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Figure 1: Rendering outcome of our method on the San Miguel scene, showcasing an effective representation of participating media effects
like fog, dust, and smoke. Our approach prioritizes minimizing redundant computations across multiple viewers, resulting in superior scala-
bility compared to the current state-of-the-art as the number of viewers increases.

Abstract
Achieving realism in modern games requires the integration of participating media effects, such as fog, dust, and smoke. How-
ever, due to the complex nature of scattering and partial occlusions within these media, real-time rendering of high-quality
participating media remains a computational challenge.
To address this challenge, traditional approaches of real-time participating media rendering involve storing temporary results
in a view-aligned grid before ray marching through these cached values. In this paper, we investigate alternative hybrid world-
and view-aligned caching methods that allow for the sharing of intermediate computations across cameras in a scene. This
approach is particularly relevant for multi-camera setups, such as stereo rendering for VR and AR, local split-screen games, or
cloud-based rendering for game streaming, where a large number of players may be in the same location.
Our approach relies on a view-aligned grid for near-field computations, which enables us to capture high-frequency shadows
in front of a viewer. Additionally, we use a world-space caching structure to selectively activate distant computations based
on each viewer’s visibility, allowing for the sharing of computations and maintaining high visual quality. The results of our
evaluation demonstrate computational savings of up to 50% or more, without compromising visual quality.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing;

1. Introduction

Over the last fifteen years, the trend to shift computations to the
cloud has gained increasing popularity. Performing computations
in the cloud has the obvious advantages of allowing for easy shar-

ing of resources, access to the latest hardware, mobility, scalability,
and cost savings for the end-user. While game streaming services
have become more commonplace during that same period, through
increased bandwidths and reduced latency, real-time rendering in
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the cloud is still largely focused on rendering scenes from a sin-
gle viewpoint. In shared environments, such as the "Metaverse",
or multiplayer gaming worlds, many of the computations are du-
plicated across all users, e.g. global illumination calculations. By
taking advantage of the shared resources when rendering in the
cloud, these duplicate computations can be minimized, while at the
same time increasing performance when compared to rendering the
scene from a single viewpoint without any shared resources. The
ability to also stream the rendering results from the cloud to com-
paratively weak end-user devices is also an advantage, as this not
only increases the battery life of such devices but can also decrease
the hardware costs of such devices significantly, as the need for the
latest hardware can be reduced. Furthermore, the improved perfor-
mance of decreasing duplicate calculations is not limited to shared
environments in the cloud but also applies to a locally shared end-
user device. Many console games offer a split-screen mode to ac-
commodate multiple local users, so depending on the location and
direction of the different cameras, the impact on rendering times
can be significant. This also applies to virtual and augmented real-
ity applications, where an image for each eye has to be generated,
and their location and direction only differ slightly. This small dif-
ference in location and direction leads to a large overlap in the re-
sulting images.

Real-time rendering encompasses a very wide array of computa-
tionally expensive effects, and the most realistic results are usually
achieved by ray tracing. In this work, we only focus on a single
aspect of real-time rendering, which are the phenomena caused by
participating media such as fog, light shafts, smoke, and dust. These
phenomena are important components in making a rendered image
look believable, while also adding a sense of scale to the scene, and
realistic results are usually expensive to calculate. The need for ef-
ficient computation of these phenomena for real-time applications
is thus still an ongoing research problem. As mentioned previously,
the current state-of-the-art approaches [Bau19, Hil15, Wro14] only
consider the scene to be rendered from one viewpoint, and as such
are not well-suited for a multi-viewer or cloud-rendered approach,
as they only provide linear scaling for multiple viewpoints at best.

In this work, we attempt to minimize the duplicate computations
inherent in a multi-user environment for participating media ef-
fects, when no resources are shared across the different users, as
well as to increase performance by using a shared shadow grid that
stores ray-traced shadows at world-space-aligned positions.

Specifically, the contributions we present with this work are:

• An extension to traditional froxel-based volumetric rendering
methods with a shared shadow grid, and a per viewer shadow
frustum, which allows for efficient rendering of participating me-
dia effects from many active viewpoints and sub-linear perfor-
mance scaling.

