al. [SG98]
explore the use of edge collapsing for progressive tetrahedraliza-
tions and present various geometric checks necessary for preserv-
ing consistency. They check the oriented volumes of simplices to
prevent degeneracies and inverted elements. In addition, they check
for intersections when collapsing boundary edges to prevent self in-
tersections. Dey et al. [DEGN99] detail the preconditions for col-
lapsing edges under which they preserve the topological type of
simplicial complexes up to the third dimension. They show that
only collapse operations that satisfy the link condition (see fig. 2)
are admissible. As an alternative to collapsing edges, Chopra et
al. [CM02] replace one tetrahedron with one vertex to rapidly re-
duce the count of tetrahedra. This approach is only efficient for in-
terior tetrahedra, because avoiding intersections at the boundary is
computationally expensive. Kraus et al. [KE03] present a solution
for collapsing boundary edges in a non-convex tetrahedral mesh.
To prevent self-intersections they first convexify the mesh comput-
ing the convex hull and subsequently check for inversions, when-
ever a boundary edge of the non-convex mesh is collapsed within
the convex hull. As tetrahedral re-meshing involves a variety of
operators, Loseille and Menier [LM14] propose a cavity-based re-
meshing operator that embeds collapsing, refinement and face/edge
swaps. While our massively-parallel conflict detection also finds a
set of conflict-free sub-meshes, we focus only on collapsing edges.

2.2. Applications of Tetrahedral Mesh Coarsening

In order to reduce workloads for scientific visualization, Cignoni
et al. [CCM*00] simplify volume data collapsing edges. They in-
volve an error evaluation of scalar data attached to the tetrahedra
to obtain accurate visualizations. Similarly, Natarajan and Edels-
brunner [NE04] reduce workloads for visualizing large datasets
that represent density functions. They use a modification of the
quadric error measure of Garland and Heckbert [GH97] to prior-
itize collapse operations so that the density function is preserved
while improving element quality. Many optimization methods for
tetrahedral meshes collapse edges, because it removes low-quality
elements [MBAE09]. Tetrahedral mesh generators such as Tet-
gen [Si20] supply mesh coarsening to adhere to a specified sizing
function. A sizing function enables users to govern the size of ele-
ments. As each tetrahedral element imposes computational cost for
simulations, Cutler et al. [CDM04] collapse edges in a mesh to re-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

90

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

duce the number of elements, while removing the most low-quality
elements. In order to control the accuracy of numerical methods,
the adaptation of unstructured grids frequently performs coarsen-
ing besides refinement [ALSS06]. Over the years, many tools for
mesh adaptation emerged [CRJH09; Par22; Iba22]. The unstruc-
tured grid adaptation working group presents a concise overview
and qualitative benchmark of many of these tools [IBK*17].

2.3. Parallel Re-Meshing

As the parallelization of re-meshing improves run times of many
applications, the literature on parallel re-meshing is vast. Freitag
et al. [FJP99] parallelize the relocation of vertices extracting sets
of non-adjacent vertices with a graph coloring strategy. Parallel
strategies such as Deveci et al. [DBDR16] quickly obtain a high-
quality graph coloring. De Cougny et al. [DS99] present parallel
refinement and coarsening for distributed environments. The mesh
is partitioned in domains and each processor performs adaptation
on its assigned domain. Refinement of edges is based on subdivi-
sion patterns. Faces of adjacent tetrahedra are triangulated equally
to ensure a valid mesh. Collapsing of edges is parallelized among
mesh domains. Synchronization is only necessary at the domain
boundaries.

As distributed systems orchestrate many machines, sophisticated
methods for parallel re-meshing on a single machine emerged. De
Coro et al. [DT07] decimate polygonal meshes on the GPU using
the geometry shader. They perform prior vertex-clustering and use
the rendering pipeline to cull the triangles that become degener-
ate due to repositioning vertices. Instead of decimating polygonal
meshes using the rendering pipeline, we focus on the coarsening of
tetrahedral meshes. D’ Amato et al. [DV13] present a CPU-GPU
framework for parallel element shape optimization determining in-
dependent clusters around the worst quality elements. Our method
determines more compact sub-meshes for efficient parallelization.
Papageorgiou et al. [PP14] present a parallel algorithm for collaps-
ing edges on triangular meshes using the GPU. While their work is
optimized for manifold surface meshes, we focus on unstructured
tetrahedral meshes. Additionally, their conflict detection requires
determination and sorting of super-independent vertices, whereas
our conflict detection prioritizes edges by a cost function. Lo-
seille et al. [LMA15] propose a parallel re-meshing algorithm us-
ing the cavity-based operator by Loseille and Menier [LM14]. They
achieve coarse-grained parallelism using domain decomposition to
obtain a set of conflict-free cavities. Chen et al. [CTO20] detail
the design of GPU-parallel Delaunay refinement. They show how
to concurrently insert Steiner points with high occupancy among
GPU threads. Jiang et al. [JDH*22] present a high-level abstrac-
tion approach to specify mesh editing algorithms. Their approach
schedules operations with a shared memory locking mechanism.
Conflicts are avoided by domain decomposition and locking mu-
texes on the two-ring neighborhood of edges. Our algorithm does
not require locking mechanisms or domain decomposition, result-
ing in more compact sub-meshes.

Recently, Gautron et al. [GK23] present an algorithm for GPU-
parallel edge collapsing for triangular surface meshes. Their algo-
rithm packs the cost and the index of an edge in an edge descriptor.
They propagate the minimal edge descriptor over the one ring of

Algorithm 1 Edge collapsing iteration
1: procedure COARSENTETMESH(M, C, P ,Q, εc, edgeMarking)
2: edgesMarked← allocate(M.numEdges())
3: edgesMarked.fill(0)
4: for i← 0, . . . ,M.numEdges() do ▷ In parallel
5: if edgeMarking[i] then
6: edgesMarked[i]← 1
7: end if
8: end for
9: B← EXTRACTTETMESHBOUNDARY(M)

10: costs← allocate(M.numEdges())
11: for i← 0, . . . ,M.numEdges() do ▷ In parallel
12: costs[i]←C(M.edges[i])
13: end for
14: COLLAPSEEDGES(M, B, costs, P ,Q, εc, edgesMarked)
15: end procedure

simplices for each of the two edge vertices. With the use of atomic
operations, they prevent conflicts that arise due to massively par-
allel execution. Their algorithm is part of NVIDIA’s Micro-Mesh
toolkit [NVI23]. While their algorithm is designed for triangular
meshes, it extends to tetrahedral meshes.

