
High-Performance Graphics (2023)
J. Bikker and C. Gribble (Editors)

Neural Intersection Function

S. Fujieda C. C. Kao T. Harada

Advanced Micro Devices, Inc.

(a) (b) (c)

Figure 1: (a) A rendered image using Neural Intersection Function after 64 training samples per pixel. (b) A rendered image using ray
tracing with BVH. (c) Difference ×3 between (a) and (b). PSNR is 39.11 dB. The scene has 30M triangles rendered at 1920×1080 on AMD
Radeon™ RX 7900 XT. Secondary ray casting times are 4.54 ms and 5.27 ms in (a) and (b), respectively.

Abstract
The ray casting operation in the Monte Carlo ray tracing algorithm usually adopts a bounding volume hierarchy (BVH) to
accelerate the process of finding intersections to evaluate visibility. However, its characteristics are irregular, with divergence
in memory access and branch execution, so it cannot achieve maximum efficiency on GPUs. This paper proposes a novel Neural
Intersection Function based on a multilayer perceptron whose core operation contains only dense matrix multiplication with
predictable memory access. Our method is the first solution integrating the neural network-based approach and BVH-based ray
tracing pipeline into one unified rendering framework. We can evaluate the visibility and occlusion of secondary rays without
traversing the most irregular and time-consuming part of the BVH and thus accelerate ray casting. The experiments show the
proposed method can reduce the secondary ray casting time for direct illumination by up to 35% compared to a BVH-based
implementation and still preserve the image quality.

CCS Concepts
• Computing methodologies → Neural networks; Ray tracing;

1. Introduction

Monte Carlo ray tracing has been studied for decades and remains
an active research topic. Ray casting is the core operation of Monte
Carlo ray tracing to perform visibility tests from a given posi-
tion in a scene. A computationally expensive operation, ray cast-
ing is often accelerated with a bounding volume hierarchy (BVH)
to find intersections [MOB∗21]. There have been many attempts
and explorations to improve the performance of BVH-based ray

casting using technologies emerging from both software and hard-
ware [MB22, AMD23, NVI18].

However, these implementations are often non-ideal to be carried
out on Single-Instruction Multiple-Threads (SIMT) architectures,
such as GPUs, where the instructions in all threads are executed in
lock-step and, therefore, cannot achieve maximum efficiency. The
BVH traversal is an irregular algorithm, which implies divergence
in memory access and branch execution. While irregular algorithms
contain operations that cannot be handled efficiently on GPUs and

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/hpg.20231135 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-2472-7365
https://orcid.org/0000-0002-7631-2284
https://orcid.org/0000-0001-5158-8455
https://doi.org/10.2312/hpg.20231135

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

cause the performance of GPUs to decrease [KH18], neural net-
work (NN) execution, especially in the case of fully connected net-
works, is regarded as a regular algorithm because its core operation
comprises mainly dense matrix multiplications with a predictable
memory access pattern, which is GPU-friendly. Thus, we could ex-
pect the ray casting performance on GPUs to improve if the BVH
traversal can be replaced with a NN.

For this purpose, we propose a novel method called Neural In-
tersection Function (NIF). Unlike the conventional methods, it em-
ploys a NN to evaluate visibility from a point to a specific direction
instead of traversing the entire BVH tree down to its bottom level.
Thus, it avoids executing the most irregular part of the algorithm
on GPUs. In this paper, we demonstrate its feasibility by analyzing
performance and image quality when using NIF only for secondary
ray casting for direct illumination. Extensions to other types of rays
remain our interesting future work.

The paper makes the following contributions:

• We introduce Neural Intersection Function (NIF), a novel
method based on a multilayer perceptron (MLP) to accelerate
ray casting as an alternative to BVH-based methods.

• We demonstrate that NIF can handle rays cast in a scene for ren-
dering using two distinct types of NNs and grids storing latent
vectors with a carefully selected input parameterization.

• We experimentally prove that the adoption of NIF into the ray
tracing pipeline to compute direct lighting can improve perfor-
mance and validate that our approach can preserve image quality.

The advantages of NIF compared to a BVH-based approach are:

• Improved computational efficiency on GPUs thanks to less di-
vergent execution and memory access.

• Constant memory footprint, independent of objects’ geometric
complexity, makes our method more advantageous for a complex
model with a larger number of triangles.

• Constant execution time if the number of rays intersecting
against the AABB of an object is the same.