• An evaluation of the visual quality and performance scaling of
our method when compared to a state-of-the-art approach for
rendering volumetric fog effects.

2. Related Work

Rendering the effects of participating media is usually based on
some form of volumetric rendering approach, where a volume is

sampled at different locations and the result is an accumulation
of all those samples, usually referred to as raymarching. For an
overview of volumetric rendering, and effects with participating
media, we refer to the report by Novák et al. [NGHJ18].

For volumetric rendering to achieve real-time performance is a
long-standing research problem. Some early works by Delalandre
et al. [DGMF11] and Gautron et al. [GDM11] calculate maps that
simulate the effects of light interacting with the participating me-
dia, and could achieve real-time performance. Other approaches at-
tempt to leverage shadow volumes to speed up the raymarching
process like in Wyman et al. [WR08].

Another approach is to take advantage of a changed coordinate
system, that allows for easier computation of the participating me-
dia effects, such as in Baran et al. [BCRK∗10], that also added a
hierarchical element to further increase performance.

Recent advances in hardware performance, and also the ad-
vances in neural rendering, partially based on neural denoising, as
can be seen in Hofmann et al. [HHCM21], allow for the rendering
of high-quality interactive volumetric effects. In a further combina-
tion of image denoising with spatiotemporal reservoir resampling,
as seen in the work by Lin et al. [LWY21], nice results at interactive
rates can be achieved.

For real-time applications, such as games, the current state-of-
the-art methods are typically based on the frustum voxel approach
by Wronski [Wro14]. The general idea behind this method revolves
around a 3D voxel grid texture, which spans the camera clip space.
The resolution of this texture is typically set to occupy 8 screen-
space pixels for each voxel in both x- and y-directions, while the
amount of depth slices varies from 64 to up to 128 for highly de-
tailed results. These voxels store the scattered radiance that was
computed at their world-space centers, as well as the volume den-
sity of the participating media at that voxel location. Since these
voxels are bound to the camera frustum, they are also often referred
to as froxels in literature, and we will also be using that term. For an
efficient sampling of the volume from the camera, the in-scattered
radiance and media density within the volume grid needs to be ac-
cumulated from front to back. For a detailed explanation of this pro-
cess, and the physical basis behind it, we refer to Akenine-Möller
et al. [AMHH∗18]. This accumulation results in a new volume that
contains the amount of in-scattered light that reaches the camera,
and the transmittance over that distance. The resulting fog effects
look convincing and can be computed efficiently, despite not being
physically based.

Hillaire [Hil15] also used a similar method based on froxels with
the difference being that they followed a physically based approach.
They include the ability to define the absorption, scattering, emis-
sion, and phase function parameter for their participating media
volumes explicitly and compute the scattered light using those pa-
rameters. Additionally, they propose a method to include and ef-
ficiently compute volumetric shadows which are created when the
light gets occluded by high-density participating media.

Bauer [Bau19] extends the previous ideas further by using a dy-
namic depth range for the frustum volume and adding support for
rainbows by treating them as an additional light source that can be
adjusted via an additional water droplet density material parameter.
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They also introduce an efficient raymarching scheme for far-away
participating media like clouds outside the frustum volume range.

Sharing computations for cloud rendering was recently explored
by the work of Weinrauch and Tatzgern et al. [WTS∗23] which
focuses on sharing view-independent calculations in object space
and a world space aligned grid. Work from Neff et al. [NBD∗23]
explores sharing rendering computations by sampling points on the
surface and storing them in a hash grid.

3. Shared Computation of Participating Media

In this section, we will discuss the general idea behind our ap-
proach, as well as go into detail about how our pipeline is set up
and what kind of data structures are necessary for our approach to
function.