Lots of work addresses parallel re-meshing of triangular meshes,
whereas massively parallel collapsing of edges for tetrahedral
meshes is a rather unexplored topic. Most of prior work focuses
on multi-core architectures, while many-core parallelism has not
received as much attention despite its great performance potential.
Many-core architectures provide fine-grained parallelism. Collaps-
ing edges with fine-grained parallelism requires determination of
compact and conflict-free sub-meshes. Our method uses the mesh
connectivity for conflict detection, whereas many previous methods
use synchronization primitives, e.g. atomics or mutexes to prevent
conflicts, limiting their efficiency to specific systems or hardware.

3. Our Method

This section describes our method to quickly collapse edges of a
tetrahedral mesh exploiting massively parallel processing. Figure 4
outlines how our method works.

3.1. Design and Data Structures

The design of the parallel edge collapsing method provides generic
functions that can be specified to support specific use cases. The
collapsing method depends on an array of vertices (3 real num-
bers per vertex) and an array of oriented tetrahedra (4 integers per
tetrahedron). An outline of one collapsing iteration appears in al-
gorithm 1. A placement strategy P specifies the point to which the
edge is collapsed. As many applications enforce specific constraints
for collapsing edges, a predicate Q protects edges from collapsing.

Q is typically specified such that the boundary of the mesh is
protected. For boundary protection, only boundary edges along ge-
ometrical faces and ridges are collapsed, while other features are
protected. This relies on classifying vertices into face, ridge and
corner (see fig. 3) using surface normals of surrounding boundary
triangles. We extract boundary vertices and triangles from the input
mesh using the massively parallel boundary extraction of Stroeter

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

91

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

et al. [SHK*23], which uses the orientation of the tetrahedra to ob-
tain outwards pointing normals. Our implementation classifies the
boundary vertices based on the scalar products of the normalized
normals of surrounding boundary triangles. If two normals are co-
linear, their scalar product evaluates to 1. To keep the boundary
preservation adaptive, feature classification relies on the thresholds
εF and εR. For a face vertex, all the normals of surrounding bound-
ary triangles do not differ by more than εF . The face vertex can be
collapsed along the geometrical face. For a ridge vertex, only two
adjacent edges are included by boundary triangles with normals
differing by more than εR. The ridge vertex can be collapsed along
these two ridge edges. A boundary vertex that is neither face nor
ridge is a corner vertex. Corner vertices cannot be collapsed with-
out altering the boundary respecting εF and εR. We consistently
use εF = 0.01 and εR = 0.1 in our work. In addition, collapsing
an interior edge connecting two distinct boundaries can cause sur-
face artifacts. For this reason, we advice to detect boundary edges
performing a parallel pass over triangles. If a triangle lies on the
boundary, its three edges can be marked as boundary edges. If an
edge contains boundary vertices but is not a boundary edge, we do
not collapse this edge.

Each edge is associated with a cost. The cost of an edge is spec-
ified by the cost function C that is implemented in the system and
can be parameterized to enable user specified inputs such as tar-
get edge length. With the specification of the cost function, one
can control how collapse operations are prioritized. For each col-
lapsing iteration, our method evaluates the cost function in parallel
over edges, saving the cost values in an allocated buffer. Our col-
lapsing algorithm performs iterations of parallel edge collapsing
until no more collapse operations can be found or the number of
collapse iterations is lower than a user-specified threshold εc. The
threshold εc enables to prevent the overhead of collapsing itera-
tions, which change the mesh insignificantly due to performing a
negligible number of edge collapses.

As collapsing edges depends on the mesh connectivity, our
method relies on data structures to lookup mesh connectivity. While
our method abstracts from the mesh data structure, we advice to
use a data structure designed for tetrahedral meshes such as Open-
VolumeMesh [KBK13] or TCSR mesh [MAS17; MS18]. We use
TCSR mesh in our work, because it is optimized for GPUs. Fur-
thermore, the collapsing method marks mesh elements throughout
the procedure. The marking of an element is represented by altering
an entry in an array of marker values. Our method supports adaptive
coarsening of tetrahedral meshes, because it collapses only edges
that are marked for potential removal. A marker value is either 0 or
1. Specifically, our method uses three arrays of marker values:

1. edgesMarked: Indicates whether an edge is marked for col-
lapsing "1" or unmarked "0".

2. verticesMarked: Indicates whether a vertex remains in the
mesh "1" or is removed "0".

3. tetrahedraMarked: Indicates whether a tetrahedron re-
mains in the mesh "1" or is removed "0".

In addition, the vertAffectedByEdge array indicates whether
a vertex belongs to a collapsed edge "edge index" or not "-1". In
the following, we describe the steps of one collapsing iteration.

Face Ridge Corner

Figure 3: We classify vertices into types to preserve the boundary.

3.2. Find Admissible Edges for Collapsing

In order to preserve the consistency of the input tetrahedral mesh,
it is mandatory to check if a collapse operation produces an invalid
mesh (c.f. section 2.1). A parallel pass over edges filters for admis-
sible edge collapse operations. First of all, filtering checks if the
edge is marked for potential collapsing. To preserve the topological
type of the mesh an edge collapse is only admissible, if it satisfies
the link condition of Dey et al. [DEGN99]. If the link condition
is satisfied, the algorithm tentatively performs the edge collapse
using the specified placement P . As the edge collapse operation
should not produce inverted elements, we evaluate the signed vol-
ume vol of the resulting tetrahedra using the two one rings of tetra-
hedra of the edge vertices. For evaluating the volume of the result-
ing tetrahedra, our algorithm replaces the positions of the vertices
belonging to the collapsed edge with the position of the new ver-
tex. If a tetrahedron contains both edge vertices it can be skipped,
because the collapse operation removes the tetrahedron. If the vol-
ume of any of the resulting tetrahedra is lower than a threshold
εv the edge collapse operation is not admissible, because it cre-
ates inverted or degenerate tetrahedra. We use εv = 2.e−12 in our
implementation. After the topological and geometrical checks, the
algorithm evaluates Q for the edge and refuses the edge collapse
operation in case Q is not satisfied. In our implementation, Q pro-
tects the boundary of the tetrahedral mesh (c.f. section 3.1). If all of
the checks succeed, the edge remains to be marked for collapsing
(see fig. 4 (b)). Otherwise, our algorithm unmarks the edge in the
edgesMarked array.