2. Related Work

There are many attempts to represent 3D shapes with implicit
neural representations (INRs) based on the multilayer perceptron
(MLP) architectures. These neural representations encode the geo-
metric information by learning the mapping from a given position
in 3D space to other properties at that location which usually de-
notes the distance to the surface of the shape [PFS∗19,CZG∗21] or
the density and emitted radiance [MST∗20]. On the other hand,
a similar concept utilizes a network trained to model the occu-
pancy function which acts as a binary classifier [MON∗19, CZ19].
A 3D surface determined from the methodologies above is re-
garded as an isosurface. An extra step is required to extract the 3D
mesh of desired quality and resolution from the represented isosur-
face [CAPM20].

Unlike the main application of INRs, whose purpose is to re-
construct the 3D surface, NIF aims to approximate the function of
the visibility test for given spatial positions. Thus, it is not deter-
mined by any isosurface of objects. Instead, our method encodes
the visibility by learning the hit information associated with the

corresponding hit object utilizing multiple feature grids. Despite
the remarkable results from INRs, it remains a challenge to train
a NN that can correctly capture the attribute of 3D shapes and, at
the same time, perform the computation efficiently when adopted
in applications. Previous studies have proposed numerous method-
ologies to enhance the quality of the representation or the perfor-
mance. From many ideas and techniques, the core concept can be
categorized into two approaches. One is to utilize a global network
to represent the 3D shape and slice the surface into small patches to
reduce the difficulty of fitting a complex surface into a single global
network [TTG∗20, GCV∗19]. Another approach is to partition the
3D space spatially into local regions and then train multiple INRs
for each region [YYCM21, MLL∗21].

Inspired by both approaches, we propose a combined solution
in NIF: we categorize the rays based on whether they originated
from outside or inside of any Axis Aligned Bounding Box (AABB)
of objects and train two networks, outer and inner, respectively.
In other words, we do not construct networks for each object but
train two networks to capture the characteristics of all objects.
However, for each network, we utilize feature grids that take the
AABB of the hit object into consideration to aid in fitting and
training the network. Specifically, we condition the network lo-
cally by transforming the latent code so that it becomes coordinate-
dependent [XTS∗22, JSM∗20].

Input parametrization plays an important role and is a decisive
factor in the quality of the network. However, to train a network
that can accurately map rays to the hit information, it is not ideal
to concatenate the positions and directions of rays as the input for
the network. The reason is due to ray aliasing: assume that we have
a ray r which is represented by its position and direction as (p,d),
if we move the ray’s origin from p along its direction d to another
point p′, this becomes an aliased ray and the hit result caused by
them should be identical. However, in reality, there is no guarantee
that the network would still be able to produce the same output
since the input of the two, (p,d) and (p′,d), would be different.

To overcome the challenge, previous studies have explored dif-
ferent methods to parameterize rays. For example, Sitzmann et al.
have demonstrated how to train an MLP to handle rays with arbi-
trary origins and directions by transforming them to Plücker co-
ordinates [SRF∗21]. Furthermore, Feng et al. have extended this
concept to incorporate the correspondence of the surface by intro-
ducing the foot notation, which is also designed to be invariant to
changing the ray position along the ray direction [FZT∗22]. Fol-
lowing a similar concept, our approach also aims to identify aliased
rays that would result in identical hit points. Instead of represent-
ing the rays in Plücker coordinates, we transform the positions to
a representation with respect to the hit object as follows: if a ray
originated from outside of the AABB of the hit object, we translate
its position to the intersection point of the ray with the AABB. On
the other hand, in the self-occlusion case where the ray originated
from inside of the AABB, it is mapped onto a unique position of
the surface. As a result, aliased rays would be encoded identically.

3. Design of the Neural Intersection Function

The concept of the visibility test is to evaluate the occupancy from
a given position in 3D space p ∈ R3 along a direction d. The result

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

44

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

(a) NIF outer network (b) NIF inner network

Figure 2: (a) The outer network of NIF. Starting from the left of the figure, the original 3D position p is converted into a 2D spherical
coordinate p′ by the transformation function Touter. After that, p′ is used to retrieve the corresponding feature vector vp from the grid. The
final content of the feature vector is bi-linearly interpolated by considering the neighbor indices. Direction is handled by the same logic to
retrieve vd . Finally, the feature vectors are concatenated to form the input for MLP. During the backpropagation, those trainable feature
vectors are also updated. (b) The inner network adopts a similar architecture with an additional feature vector vr derived from the distance.

is a binary value {0,1}, where 0 denotes it is occluded by an object
and 1 represents it is clear (i.e. visible). Namely, the concept can be
formulated as the following function in Equation 1:

f : {(p,d)|p,d ∈ R3}→ {0,1} (1)

Our motivation is to approximate this function by training NNs
which can map the input to a visible probability between 0 and 1. To
improve accuracy, we must eradicate the problem caused by aliased
rays where two rays result in the same intersection hit point but
are represented differently. This is done by conditioning the inputs
with the Axis Aligned Bounding Box (AABB). The AABB of an
object partitions the space geometrically into two regions known
as outside or inside of the AABB. During the ray casting phase,
we can also classify rays as either outside or inside based on their
origin positions. We create two NNs for each of them, denoted as
outer and inner.