Approaches based on froxels are efficient and widely used in pro-
duction, which is why they also serve as the foundation upon which
we build our approach. More specifically, we base our approach on
Hillaire [Hil15], while also using it as the reference implementa-
tion we will compare our approach against in Section 4. Typically,
froxel-based techniques use some variant of shadow mapping to
evaluate the shadowing at the froxel centers. Our rendering pipeline
does not use shadow mapping but instead uses ray tracing to com-
pute the shadow term of the individual froxels. This not only al-
lows our approach to easily deal with multiple dynamic lights but
also with changes in the environment. Even with the hardware ac-
celeration provided by modern GPUs, ray tracing is still compu-
tationally expensive, and as a result, the vast majority of the total
computational cost for volumetric rendering lies within shadow ray
tracing. Our initial testing found that it amounted to roughly 80%
of the total cost. For a single viewpoint this is still manageable,
but computing the volumetric scattering for multiple viewpoints
increases the computational cost linearly with the number of view-
points, and eventually exceeds the real-time threshold. This is why
we were specifically interested in finding a way to share the cost
for the shadow computation in the case of a multi-viewer setup. To
this end, we extend the traditional froxel-based approaches with a
shadow grid that is shared among all viewers, and per viewer local
shadow frustums, which are used to replace the shadow mapping
step of state-of-the-art approaches.

Our approach consists of the following four stages:

1. Shared Voxel Update: ray traced update of the shadow grid
data structure (Section 3.1.1)

2. Shadow Frustum Update: ray traced update of the local
shadow frustum volumes (Section 3.1.2)

3. Lighting Computation: evaluate the scattered lighting and es-
timate the media density (Section 3.1.3)

4. Volume Ray March: accumulate the computed scattering &
media density (Section 3.1.4)

3.1. Pipeline

In the following sections, we will describe every stage of our
pipeline in detail. We will also describe the shared shadow grid and
shadow frustum volume, and highlight the changes we made to the
original pipeline of Hillaire [Hil15] to make them fit our approach.
An illustration of the pipeline is provided in Figure 2.

Shared Voxel Update
(Shadow tracing)

Shadow grid
texture

Shadow Frustum
Update

(Shadow tracing)

Lighting
Computation Shadow frustum

texture

Scattering +
Density texture

Volume Ray March

Accumulated
scattering +

density texture

Deferred Lighting
Pass

Executed in parallel

Legend

Our approach

Adapted from Hillaire
[Hil15]

Per-viewer texture

Global texture

Figure 2: Algorithm pipeline overview. The main differences to
standard froxel-based methods are the shared voxel update and
shadow frustum update stages. They replace the shadow map
lookup in traditional froxel-based methods. The remainder of the
pipeline is largely identical to standard froxel-based methods.

3.1.1. Shared Voxel Update

The main addition of our approach is the shared shadow grid data
structure. It is a single world-space-aligned uniform 3D voxel grid,
which stores the result of the shadow ray tracing operation as binary
shadow values in a single channel 8-bit 3D texture. Each of these
8 bits corresponds to a light source, which allows us to store the
results for up to 8 light sources in the form of a bitmask. The single
channel 8-bit 3D texture was enough for our testing scenes, as they
all contain less than 8 active light sources. For scenes that contain
more than 8 active light sources, we recommend using only the 8
light sources, which have the strongest influence over that shadow
grid voxel, or use even less, if performance is a concern. One way
to implement this efficiently would be by using a method like clus-
tered shading [OBA12]. If more active light sources are desired, it
would also be possible to increase the size of the underlying tex-
ture, either by increasing the number of channels, or the channel
size. Depending on the size increase of the texture, the memory
consumption of the shared shadow grid will increase accordingly.
An exemplary visualization of the distribution of a shadow grid in
the Battle of the Trash God scene is shown in Figure 3.

To avoid confusion with the naming the above voxels will be
referred to as (world-space) voxels with the grid they are contained
in being called the (shared) shadow grid, while the frustum-aligned
voxels will exclusively be referred to as froxels.