3.3. Detecting and Handling Conflicts

Our method detects and resolves conflicts in two parallel passes.
In a parallel pass over edges, the method first checks, if an edge
is marked for potential collapsing, since prior checks potentially
unmark edges. For an admissible collapse operation, the method
searches for conflicts. The first step of conflict detection is check-
ing adjacent edges. The conflict detection method uses the one ring
of adjacent edges for each of the two edge vertices. If any of the ad-
jacent edges is also marked for collapsing and incurs a lower cost,
conflict detection prioritizes the edge with the lower cost. In case
of equal cost values, we prioritize the edge with the lower index.
Due to parallel processing over edges, any thread that unmarks an
edge does not need to further check the adjacent edges, because this
work is handled by other threads. If none of the adjacent edges in-
curs a lower cost, the edge remains to be marked for collapsing. As
a collapse operation replaces an edge with a vertex, only one of the
two edge vertices is removed. Tentatively, we set the entry in ver-
ticesMarked of the edge vertex with the larger index to 0. The
other edge vertex remains and its position is updated later, if the

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

92

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

1.51.7 1.2

1.9 1.1

1.6
2.5

1.51.7

1.9

1.6
2.5

1.5

1.9

1.6
2.5

(a) (b) (c)

1.5
1.6

(d) (e)

Figure 4: In (a), red edges with cost values are marked for potential collapsing. The geometrical and topological checks unmark some
edges in (b). In (c), conflict detection compares the cost of adjacent edges and prioritizes edges with lower cost. As some simplices are still
associated with several collapsed edges, our method ensures that each simplex is affected by only one edge collapse operation in (d). As a
result, the two edges can be collapsed simultaneously (see (e)).

collapse operation is not rejected by the subsequent parallel pass.
In addition, conflict detection records for both vertices the index of
the collapsed edge by writing the edge index to vertAffected-
ByEdge at the position of the vertex indices. The recorded edge
index entries cannot be overwritten by any other thread, because
each thread checks the adjacent edges before writing.

As only checking adjacent edges for conflicts is not enough to
prevent invalid collapses (see fig. 4 (c)), conflict detection per-
forms a parallel pass over tetrahedra to detect the remaining con-
flicts. This parallel pass uses the recorded collapse operations in
vertAffectedByEdge from the previous parallel pass. For
each tetrahedron, conflict detection counts how many of the four
tetrahedron vertices are marked for removal. Whenever a vertex
is marked, we obtain the index of the to-be-collapsed edge from
vertAffectedByEdge and write it to a local stack. The local
stack requires at most four entries. If only one of the four vertices is
associated with an edge collapse operation no further checks are re-
quired. Otherwise, conflict detection potentially requires to resolve
conflicts. In order to resolve conflicts, the method iterates over the
edge indices recorded in the local stack. If two edge indices in the
stack are different, a conflict is found. In this case, we achieve con-
flict resolution by evaluating the cost of both edges and prioritizing
the edge with the lower cost. If the two conflicting edges share the
same cost value, we prioritize the edge with the lower index. The
marking for the edge with the larger cost in the edgesMarked
array is set to 0 and the entries in the verticesMarked for the
two edge vertices are set to 1, because these vertices remain in the
mesh. After the second parallel pass all marked edges can be safely
collapsed without producing an invalid mesh (see fig. 4 (d) and (e)).

3.4. Collapse Edges and Construct New Mesh

After conflict detection determined a set of non-conflicting collapse
operations, our method builds a new mesh with collapsed edges. As

conflict detection already established a valid marking for the ver-
ticesMarked array, a parallel exclusive prefix scan provides off-
set positions for vertices and the total number of remaining vertices.
Subtracting the number of remaining vertices from the number of
input vertices results in the total number of collapse operations. If
this number is zero, i.e., no edge is collapsed, or lower than a user-
specified threshold εc, our algorithm terminates returning the input
mesh. Otherwise, we proceed with building the resulting mesh with
collapsed edges. Using the offset positions for vertices, the remain-
ing vertices are copied to a newly allocated buffer. The next step
is to determine a valid marking for the tetrahedraMarked ar-
ray and collapse the marked edges. In a parallel pass over edges,
each thread with a to-be-collapsed edge iterates over the tetrahedra
containing the edge and sets their entries in the tetrahedra-
Marked array to 0. Subsequently, the thread compares the indices
of the two edge vertices, in order to determine the removed vertex
with the lower index and the remaining vertex with the larger index.
The thread evaluates the placement strategy P to obtain the new co-
ordinates for the remaining vertex and writes the coordinates to the
newly allocated buffer for the remaining vertices using the offset
positions. The offset position of the removed vertex is updated to
the offset position of the remaining vertex, in order to prepare for
building a valid triangulation.

After collapsing the edges in parallel, we perform an exclusive
prefix scan over tetrahedraMarked to obtain offset positions
and the number of remaining tetrahedra. We allocate an array for
the tetrahedra of the resulting mesh. A parallel pass over tetrahe-
dra updates the vertex indices of each marked tetrahedron using
the offset positions for vertices. Each updated tetrahedron is copied
to the array of remaining tetrahedra using the offset positions for
tetrahedra. Finally, the remaining tetrahedra and the array of ver-
tices represent the resulting mesh. Adaptive applications can then
use the resulting mesh to select new edges for adaptive mesh coars-
ening and re-evaluate the cost function.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

93

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

4. Evaluation

We show that our algorithm for massively parallel collapsing is
robust and efficiently exploits parallel processing power. First we
apply our algorithm to a multitude of meshes in section 4.1 to val-
idate its robustness and correctness. Subsequently, the evaluation
focuses on efficiency. In section 4.2 and section 4.3 we investigate
the performance of collapsing edges using the Die [ZJ16] (file ID
128640), Corner Bracket [Uga22] and Atlas Crank [Has20] meshes
(see fig. 5). For performance investigations, we select all the edges
with a length lower than a predetermined threshold for collaps-
ing. The collapsing of edges terminates, when every edge exhibits
a length larger than the threshold or is inadmissible for collaps-
ing. The cost function calculates edge lengths prioritizing smaller
edges. We briefly describe three competing algorithms, where se-
quential collapsing and Gautron et al.’s [GK23] method are imple-
mented using the TCSR mesh data structure as well:

Sequential collapsing: Whenever an edge is admissible for col-
lapsing, it is pushed to a priority queue that prioritizes by edge
length. After sequential checking of all the edges, the algorithm
pops the topmost edge from the queue until the queue is empty. For
every edge, the sequential algorithm first checks if the collapse has
been invalidated by a prior collapse. If the collapse has not been
invalidated, it is performed. After collapsing the procedure sequen-
tially builds the two arrays of tetrahedra and vertices that represent
the collapsed mesh.