3.1. Outer Network for Ray Cast from Outside of AABBs

There are infinite numbers of rays with distinct origins and direc-
tions that can be cast from outside of an AABB toward the object
it encapsulates. However, the rays which have different origins but
travel along the same direction would eventually hit the same inter-
section point on the AABB. Therefore, instead of using the origins
of rays, we can better represent them by computing the intersection
of a ray with the AABB. With this parameterization, rays that lie
on the same line are mapped to an identical representation, which
reduces aliasing. Furthermore, since AABBs are concave, we can
convert the position p from the 3D Cartesian coordinate to a 2D
spherical coordinate p′ with a bijective mapping to further reduce
the data dimension. Similarly, the direction is also converted from
d to d′. Equation 2 formulates the transformation function:

Touter : {(p,d)|p,d ∈ R3}

→ {(p′,d′)|p′,d′ ∈ R2 ∧p′ ∈ AABB} (2)

However, we have found that supplying those converted val-
ues directly to the network for training is not optimal. This is be-

cause complex geometries usually incorporate geometrically high-
frequency details, which makes it difficult for the network to learn
effectively [MST∗20,KMX∗21]. In order to improve accuracy fur-
ther, we adopt a representation learning technique [BCV13] and
utilize grid encoding to automatically discover a set of features that
can describe data compactly and yet expressively. The way grid en-
coding functions is to first construct two-dimensional grids whose
cells store trainable latent vectors (i.e. feature vectors) for the posi-
tion and the direction per object. The converted values, p′ and d′,
are now used as indices of the grids to retrieve the corresponding
feature vectors, vp and vd , respectively. The feature vectors become
the inputs for the MLP and are simultaneously optimized together
with the weights of the MLP through back-propagation [PFS∗19].
Furthermore, the final contents of feature vectors from grid cells are
bi-linearly interpolated and concatenated before being supplied to
the MLP, which is shown in Fig. 2a. By conditioning the network’s
input on the feature vectors fetched from grids constructed for each
object, this formulation allows modeling the visibility results of
multiple objects with a single neural network. To summarize, the
function of NIF for the outer network is formulated in Equation 3:

NIFouter : {(vp,vd)|(vp,vd) = Grid(p′,d′)

∧ (p′,d′) ∈ Range(Touter)}→ {0,1} (3)

3.2. Inner Network for Ray Cast from Inside of AABBs

When a primary ray hits an object enclosed in a valid AABB, the
corresponding secondary ray is generated from the inside. Similar
to the transformation method in the outer network, we convert the
position and the direction from 3D to 2D. The conversion could be
viewed as a procedural UV mapping with spherical vertex projec-
tion since the hit point position will always be on the surface of
an object. However, considering only the position and the direction
is not enough because there could have more than one intersection
point caused by the secondary ray if the object is concave. There-
fore, we need to record the distance from the center of an AABB
to the hit point as well. Equation 4 describes the transformation

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

45

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

(a) (b)

Figure 3: Rendering pipeline using NIF. (a) Primary rays are cast
from the camera as usual. (b) Secondary rays are generated and
cast against the scene. Objects are replaced with NIF in this step.
Thus, we do not traverse BVHs for objects. The red ray starting
from the blue AABB first checks the inner intersection of the object
where the origin is located. Then it checks the intersection against
the object in the orange AABB.

function for the inner network:

Tinner : {(p,d)|p,d ∈R3}→ {(p′,d′,r′)|p′,d′ ∈R2,r′ ∈R} (4)

After the conversion, the converted values are also encoded with
grids to get the feature vectors vp and vd . In addition, we incorpo-
rate the information derived from the distance as a feature vector vr
which is retrieved from a 1D grid by using the normalized distance
r′ as the index. The feature vectors vp, vd and vr are also concate-
nated to form the input for the MLP, which is shown in Fig. 2b. As a
result, the function of NIF for the inner network can be formulated
in Equation 5:

NIFinner : {(vp,vd ,vr)|(vp,vd ,vr) = Grid(p′,d′,r′)

∧ (p′,d′,r′) ∈ Range(Tinner)}→ {0,1} (5)

Note that we can further extend this network by encoding auxil-
iary data at the hit point as the output of the network. In this exam-
ple, we only need to use NIF for the occlusion query. Therefore, a
value between 0 and 1 is used to represent the occupancy. It is also
possible to add other surface properties, such as shading normal or
texture coordinates. We demonstrate the applicability of extending
NIF to support primary ray casting later in this paper.