The update of the shared shadow grid is done every frame in
a single ray tracing shader. We first check for all voxels, whether
they are located in at least one of the active camera frustums. This
check is done by transforming the world-space position of each
voxel center into the clip space of each active camera. If the re-
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Figure 3: Visualization of the (shared) shadow grid in Battle of the
Trash God. The voxel size is increased for a clearer representation.

sulting coordinates are not contained in any of the active camera
frustums, no ray tracing has to be performed for this voxel. If the
voxel is visible, i.e. contained in at least one active camera frustum,
we shoot one shadow ray towards every light source and check if
it can be reached without encountering an occlusion. The result of
this occlusion test is then stored as a binary bitmask in the under-
lying texture of the shadow grid. What this ultimately represents is
a bitmask for every (visible) voxel, which contains visibility infor-
mation for each relevant light source. Since the shadow grid is fixed
in place, we found that an alternating update strategy can be utilized
without causing any noticeable artifacts. By alternating the updated
voxels based on the parity of their z-axis index, we can reduce the
total number of traced rays per frame by roughly half. Since the
shadow grid itself is fixed in the scene, changes to the lighting and
geometry are easily handled by the ray tracing of the shadow rays
during the update process. We did not notice any issues regarding
temporal inconsistencies even in dynamic scenes, which is likely
attributed to the temporal accumulation of the evaluated frustum in
a later step in the pipeline (Section 3.1.3).

3.1.2. Shadow Frustum Update

The shadow grid is supplemented by an additional local frustum
shadow volume for every active viewer in the scene. These froxel
shadow volumes store the ray-traced shadows in the same manner
as the shadow grid, but each of them is bound to a camera frus-
tum. We modified these shadow volumes in such a way that each
froxel spans 16 screen-space pixels in the x- and y-axes, instead
of the usual 8, thus increasing the size of the individual froxels.
We also only store about a third of the depth slices, as this local
shadow volume is only used to capture effects close to the cam-
era. This decrease in total froxel count reduces the update cost per
viewer and thus allows for better scaling with the number of view-
ers at the price of slightly lower visual fidelity. Increasing the size
further than the span of 16 pixels leads to a noticeable degrada-
tion in quality and has only a negligible impact on performance. To
better visualize these froxel volumes, Figure 4 shows a full-sized
froxel volume in a scene, as it is used by most froxel-based volu-
metric rendering methods for evaluating the scattering and density.
We also use it in a later pipeline stage (Section 3.1.3). It should be
noted, that these are the volumes used in the subsequent parts of the
pipeline, and the local shadow volumes feature fewer depth slices
and larger individual froxels.

Figure 4: Visualization of the froxel distribution viewed from a
third-person perspective. The froxel centers are marked in color.
The camera and the view direction are marked in red. These froxel
volumes are used in the lighting computation and accumulation
steps of the pipeline.

Although these shadow volumes are not shared across multi-
ple viewpoints, their small resolution allows for very reasonable
costs in terms of memory and computations. To further decrease
the costs, we combine all the shadow frustum textures into a single
large texture by stacking them along the depth axis. This allows us
to update them all in a single shader call, saving some additional
overhead.

3.1.3. Lighting Computation

Now that the bitmasks in the shadow grid texture, and the shadow
frustum texture are updated, we closely follow the single-camera
procedure from Hillaire [Hil15] to compute the scattered light and
estimate the media density of each froxel. As mentioned before, we
do not perform a shadow map lookup during the scattering compu-
tation but rather sample the shadows from our shadow data struc-
tures.

The results of the lighting computation are stored in a per-camera
froxel volume, that stores the in-scattered lighting and media den-
sity of the participating media. In contrast to our local shadow vol-
ume, this froxel volume is the same as it is in the reference solution,
so the froxels span 8 pixels in the x- and y-axes and the volume con-
tains the full 128 depth slices. To compute the in-scattered lighting
and media density, we sample the local shadow frustum for the first
third of the froxels in this new volume, while we sample from the
closest world-space voxel in the shadow grid for the remainder of
the froxels. This is done for all cameras and the result of this step
is the same as in the reference implementation. This volume is also
integrated temporally by jittering the sample locations along the
individual view rays to reduce noise and aliasing. A simplified top-
down visualization of how the shadow frustum and the shadow grid
interact with each other can be seen in Figure 5.