Jiang et al.’s [JDH*22] framework: We used the CPU-parallel
framework of Jiang et al. [JDH*22] to coarsen tetrahedral meshes
accelerated by Intel’s Threading Building Blocks. This implemen-
tation performs the checks from section 3.2 to filter for admissi-
ble collapses preserving the boundary. Their scheduler is set up to
prioritize smaller over larger edges and terminates, when no more
edge can be collapsed. As Jiang et al.’s [JDH*22] framework ships
its own data structure, this implementation does not use TCSR
mesh.

Gautron et al.’s [GK23] method: We perform the steps de-
scribed in section 3 except the conflict detection in section 3.3.
Two parallel passes over the edges determine a set of edges that
can be collapsed in parallel. The first parallel pass initially checks
if an edge was marked as admissible for collapsing. For admissi-
ble edges, the parallel pass creates the descriptors of each edge and
propagates the descriptors using CUDA’s atomicMin. The prop-
agation involves the one ring of tetrahedra for each of the two edge
vertices. After edge descriptor propagation, another parallel pass
over edges once again checks the one ring neighborhood of both
edge vertices and marks the edge for collapsing if each adjacent
tetrahedron is associated with the edge descriptor of the edge.

Section 4.4 evaluates the performance impact of skipping col-
lapse operations using εc. We show that our method can be applied
to important use cases. Section 4.5 presents how our method can
be used to compress data for direct volume rendering. Section 4.6
shows that our method can be applied for mesh improvement. The
evaluation machine is equipped with an Intel i9-11900K CPU and
an NVIDIA RTX 3090 GPU. The implementations of the collaps-
ing variants were compiled using Visual Studio 2022 and CUDA.

Meshes:

Atlas Crank: #V = 1.1M #E = 7.1M #T = 5.8M

Corner Bracket:
#V = 471k #E = 3M

#T = 2.4M

Die:
#V = 45k
#E = 293k
#T = 233k

Figure 5: We show cross sections of the meshes. We provide the
numbers of vertices (#V), edges (#E) and tetrahedra (#T).

Table 1: Average run times for coarsening the 10k meshes of Hu et
al. [HSW*20] until convergence (εc = 0).

Method Run time (s)
Ours 0.180

Gautron et al. [GK23] 0.202
Jiang et al. [JDH*22] (16 threads) 0.368

CPU-sequential 1.500

4.1. Robustness

In order to show that our GPU-parallel collapsing method produces
valid meshes, we applied our method to all the 10k meshes gener-
ated by Hu et al. [HSW*20]. As a large number of edges should
be collapsed to evaluate the robustness of the algorithm, the eval-
uation procedure uses the median edge length of each mesh as the
threshold for collapsing.

Our evaluation procedure performs several consistency checks
on the resulting meshes. It includes topological checks. Each trian-
gular face should be part of either one or two tetrahedra. In addi-
tion, if a triangular face is shared by two tetrahedra, these tetrahe-
dra include this face in alternating orientations. None of the result-
ing meshes violates the topological checks. Besides the topological
checks, the evaluation procedure includes geometrical checks. The
procedure checks for inverted tetrahedra. As duplicated vertices
pose a problem to many applications, the procedure also checks for
duplicated vertices. In the evaluation procedure, two vertices are
duplicates, if their pairwise coordinates differ by less than 1e− 13
on every axis. Our method did not produce duplicated vertices or
inverted elements on any of the input meshes. Table 1 shows the
average run times for coarsening the 10k meshes with the compet-
ing methods. However, the majority of meshes generated by Hu et
al. [HSW*20] only includes few elements. Thus, we investigate run
time performance on larger meshes.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

94

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

1.0 1.1 1.2
1.0

1.0

1.0

1.0
1.0

1.0

1.0

1.0

1.1

1.1

1.2
1.2 1.2

1.21.2
1.0 1 <

1.1

1.2

Initial setup Gautron et al. [GK23] (1 collapse) Ours (2 collapses)

Figure 6: In the initial setup three edges are marked (shaded red) for collapsing with cost values (red). Gautron et al.’s [GK23] approach
does not achieve unique cost value distribution for one of the two independent sub-meshes finding only one collapse operation. Our approach
unmarks the edge with cost 1.1 (1 < 1.1) when checking adjacent edges and finds 2 collapse operations.

0 25 50 75 100 125 150 175

100,000

200,000

300,000

400,000

500,000

600,000

Iteration

To
ta

ln
um

be
ro

fc
ol

la
ps

es

Edge Collapses on Atlas Crank and Corner Bracket Meshes

CPU sequential Atlas Crank Gautron et al. [GK23] Atlas Crank

Ours Atlas Crank CPU sequential Corner Bracket

Gautron et al. [GK23] Corner Bracket Ours Corner Bracket

Figure 7: We plot the total number of collapses per iteration
throughout collapsing edges smaller than the median edge length.

4.2. Conflict Detection

As conflict detection is an essential component of parallel re-
meshing, we evaluate our conflict detection method. See fig. 6 for
a schematic comparison with Gautron et al.’s [GK23] method. Our
conflict detection method benefits from the intermediate step un-
marking adjacent edges with larger cost values. This intermediate
unmarking significantly reduces the potential conflicts for the sec-
ond conflict detection step. Thus, the second conflict detection step
on the basis of tetrahedra finds a compact set of sub-meshes for
re-meshing. The resulting sub-meshes can be locally adjacent, be-
cause we find non-overlapping sub-meshes.

Especially for tetrahedral meshes, the ability of our conflict de-
tection to find a more compact set of sub-meshes results in more
parallelism, as conflicts frequently occur in the inner structures
of the mesh. In order to show that our conflict detection leads to
more parallelism, fig. 7 plots the total number of collapsed edges
throughout collapsing edges smaller than the median edge length
(εc = 0) on the Atlas Crank and Corner Bracket meshes for all the
three competing collapsing variants. As can be seen in fig. 7, our
conflict detection results in significantly fewer collapsing iterations
compared to the atomic operation-based propagation of Gautron et
al. [GK23]. Due the more compact set of conflict-free sub-meshes,
more collapses can be performed in one single iteration. In fact,
we observe convergence after up to 59% fewer iterations than us-

ing the conflict detection of Gautron et al. [GK23]. Thus, our con-
flict detection enables efficient exploitation of parallel processing
power. As expected, the CPU sequential collapsing variant requires
the fewest number of iterations for convergence, because paral-
lel conflict detection tends to reject too many edges for collaps-
ing. Nonetheless, our massively parallel conflict detection achieves
high-quality sets of conflict-free sub-meshes. Compared to the se-
quential variant, our conflict detection results in up to 1.7× more
iterations, whereas the method of Gautron et al. [GK23] results in
up to 4.2× more iterations. A commonality of all the three collaps-
ing methods is that they perform the bulk of the collapse operations
in the initial iterations. After a certain number of iterations the mesh
does not change much as only few edges are collapsed. Thus, all of
the methods tend to spend a significant workload on performing
collapsing iterations without a significant effect on the mesh.