4. Neural Intersection Function in Ray Tracing Pipeline

Here we discuss the integration of NIF to a regular ray-tracing
pipeline where shading and lighting are executed, and a two-level
BVH is used. To the best of our knowledge, our proposed method
is the first approach to embedding a neural network-based method
into such a regular ray-tracing framework.

Although NIF is applicable to all types of rays, errors of NIF
used for primary ray casting directly result in visible artifacts and
the accuracy is not enough compared to BVH ray tracing as shown
in Fig. 5. Thus, we only limit the use of NIF for secondary ray
casting for direct illumination in this paper. Fig. 3 is an illustration
of the processes in Sec. 4.1 where objects are replaced with NIF
after primary ray casting as shown in Fig. 3b.

4.1. Embedding NIF to a Ray-Tracing Pipeline

To achieve high performance in finding the intersections of rays
within the scene, spatial acceleration structures such as a BVH
are usually employed. Instead of building a single BVH over all
geometric primitives in the scene, we construct the data structure
into two levels where the geometric primitives of each object are
grouped into separate bounding volumes, each contains their own
BVH also known as a bottom-level BVH, and with a top-level BVH
built over all these volumes. Generally, the more complex the object
is, the more divergent it would be when traversing the bottom-level
BVH which leads to performance degradation. To tackle this issue,
NIF is designed as a replacement for bottom-level BVHs.

As NIF replaces the bottom-level BVH, the remaining part of the
rendering pipeline stays the same. Since the input of NIF is derived
from transformation functions as shown in Equations 2 and 4 and
thus depends on the AABB, we need to traverse the top-level BVH
to search for a ray intersecting an AABB. The ray casting starts
with the top-level BVH traversal as usual until it hits a leaf node.
When an intersection is found, instead of diving into the bottom-
level BVH, we query from NIF to let it infer the intersection result
of the ray to the object. If an occlusion is reported, the intersection
will be recorded as the current closest hit point. After processing
the object, we return to the top-level BVH traversal and execute
NIF at the leaf node. This process repeats until we finish traversing
the top-level BVH.

To optimize the execution pattern and to minimize the impact
of branch divergence, we divide these two stages, the top-level
BVH traversal and the execution of NIF, into different kernel ex-
ecutions. This way, we can achieve maximum GPU occupancy and
could also tune the size of the thread group and the shared mem-
ory for individual kernels to find the optimal configuration. As a
result, the overall GPU utilization increases. The entire execution
flow functions as follows: at first, we only traverse the top-level
BVH and store the input data when an intersection is found as de-
scribed in Sec. 3. This step is computationally inexpensive since
it only traverses a relatively small BVH and checks intersections
with AABBs. After all the input data are gathered during the traver-
sal stage, we move to NN execution. At this stage, we invoke NIF
for the outer network and then for the inner network sequentially.
Specifically, there is a kernel being executed for feature grid look-
ups and concatenation of the latent vectors, followed by the NN
inference execution which predicts the status of occlusions. Since
we only need to train one single NN (two in total for the outer and
the inner network) that can handle all objects in the scene, this step
is effective. Note that this step would become computationally ex-
pensive if we had to prepare a single NN for each object, as we
need to gather the rays intersecting against each object and execute
them one by one.

4.2. Training

NIF is trained with rays that are generated from the current view-
point (camera) while rendering a scene based on a predefined con-
figuration and with a first few samples per pixel (spp). During this
rendering phase, we collect the ray-AABB intersection results in
order to train the parameters in NIF afterward. Alternatively, it is

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

46

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

Table 1: Hyperparameters of feature grids. R and N are the reso-
lution of the grids, the dimension of the latent vectors, respectively.

NIF outer network NIF inner network
2D Grid 2D Grid 1D Grid

R 256 128 128
N 3 5 3

also possible to train NIF separately and in an offline setting using a
larger set of rays that could be generated from multiple viewpoints
covering a wider range, provided that the structure of the MLP in
NIF is adjusted accordingly.