Optionally, instead of computing the scattering at just one sam-
ple position, we can use a trilinear interpolation technique to re-
duce the blockiness found with low-resolution grids and sharp light
shafts. We implemented this by sampling the 8 closest shadow grid
voxels, computing the scattering at their respective center positions,
and interpolating the computed values according to the position of
the evaluated froxel. This helps to mask the borders between in-
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Figure 5: A simplified visualization of the hybrid solution from a
top-down view. The camera and its frustum are outlined in black.
The shared shadow grid is represented by the grey grid, with the
voxels to be updated marked in green. The local shadow frustum
volume is represented by the blue grid.

dividual voxels when larger voxel sizes are used but also slightly
increases computational cost.

3.1.4. Volume Ray March

Following the lighting evaluations, the generated frustum volume
needs to be accumulated in a final pass. This procedure also fol-
lows Hillaire [Hil15], where we perform a 2D ray march inside the
frustum texture from front to back, accumulating the scattering and
transmittance into a new texture. This is performed for every viewer
and provides us with a 3D texture that can be used to sample the
accumulated light and transmittance at any point in the correspond-
ing camera’s view frustum. In a deferred rendering context we can
then use this texture by transforming the world-space position of
each pixel into the UV space of the texture and sampling the values
at that position. To apply the effect the pixel color is then multiplied
with the transmittance and is added to the in-scattered light.

4. Evaluation

In this section, we will be comparing our method to a reference
implementation based on Hillaire [Hil15] as it is widely used in
production and provides results close to what can be achieved
with path tracing. The setup is mostly identical to their proposed
approach but as mentioned before we use ray tracing instead of
shadow mapping to compute the shadow term inside the froxels.
This means that our approach can model the same effects of partic-
ipating media as the reference implementation does. While newer
methods like Bauer [Bau19] exist they fundamentally use the same
general idea with slight extensions to fit their specific needs. We
built our approach on the Falcor [KCK∗21] framework by NVIDIA
and we evaluate the performance of our approach using a test ma-
chine configured with an NVIDIA Geforce RTX 3090 GPU, an
AMD Ryzen 9 3900X Processor, and 32GB of RAM. The resolu-
tion of every viewer was set to 1920x1080. For the reference im-

plementation, we used the typical span of 8 pixels per froxel for the
frustum volume with a depth of 128. At 1080p this amounts to a
total frustum resolution of 240x135x128.

In the following sections, we will talk about the shadow grid in
terms of actual voxel size. In particular, this voxel size refers to
the side length of the voxel in each of the three world-space axes.
Meaning a shadow grid with a voxel size of 0.5 meters will have
eight times the amount of voxels as a shadow grid with a voxel size
of 1 meter. This is done so that it is easier to compare shadow grids
in different scenes, as the size differences across multiple scenes
can yield radically different grid resolutions.

Section 4.1 contains qualitative comparisons of different voxel
sizes for the shadow grid attempting to find an optimal tradeoff
for multiple scenes concerning performance and quality. In Section
4.2 we analyze and compare the run time of our approach in detail
using various camera setups as well as inspect the scaling with re-
gards to camera overlap. Finally, we provide an in-depth look at the
memory consumption of our approach in Section 4.3.

4.1. Performance-Quality Tradeoff

The memory consumption and the run time of our approach are
mainly determined by the chosen voxel size of the shadow grid. To
get a better idea of what kind of quality we can achieve by varying
the voxel size, we ran an ablation study for a range of different
values and compared the rendered results to our reference solution.
To highlight the differences to the reference solution, we used the
FLIP error metric [ANAM∗20], and these results can be found in
Figure 6.

By analyzing the results we obtained during our ablation study,
we found that there is no optimal voxel size shared across all tested
scenes. Still, some general guidelines can be learned from the re-
sults: For larger-scale participating media effects, a voxel size of
around 0.5 to 0.333 meters seems to be sufficient to capture ade-
quate detail for rendering purposes. To replicate sharp light shafts,
like those that are present in the Sponza scene (Figure 7), a smaller
size of about 0.1 meters is necessary. This large discrepancy stems
from the fact that effects such as light shafts are more visible close
to the viewer, and their small size requires an equally fine data
structure to properly capture the details for an adequate result.