4.3. Run Time Performance

As the speedup depends on the number of collapsed edges, the eval-
uation performs measurements for different edge length thresholds,
interpolating between the minimal edge length and the median edge
length. For each measurement, we set εc = 0 to collapse edges until
no more admissible collapses can be found. As the TCSR mesh data
structure requires rebuilding the connectivity relationships for ev-
ery collapsing iteration, we present overall run time measurements
including the rebuilding of connectivity relationships and collaps-
ing run time measurements that only involve the steps of collaps-
ing edges (c.f. section 3.2 to section 3.4) abstracting from the data
structure of use. Each of the evaluated methods performs the checks
described in section 3.2 to filter for edges admissible for collapsing.
Additionally, measurements for massively parallel collapsing per-
form 20 repetitions and compute the median run time, because run
times of parallel computations may exhibit a multimodal distribu-
tion [HB15].

We measure run times on the meshes shown in fig. 5 represent-
ing different mesh sizes. Figure 8 plots measured run times for
edge length thresholds in between the minimal and median edge
lengths. Our massively parallel method outperforms the CPU se-
quential variant by at least one order of magnitude on each of the
three meshes. As the Die mesh is the smallest mesh, we achieve
the lowest speedups for this mesh. Our method outperforms the
framework of Jiang et al. [JDH*22] by up to 18× for the smaller
thresholds and by 2.5× for the median edge length. The method

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

95

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

0.1 0.2 0.3 0.4 0.5 0.6

0.01

0.1

1

10

Edge length collapse threshold

R
un

tim
e

(i
n

se
co

nd
s)

Die

0.1 0.15 0.2 0.25 0.3 0.35 0.4

1

10

100

Edge length collapse threshold

R
un

tim
e

(i
n

se
co

nd
s)

Corner Bracket

0.05 0.1 0.15 0.2 0.25 0.3

0.1

1

10

100

Edge length collapse threshold

R
un

tim
e

(i
n

se
co

nd
s)

Atlas Crank

CPU sequential overall Gautron et al. [GK23] overall

Ours overall Jiang et al. [JDH*22] overall (16 threads)

CPU sequential collapsing Gautron et al. [GK23] collapsing

Ours collapsing

Figure 8: Run times for parallel edge collapsing. The Y-axis is
scaled logarithmically.

of Gautron et al. [GK23] exhibits only slightly slower run times
than our method, because the Die mesh is coarser in the interior
and most conflicts occur near the mesh boundary. More compelling
speedups can be found on the Corner Bracket and Atlas Crank
meshes. For the Corner Bracket mesh, our method outperforms
the CPU-sequential method by 33×, the framework of Jiang et
al. [JDH*22] by 7.4× and the method of Gautron et al. [GK23]
by 2.7×. In addition, our method exhibits better scaling behav-
ior due to improved conflict detection. On the Atlas Crank mesh,
our method outperforms CPU-sequential collapsing by 34×, the
framework of Jiang et al. [JDH*22] by 4.4× and the GPU-parallel
method by Gautron et al. [GK23] by 2.5×. The speedups for the At-
las Crank mesh are slightly lower than for the Corner Bracket mesh,
because the Atlas Crank mesh exhibits more thin and curved struc-
tures than the Corner Bracket mesh. As a result, our method is sig-
nificantly faster than the state of the art. An important commonality

Table 2: Run times and speedups (of our method) for coarsening
the Robot mesh [ZJ16] (file ID 255172) until convergence (εc = 0).

Method Run time (s) Speedup
Ours 2.201 1.00×

Gautron et al. [GK23] 6.072 2.76×
Jiang et al. [JDH*22] (16 threads) 11.964 5.44×
Jiang et al. [JDH*22] (8 threads) 14.296 6.50×

CPU-sequential 29.488 13.40×

of the implementations of CPU-sequential collapsing, the method
of Gautron et al. [GK23] and our method is that the major bottle-
neck is the rebuilding of connectivity relationships. Thus, a data
structure that can be dynamically updated on the GPU would result
in significantly improved performance enabling run times close to
the run times for collapsing only in fig. 8.

4.4. Skipping Iterations that Collapse only Few Edges

Since many iterations collapse only a small number of edges
(c.f. section 4.2), we evaluate the run time of our collapsing al-
gorithm for different choices of the threshold εc. In order to ag-
gressively coarsen the mesh and impose a considerable workload,
we choose the doubled median edge length as the threshold for col-
lapsing. We use the Robot mesh [ZJ16] (file ID 255172) for this
evaluation, because it includes thin as well as large inner structures
and flat as well as curved boundaries. For εc = 0, Table 2 shows
run times and speedups of our method compared to the competing
methods. An overview on how the Robot mesh and the run time
of our method develops while increasing εc appears in fig. 9. As
can be seen, the runtime significantly increases for choosing a low
number for εc. For the jump from εc = 700 to εc = 100, the run
time of our method almost doubles, meaning that many iterations
only collapse hundreds of edges. Taking a close look on the bound-
aries for εc = 700 and εc = 100, it can be seen that these iterations
primarily coarsen mesh regions with many short edges connected
to each other. Conflicts frequently occur in these regions limiting
the impact of parallel processing. Nonetheless, choosing εc = 100
eliminates only 75k more tetrahedra than choosing εc = 700. Thus,
the impact on coarsening these local regions is not as substantial as
coarsening the remainder of the mesh. We achieve a fast run time
of 981 milliseconds (below one second) for choosing εc = 700,
which provides means for immediate response times [New94]. The
experiment validates that skipping collapsing iterations performing
few collapses comes at low cost, because the bulk of the decima-
tion happens in the initial iterations. For choosing εc = 1000, we
achieve to halve the number of tetrahedra. For εc = 700, we can
substantially reduce the number of tetrahedra.