4.2. Run-Time Performance

To ensure a fair comparison between our approach and the refer-
ence solution, we carefully selected the voxel size for our shadow
grid to achieve results that closely approximate the quality of the
reference solution. Additionally, since our shadow grid covers just
the extent of the scene, we also modified the reference imple-
mentation to only trace rays within the scene bounds. The perfor-
mance comparison between the reference implementation and our
approach can be seen in Tables 1, 2, and 3, as well as in Figures 8,
9, and 10.

These results show us that by using a large voxel size, we can
usually achieve an improvement in performance over the reference
solution, as soon as a second viewpoint needs to be rendered. When
using a small voxel size, the amount of viewers required to see
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(a) Result of rendering the scene with the reference implementation.

(b) Left: Render results using shadow grids with varying voxel sizes.
Right: FLIP result compared to the reference implementation. Shadow grid
voxel sizes from top to bottom: 4, 2, 1, 0.5, 0.25 meters. Grid resolutions
from top to bottom: 44x48x28, 88x94x54, 174x186x106, 348x370x212,
689x740x424.

Figure 6: Bistro (Exterior) render results.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Render results for the Sponza scene. Image a) depicts the
result rendered with the reference implementation. The images c),
e), g) are rendered using our approach with the following voxel
sizes: c) 0.5 meters (74x46x40 grid resolution), e) 0.25 meters
(148x92x80 grid resolution), g) 0.1 meters (364x238x200 grid res-
olution)

Cameras Reference Shared Shadow Grid

1 1.10 ms 0.91 ms
2 2.13 ms 1.57 ms
3 3.17 ms 2.17 ms
4 4.06 ms 2.73 ms
6 5.54 ms 3.57 ms
8 6.94 ms 4.57 ms

12 10.68 ms 6.54 ms
16 14.39 ms 8.57 ms

Table 1: San Miguel performance comparison using realistic cam-
era positioning and movement. The used voxel size is 0.125 meters,
which yields a grid resolution of 554x216x122.
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Figure 8: Performance results for the San Miguel scene with dif-
ferent viewer counts. The used voxel size yields a grid resolution of
554x216x122.

Shared Shadow Grid
Cameras Reference 0.5 meters 0.333 meters

1 4.58 ms 4.37 ms 7.82 ms
2 9.44 ms 6.56 ms 13.73 ms
3 13.77 ms 8.96 ms 18.41 ms
4 17.84 ms 11.20 ms 22.28 ms
6 26.53 ms 14.98 ms 27.48 ms
8 34.89 ms 17.88 ms 32.28 ms

12 52.02 ms 22.27 ms 37.60 ms
16 68.86 ms 26.92 ms 44.37 ms

Table 2: Bistro (Exterior) performance comparison using realistic
camera positioning and movement. The voxel size of 0.5 meters
gives us a grid resolution of 348x370x212, while the 0.333 meters
version uses a grid with a resolution of 522x554x318.

Figure 9: Performance results for the Bistro (Exterior) scene with
different viewer counts. The voxel size of 0.5 meters gives us a grid
resolution of 348x370x212, while the 0.333 meters version uses a
grid with a resolution of 522x554x318.

Shared Shadow Grid
Cameras Reference 0.333 meters 0.25 meters

1 2.41 ms 3.64 ms 7.12 ms
2 6.17 ms 5.91 ms 10.69 ms
3 9.53 ms 8.27 ms 14.52 ms
4 19.97 ms 12.88 ms 21.11 ms
6 25.43 ms 15.63 ms 24.30 ms
8 31.87 ms 18.57 ms 27.83 ms

12 45.68 ms 23.70 ms 32.96 ms
16 67.53 ms 30.49 ms 39.88 ms

Table 3: Battle of the Trash God performance comparison using
realistic camera positioning and movement. The voxel size of 0.333
gives us a grid resolution of 286x276x278, while the 0.25 meters
version uses a grid with a resolution of 380x368x370.

Figure 10: Performance results for the Battle of the Trash God
scene with different viewer counts. The voxel size of 0.333 gives
us a grid resolution of 286x276x278, while the 0.25 meters version
uses a grid with a resolution of 380x368x370.

a noticeable performance increase over the reference implementa-
tion is noticeably higher. Typically, around eight viewpoints need
to be rendered for our approach to beat the reference implementa-
tion in performance in this case. The reason for the subpar perfor-
mance with few viewers is in part due to the overhead caused by
the additional write and read operations to the shadow grid texture.
Additionally, our update procedure is overestimating the voxels re-
quired for sampling as we update all voxels within the frustums
even if some of the updated voxels are never the closest targets for
a sample.

The biggest tested difference in performance between our ap-
proach and the reference solution was achieved by having 16 active
viewers in the shared scene. In the San Miguel scene, this increase
amounted to about 40%, while for the Bistro scene, the improve-
ment reached 60%, and 35% with the larger, and smaller voxel
sizes respectively. The increase in performance remained the same
for the remaining scene, Battle of the Trash God, where we saw im-
provements of 55% and 41% for the larger, and smaller voxel sizes
respectively. Depending on the chosen voxel size, and the number
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Figure 11: Number of traced rays for the Battle of the Trash God
scene with different viewer counts. The voxel size of 0.333 gives
us a grid resolution of 286x276x278, while the 0.25 meters version
uses a grid with a resolution of 380x368x370.

Figure 12: Performance in Bistro (Exterior) in fixed overlap sce-
narios with a voxel size of 0.333 meters, and grid resolution of
522x554x318.

of viewers, the number of traced rays can be reduced significantly,
which can be seen in Figure 11.

For us to be able to quantify the performance benefits of our ap-
proach, we also measured the run time using artificially constructed
overlap scenarios at various camera orientations. To this end, we
fixed the amount of overlap between the cameras, by duplicating
one camera and rotating it in place until the desired overlap in frus-
tums has been achieved. The results of these experiments can be
seen in Figure 12.

Even in the worst case of 10% overlap between the cameras, as
soon as 8 active viewers are present in the scene, our approach beats
the reference implementation. For VR applications, where the two
cameras for the eyes are very close together, and the overlap is also
very high, we can achieve better performance with a low amount of
viewers in the scene.

To better showcase the performance characteristics of our ap-

Figure 13: Run time distribution in Bistro (Exterior) with a voxel
size of 0.333 meters, and grid resolution of 522x554x318.

proach, we measured the performance impact of each stage of our
approach. The performance impact of each stage can be seen in
Figure 13.

As expected, shadow tracing largely dominates the run time of
our approach. With low viewer counts this also leads to a decrease
in performance when compared to the reference implementation,
depending on the chosen voxel size. By increasing the number of
viewers, our approach can only win against the reference imple-
mentation, as our approach scales sub-linearly with the number of
viewers.

4.3. Memory Consumption

The memory footprint of our approach is made up of five different
components. Three of these five components are the fully frustum-
aligned textures used for storing the (accumulated) in-scattering
and participating media density. Next is the additional frustum-
aligned texture for the local shadow evaluations, and lastly, we
have our shadow grid. The fully frustum-aligned textures are the
same used by Hillaire [Hil15], and they span 8 screen-space pixels
in both the x- and y-axes and have 128 depth slices, thus each of
them requires about 33.2 MB of memory. The texture for the local
shadow evaluations only uses a third of the depth slices, just half
of the resolution in each x- and y-direction, and also uses a single
8-bit channel, which comes to about 0.4 MB. The memory require-
ment of these 4 textures scales per viewer in contrast to our shadow
grid, which requires only a constant amount of memory.

As was mentioned before, the memory requirements of the
shadow grid depend on the size of the scene and the chosen voxel
size. With a relatively large voxel size of 0.333 meters, which we
used in the Bistro scene, the shadow grid would need around 27 MB
of memory for a scene the size of 100x100x100 meters. In the case
of a scene where smaller voxel sizes are necessary, as was the case
to capture enough detail in the Sponza scene, with 0.167 meters per
voxel, this value would increase to about 216 MB.