4.5. Coarsening Meshes for Direct Volume Rendering

As coarsening meshes reduces memory requirements and work-
loads, we show that our method can be used for direct volume ren-
dering (DVR) with little loss of rendering quality. For preserving
the rendering quality, the coarsening method loads a scalar field Φ

in addition to the tetrahedral mesh. The scalar field Φ includes one
value for each vertex. In order to prevent loss of important details,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

96

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

Original εc = 1000 εc = 700 εc = 100 εc = 0
– 0.745 seconds 0.981 seconds 1.613 seconds 2.201 seconds
– 33 iterations 44 iterations 91 iterations 138 iterations

#T = 503k #E = 645k #T = 258k #E = 339k #T = 190k #E = 255k #T = 115k #E = 161k #T = 109k #E = 153k
#V = 101k #V = 55k #V = 42k #V = 28k #V = 27k

Figure 9: Coarsening the Robot mesh [ZJ16] (file ID 255172) with different values for εc results in different meshes and run times. We
provide run times in seconds and numbers of tetrahedra (#T), edges (#E) and vertices (#V) for the resulting meshes.

the used cost function measures the scalar field error incurred by an
edge collapse operation:

C(vidx0 ,vidx1 ,Φ) = |Φ(vidx0)−Φ(vidx1)|,

where vidx0 and vidx1 are the indices of the two edge vertices.

Collapsing edges produces new vertices with other spatial po-
sitions than the prior vertices. Thus, the scalar field needs to be
updated. Like Cignoni et al. [CCM*00], we maintain the removed
vertices to approximate the scalar values of new vertices. We use
the spatial data structure applied for the DVR to interpolate scalar
values of newly added vertices from the old scalar field. Our im-
plementation uses the OLBVH data structure [SMSF20] due to its
sparse use of memory. In addition, the implementation consistently
used the middle point placement strategy to show that the interpo-
lation of the scalar field works well. In order to preserve features,
the collapsing of edges should be limited to edges incurring only
a low cost. Thus, collapsing is limited to edges with a cost value
lower than 0.02(Φmax −Φmin). We demonstrate the quality of the
resulting DVR images on the Fusion mesh in fig. 10. The collapsed
version of the Fusion model was obtained within 8.6 seconds spec-
ifying εc = 700.

4.6. Collapsing for Mesh Improvement

We specify the cost function C and the placement strategy P so that
collapsing improves element quality. As the harmonic triangula-
tions by Alexa [Ale19] efficiently improve dihedral angles, we use
this concept for an example for mesh improvement. In harmonic
triangulations, the goal is to optimize the harmonic index η:

η(τ) =
∑ai∈τ a2

i

volτ
,

where τ is a tetrahedron, ai, i = 0, . . . ,3 its four face areas and volτ
its volume.

We specify P to perform a line search finding the optimal po-
sition for the vertex replacing the collapsed edge. The line search

Fusion Original Fusion Coarsened
#T = 2.9M #E = 3.6M #T = 1.6M #E = 1.9M

#V = 606k #V = 290k

Figure 10: Though the coarsened Fusion model includes half the
vertices of the original only little noise occurs.

optimizes the sum of harmonic indices interpolating between the
two edge vertices. The cost function C specifies the improvement in
terms of η gained by the collapse operation, prioritizing larger im-
provement over smaller. If a collapse operation does not lead to an
improvement of η or produces inverted elements, it is inadmissible.
Like Cutler et al. [CDM04], we couple edge collapse operations
with other operations. Our implementation combines GPU-efficient
vertex relocation and face/edge swapping [SMWF22] with collaps-
ing edges. One improvement iteration relocates the vertices, finds
beneficial face/edge swaps and collapses edges of tetrahedra with
a dihedral angle lower than a predetermined threshold. We present
an example for our mesh optimization algorithm improving the Die
mesh, providing element quality in terms of the minimal dihedral
angle φmin and conformal AMIPS 3D energy D [HSW*20]:

D(τ) =
tr(J⊤τ Jτ)

det(Jτ)2/3
,

where τ is a tetrahedron and Jτ its Jacobian matrix.

Our algorithm collapsed tetrahedra with a dihedral angle lower

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

97

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

Die Original Die Improved
2269 tets (red) 40 tets (red)

#T = 233k #V = 45k #T = 221k #V = 44k
φmin = 2.07 Dmin = 28.51 φmin = 9.34 Dmin = 15.52

Figure 11: Elements (red) with a dihedral angle (φ) lower than 13◦

before and after improvement.

than 13◦ until convergence (εc = 0). Within 273 milliseconds, our
optimization procedure performs 6 iterations and returns an im-
proved mesh. As can be seen in fig. 11, the resulting mesh exhibits
significantly better element quality and the bulk of low-quality el-
ements is removed. Our method cannot guarantee to remove all
tetrahedra with dihedral angles lower than the specified threshold,
because not every edge can be collapsed.

5. Conclusion

We have presented a massively parallel algorithm for collapsing
edges in an unstructured tetrahedral mesh using efficient conflict
detection. This has opened the door for fast re-meshing of un-
structured tetrahedral meshes. Our conflict detection produces large
sets of conflict-free sub-meshes while prioritizing by edge cost.
As a result, our massively parallel method for coarsening tetrahe-
dral meshes achieves a high degree of parallelism. Our method for
massively parallel collapsing is robust producing valid meshes on
a large test set. Its design enables adaption to specific use cases
such as DVR or mesh improvement. Our method does not depend
on any specific synchronization primitives such as atomic opera-
tions or locking mechanisms. Thus, it can be implemented on any
parallel computing architecture, provided a data structure for tetra-
hedral meshes that allows for the computation of connectivity re-
lationships. The requirement of such data structure is a limitation
of our method. Our evaluation showed that the largest performance
bottleneck is the massively-parallel rebuilding of connectivity re-
lationships after each collapsing iteration. With the use of a dy-
namic data structure for GPU-efficient rebuilding of connectivity
relationships, our method is expected to achieve even better per-
formance. An inherent limitation of parallel edge collapsing is that
the performance-gain through parallelism reduces in regions with
many adjacent to-be-collapsed edges, because many iterations are
necessary to coarsen these regions. For the sake of good run time
performance, coarsening these regions can be skipped by setting a
threshold εc for the number of collapses. There are many interest-
ing avenues for future work, including:

• Explore our conflict detection for other types of simplicial
meshes such as triangular surface meshes.

• Using our massively parallel determination of conflict-free sub-

meshes to speedup edge-based re-meshing using the cavity-
based operator of Loseille et al. [LM14].

• Parallelization of other re-meshing tasks such as Delaunay
boundary recovery of constrained edges [LLGZ14].

• Incorporate our massively parallel collapsing method in mesh
adaptation tools to improve performance

Source Code

Relevant code of our conflict detection can be found here.

Acknowledgements

The second author has been supported by the EC project DIGIT-
brain, No. 952071, H2020. The Fusion mesh is courtesy of the uni-
versity of Utah. We thank the anonymous reviewers for helping us
in improving the quality of our paper.

References
[Ale19] ALEXA, MARC. “Harmonic Triangulations”. ACM Transactions

on Graphics 38.4 (2019), 1–14 9.