In total, we need roughly 100 MB of video memory per viewer in
addition to a constant amount for our shadow grid, which depends
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Figure 14: Memory requirements in Bistro (Exterior) at 1080p. The
voxel size of 0.5 meters gives us a grid resolution of 348x370x212,
while the 0.333 meters version uses a grid with a resolution of
522x554x318.

on the chosen voxel and scene size. The memory needed for the
reference implementation and 2 voxel sizes in the Bistro scene is
visualized in Figure 14. Compared to the reference implementation,
our approach uses 0.4 MB more memory per viewer for the single
texture for the local shadow evaluations, which is negligible, and
additionally also only uses the constant memory of the shadow grid.

5. Limitations & Future Work

This section deals with issues and limitations we face in our current
approach as well as ideas on how to remedy them.

5.1. Large-scale Scenes

Our approach assumes the scenes to be limited to small or medium
sizes, as we span our shadow grid across the whole scene. For
large open-world type environments the required resolution of the
shadow grid texture would be very large and, because of that, stor-
ing the whole grid in memory would be impractical. To handle the
memory issues we could divide the scene into multiple cells which
each contain their own shadow grid and then load those cells on
demand as the viewers reach them.

5.2. Hierarchical Approach

Although we use a single-level fixed-resolution shadow grid in our
final approach we can use a hierarchical approach as well. During
our investigation, we performed some experiments on a basic hi-
erarchical approach based on the shadow grid. Instead of sampling
the per viewer froxel shadow frustum, a shared higher-resolution
shadow grid is sampled. This higher-resolution shadow grid is cre-
ated similarly to the previously mentioned shared shadow grid but
has a higher resolution to capture finer details. The high-resolution
grid is sampled by the froxels close to the camera while the other
froxels are sampled from the lower-resolution grid. This approach
improves the resulting quality, but the increase in memory con-
sumption, and the poor sharing of the high-resolution shadow grid,

which led to poor scaling in the number of viewers, caused us to
switch to the local shadow frustum per viewer. The additional mem-
ory consumption can be mitigated by having sparse layers or dy-
namically creating them where required, similar to an octree. Nev-
ertheless, this may be an interesting application for virtual reality
in particular, as the two cameras might be able to share a large per-
centage of the shared higher-resolution shadow grid.

5.3. Clouds & Long-Distance Fog

State-of-the-art volumetric rendering approaches like Bauer
[Bau19] typically feature a unified rendering approach that includes
support for short- as well as long-distance participating media like
clouds. Our approach focuses on effects close to the viewer, so the
rendering of far-away phenomena such as clouds is currently not
well supported with our approach. A quick fix would be to ren-
der them using a traditional ray marching approach as suggested
in [Bau19] but a future solution could use additional strategies to
share computations to better scale with many viewers as explored
by Weinrauch et al. [WLT∗23].

5.4. Surface lights

Our approach is currently limited to analytical lights due to stor-
ing one binary visibility term per light source. To extend to surface
lights we could approximate and accumulate incoming lighting in-
formation with more sophisticated data structures. Examples are
explored in the work of Stadlbauer et al. [SWTS23] for caching
direct illumination with spherical harmonics or cones spanning in-
coming light.

6. Conclusion

We showcase an efficient method of computing volumetric effects
from participating media in scenarios with multiple rendered view-
points. Our approach is based on existing state-of-the-art volu-
metric fog methods but additionally uses a world-space-aligned
shadow grid, and a shadow frustum per viewer, which both store
ray-traced shadow information. While the shadow grid shares its
shadow information across all viewers, the shadow frustums only
contain shadow information for each viewer. The grid is updated
in a manner that avoids duplicated computations and can be sam-
pled from any point in the scene. The split into shadow grid and
local shadow frustums allows them to be updated independently of
each other. Using our method, we manage to achieve similar qual-
ity compared to traditional volumetric fog approaches but with a
performance increase of up to 60%.
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