[ALSS06] ALAUZET, FRÉDÉRIC, LI, XIANGRONG, SEOL, E. SEEGY-
OUNG, and SHEPHARD, MARK S. “Parallel Anisotropic 3D Mesh Adap-
tation by Mesh Modification”. Engineering with Computers 21.3 (Jan.
2006), 247–258 3.

[CCM*00] CIGNONI, P., COSTANZA, D., MONTANI, C., ROCCHINI, C.,
and SCOPIGNO, R. “Simplification of Tetrahedral Meshes with Accurate
Error Evaluation”. Proceedings Visualization 2000. IEEE, 2000 2, 9.

[CDM04] CUTLER, B., DORSEY, J., and MCMILLAN, L. “Simplification
and Improvement of Tetrahedral Models for Simulation”. Proceedings
of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing. Association for Computing Machinery (ACM), July 2004 2,
9.

[CM02] CHOPRA, P. and MEYER, J. “TetFusion: An Algorithm for Rapid
Tetrahedral Mesh Simplification”. IEEE Visualization, 2002. VIS 2002.
IEEE, 2002 2.

[CRJH09] COMPÈRE, GAËTAN, REMACLE, JEAN-FRANÇOIS, JANSSON,
JOHAN, and HOFFMAN, JOHAN. “A Mesh Adaptation Framework for
Dealing with Large Deforming Meshes”. International Journal for Nu-
merical Methods in Engineering 82.7 (Nov. 2009), 843–867 3.

[CTO20] CHEN, ZHENGHAI, TAN, TIOW-SENG, and ONG, HONG-
YANG. On Designing GPU Algorithms with Applications to Mesh Re-
finement. 2020. arXiv: 2007.00324 [cs.GR] 3.

[DBDR16] DEVECI, MEHMET, BOMAN, ERIK G, DEVINE, KAREN D.,
and RAJAMANICKAM, SIVASANKARAN. “Parallel Graph Coloring for
Manycore Architectures”. 2016 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, May 2016 3.

[DEGN99] DEY, TAMAL, EDELSBRUNNER, HERBERT, GUHA,
SUMANTA, and NEKHAYEV, DMITRY. “Topology Preserving Edge
Contraction”. Publications de l’Institut Mathématique 66 (1999) 2, 4.

[DS99] DE COUGNY, HL and SHEPHARD, MARK S. “Parallel Refine-
ment and Coarsening of Tetrahedral Meshes”. International Journal for
Numerical Methods in Engineering 46.7 (1999), 1101–1125 3.

[DT07] DECORO, CHRISTOPHER and TATARCHUK, NATALYA. “Real-
time Mesh Simplification using the GPU”. Proceedings of the 2007 Sym-
posium on Interactive 3D Graphics and Games. Association for Comput-
ing Machinery (ACM), Apr. 2007 3.

[DV13] D’AMATO, J.P. and VÉNERE, M. “A CPU–GPU Framework for
Optimizing the Quality of Large Meshes”. Journal of Parallel and Dis-
tributed Computing 73.8 (Aug. 2013), 1127–1134 3.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

98

https://hessenbox.tu-darmstadt.de/getlink/fiSCvdkBQ1VSxzzTKvocdaYb/ConflictDetection.tar.xz
https://arxiv.org/abs/2007.00324

D. Ströter et al. / Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes

[FJP99] FREITAG, LORI, JONES, MARK, and PLASSMANN, PAUL. “A
Parallel Algorithm for Mesh Smoothing”. SIAM Journal on Scientific
Computing 20.6 (1999), 2023–2040 3.

[GH97] GARLAND, MICHAEL and HECKBERT, PAUL S. “Surface Simpli-
fication using Quadric Error Metrics”. Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques - SIG-
GRAPH ’97. ACM Press, 1997 2.

[GK23] GAUTRON, PASCAL and KUBISCH, CHRISTOPH. Interactive
GPU-based Remeshing of Large Meshes. NVIDIA GTC Developer Con-
ference. Mar. 2023. URL: https://register.nvidia.com/
flow/nvidia/gtcspring2023/attendeeportal/page/
sessioncatalog/session/1666622202853001BIHK 3, 6–8.

[Has20] HASTINGS, DAVID. Atlas Shaper Crank S7-100. GRABCAD.
July 2020. URL: https://grabcad.com/library/atlas-
shaper-crank-s7-100-1 6.

[HB15] HOEFLER, TORSTEN and BELLI, ROBERTO. “Scientific Bench-
marking of Parallel Computing Systems”. Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis. Association for Computing Machinery ACM, Nov.
2015 7.

[Hop96] HOPPE, HUGUES. “Progressive Meshes”. Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Tech-
niques. 1996, 99–108 2.

[HSW*20] HU, YIXIN, SCHNEIDER, TESEO, WANG, BOLUN, ZORIN,
DENIS, and PANOZZO, DANIELE. “Fast Tetrahedral Meshing in the
Wild”. Transactions on Graphics 39.4 (Aug. 2020) 6, 9.

[Iba22] IBANEZ, DANIEL. Omega_h. GitHub. [Online; accessed Apr-
2023]. 2022. URL: https : / / github . com / sandialabs /
omega_h 2, 3.

[IBK*17] IBANEZ, DANIEL, BARRAL, NICOLAS, KRAKOS, JOSHUA,
LOSEILLE, ADRIEN, MICHAL, TODD, and PARK, MIKE. “First Bench-
mark of the Unstructured Grid Adaptation Working Group”. Procedia
Engineering 203 (2017), 154–166 3.

[JDH*22] JIANG, ZHONGSHI, DAI, JIACHENG, HU, YIXIN, ZHOU,
YUNFAN, DUMAS, JEREMIE, ZHOU, QINGNAN, BAJWA, GURKIRAT
SINGH, ZORIN, DENIS, PANOZZO, DANIELE, and SCHNEIDER, TESEO.
“Declarative Specification for Unstructured Mesh Editing Algorithms”.
ACM Transactions on Graphics 41.6 (Nov. 2022), 1–14 3, 6–8.

[KBK13] KREMER, MICHAEL, BOMMES, DAVID, and KOBBELT, LEIF.
“OpenVolumeMesh – A Versatile Index-Based Data Structure for
3D Polytopal Complexes”. International Meshing Roundtable (IMR).
Springer Berlin Heidelberg, 2013, 531–548 4.

[KE03] KRAUS, MARTIN and ERTL, THOMAS. “Simplification of Non-
convex Tetrahedral Meshes”. Hierarchical and Geometrical Methods in
Scientific Visualization. Springer. 2003, 185–195 2.

[LLGZ14] LIU, YAN, LO, S.H., GUAN, ZHEN-QUN, and ZHANG, HONG-
WU. “Boundary Recovery for 3D Delaunay Triangulation”. Finite Ele-
ments in Analysis and Design 84 (July 2014), 32–43 10.

[LM14] LOSEILLE, ADRIEN and MENIER, VICTORIEN. “Serial and Par-
allel Mesh Modification Through a Unique Cavity-Based Primitive”. In-
ternational Meshing Roundtable (IMR). Springer International Publish-
ing, 2014, 541–558 2, 3, 10.

[LMA15] LOSEILLE, ADRIEN, MENIER, VICTORIEN, and ALAUZET,
FRÉDÉRIC. “Parallel Generation of Large-size Adapted Meshes”. Pro-
cedia Engineering 124 (2015), 57–69 3.

[Lo14] LO, DANIEL S. H. Finite Element Mesh Generation. CRC Press,
2014, 1–7 1.

[MAS17] MUELLER-ROEMER, JOHANNES SEBASTIAN, ALTENHOFEN,
CHRISTIAN, and STORK, ANDRÉ. “Ternary Sparse Matrix Representa-
tion for Volumetric Mesh Subdivision and Processing on GPUs”. Com-
puter Graphics Forum 36.5 (2017), 59–69 4.

[MBAE09] MISZTAL, MAREK KRZYSZTOF, BÆRENTZEN, JAKOB AN-
DREAS, ANTON, FRANÇOIS, and ERLEBEN, KENNY. “Tetrahedral
Mesh Improvement using Multi-face Retriangulation”. International
Meshing Roundtable (IMR). Springer Berlin Heidelberg, 2009, 539–
555 2.

[MS18] MUELLER-ROEMER, JOHANNES SEBASTIAN and STORK, AN-
DRÉ. “GPU-based Polynomial Finite Element Matrix Assembly for Sim-
plex Meshes”. Computer Graphics Forum 37.7 (2018), 443–454 4.

[NE04] NATARAJAN, VIJAY and EDELSBRUNNER, H. “Simplification of
Three-dimensional Density Maps”. IEEE Transactions on Visualization
and Computer Graphics 10.5 (Sept. 2004), 587–597 2.

[New94] NEWELL, ALLEN. Unified Theories of Cognition. Harvard Uni-
versity Press, 1994. Chap. 8 8.

[NVI23] NVIDIA. Displacement Micro-Map Toolkit. [Online; accessed
Apr-2023]. Apr. 2023. URL: https : / / github . com /
NVIDIAGameWorks/Displacement-MicroMap-Toolkit 3.

[Par22] PARK, MIKE. Refine. GitHub. [Online; accessed Apr-2023]. 2022.
URL: https://github.com/nasa/refine 2, 3.

[PP14] PAPAGEORGIOU, ALEXANDROS and PLATIS, NIKOS. “Triangu-
lar Mesh Simplification on the GPU”. The Visual Computer 31.2 (Nov.
2014), 235–244 3.

[RGD22] REED, DANIEL, GANNON, DENNIS, and DONGARRA, JACK.
Reinventing High Performance Computing: Challenges and Opportuni-
ties. 2022 2.

[SG98] STAADT, O.G. and GROSS, M.H. “Progressive Tetrahedraliza-
tions”. Proceedings Visualization ’98. IEEE, 1998 2.

[She02] SHEWCHUK, JONATHAN RICHARD. “What is a Good Linear Ele-
ment? Interpolation, Conditioning, and Quality Measures.” International
Meshing Roundtable (IMR). 2002, 115–126 2.

[SHK*23] STRÖTER, DANIEL, HALM, ANDREAS, KRISPEL, ULRICH,
MUELLER-ROEMER, JOHANNES S., and FELLNER, DIETER W. “In-
tegrating GPU-Accelerated Tetrahedral Mesh Editing and Simulation”.
Lecture Notes in Networks and Systems. Springer International Publish-
ing, 2023, 24–42 4.

[Si20] SI, HANG. TetGen: A Quality Tetrahedral Mesh Generator and a
3D Delaunay Triangulator (Version 1.6—User’s Manual). Tech. rep.
Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik,
Aug. 2020 2.

[SMSF20] STRÖTER, DANIEL, MUELLER-ROEMER, JOHANNES S,
STORK, ANDRÉ, and FELLNER, DIETER W. “OLBVH: Octree Linear
Bounding Volume Hierarchy for Volumetric Meshes”. The Visual Com-
puter 36.10-12 (2020), 2327–2340 9.

[SMWF22] STRÖTER, D, MUELLER-ROEMER, JOHANNES SEBASTIAN,
WEBER, DANIEL, and FELLNER, DW. “Fast Harmonic Tetrahedral
Mesh Optimization”. The Visual Computer 38.9-10 (2022), 3419–
3433 9.

[Uga22] UGALDE, JOAKIN. T-Slot 3030 Corner Bracket 60x30. GRAB-
CAD. Sept. 2022. URL: https://grabcad.com/library/t-
slot-3030-corner-bracket-60x30-1 6.

[WBS*12] WEBER, DANIEL, BENDER, JAN, SCHNOES, MARKUS,
STORK, ANDRÉ, and FELLNER, DIETER. “Efficient GPU Data Struc-
tures and Methods to Solve Sparse Linear Systems in Dynamics Appli-
cations”. Computer Graphics Forum 32.1 (Oct. 2012), 16–26 2.

[WJBK15] WANG, YU, JACOBSON, ALEC, BARBIČ, JERNEJ, and KA-
VAN, LADISLAV. “Linear Subspace Design for Real-time Shape Defor-
mation”. ACM Transactions on Graphics 34.4 (July 2015), 1–11 2.

[ZJ16] ZHOU, QINGNAN and JACOBSON, ALEC. Thingi10K: A Dataset of
10,000 3D-Printing Models. 2016 1, 6, 8, 9.

[ZWMW23] ZELLMANN, STEFAN, WU, QI, MA, KWAN-LIU, and
WALD, INGO. “Memory-Efficient GPU Volume Path Tracing of AMR
Data Using the Dual Mesh”. (2023) 2.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

99

https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666622202853001BIHK
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666622202853001BIHK
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666622202853001BIHK
https://grabcad.com/library/atlas-shaper-crank-s7-100-1
https://grabcad.com/library/atlas-shaper-crank-s7-100-1
https://github.com/sandialabs/omega_h
https://github.com/sandialabs/omega_h
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit
https://github.com/nasa/refine
https://grabcad.com/library/t-slot-3030-corner-bracket-60x30-1
https://grabcad.com/library/t-slot-3030-corner-bracket-60x30-1