5. Implementation

The NNs in NIF are implemented from scratch using AMD C++
Heterogeneous-Compute Interface for Portability (HIP) [AMD21]
in order to train and run inference on GPUs. Each NN is imple-
mented in the form of an MLP. Inspired by the previous work from
Müller et al. [MRNK21], we implemented the NNs to fuse oper-
ations from all layers to minimize memory transfer overhead. By
design, a single thread block only needs to load the weight matrix
once in a single inference execution and store the data in the shared
memory. Our NN framework supports both 32-bit and 16-bit preci-
sion of floating points for the network weights.

As described in Sec. 4.1, to maximize GPU efficiencies, the ex-
ecution is implemented in a way that is composed of two parts: the
first part traverses the top-level BVH and stores the data, and the
second part invokes the NNs for inference.

Architecture The outer network in NIF contains two hidden lay-
ers with 64 nodes in each of them, whereas the inner network com-
prises three hidden layers with 48 nodes each. Every hidden layer
is followed by a leaky ReLU activation function except for the last
one. For the last layer, we used a sigmoid activation function to out-
put a visible probability between 0 and 1. In this paper, we consider
the ray is occluded if the output probability is less than 0.5. For the
grid encoding, we used two-dimensional grids for the position and
the direction, and a one-dimensional grid for the distance as de-
scribed in Sec. 3. These grids have a resolution R per dimension.
Each cell in the grids stores the latent vector with dimensions of N.
Table 1 shows the values for these hyperparameters used in our ex-
periments. These values are chosen experimentally, which we will
describe in Sec. 6.1.

Initialization The weights of NNs are initialized with Xavier ini-
tialization procedure [GB10]. The latent vectors in grid cells are
initialized with the uniform distribution U(−10−4,10−4).

Training To generate the training samples (i.e. ray-AABB inter-
section information), we used ray directions generated with light
importance sampling according to radiant flux where a tabled CDF
is computed and sampled using binary search. Using these samples,
we jointly trained NNs and feature grids by applying the Adam op-
timizer, where we set β1 = 0.9, β2 = 0.999 and ε = 10−15, with the
L2 loss function [KB15]. We used a learning rate of 0.005, a batch

size of 211 in NIF for the outer network and 212 in NIF for the inner
network. These hyperparameters are also chosen experimentally.

Memory Footprint We utilized half-precision floating points as
much as possible. As each cell in a grid stores latent vectors in
half, gradient vectors in 32-bit float, and first and second moments
for the Adam optimizer in 32-bit float, a two-dimensional grid with
resolution R2 requires 14R2 bytes. Thus the grids for outer and in-
ner networks consume 28R2 and 28R2 +14R bytes, respectively. If
we move the training to an offline process and free all the memory
required for training, they only require 4R2 and 4R2 + 2R for the
runtime. Specifically, they are 256 kB for the outer and 65 kB for
the inner with R = 256 and R = 128 which we used for our imple-
mentation. For brevity, the memory footprint for the grids described
here is for a single object though the grids are prepared for each
object. On the other hand, the network is shared, thus the memory
footprint for the network is constant even if we put more objects in
the scene. Specifically, they are 18 kB for the outer network and 21
kB for the inner network with the settings for our implementation
for the runtime. Note that we are only allocating about 321 kB even
for a model with 10M triangles, which is a huge compression ratio.

Primary Visibility Computation When NIF is adopted to com-
pute the visibility of secondary rays, we need a solution to find
the shading points directly visible from the camera. In this paper,
we selected ray tracing to compute these but our method is not re-
stricted. That is to say, it is also possible to use rasterization to
compute primary visibility.

6. Results

We demonstrate the results of our proposed method, NIF, from var-
ious aspects. NIF is implemented in our progressive path tracer
written in HIP. To evaluate the performance, we render images
with 1920× 1080 screen resolution on AMD Radeon™ RX 7900
XTX GPU and measure the GPU kernel execution time with AMD
Radeon™ GPU Profiler. The image quality is evaluated with the
peak signal-to-noise ratio (PSNR) where a higher value indicates a
better prediction quality. We show the results of our method only
for the static scenes in this paper. However, it should be possible
to extend it to dynamic scenes using the training method described
in 4.2 so that NN can adapt to the new viewpoint. This is our inter-
esting and important future work.

6.1. Hyperparameters on Grids

Feature grids have hyperparameters R (grid resolution) and N (di-
mension of latent vectors), as shown in Table 1, which balance
quality and performance. Here, we analyzed how these hyperpa-
rameters affect the results by tuning them.

We investigate various combinations of R and N in NIF for the
outer and inner network independently to evaluate the differences
coming from one network. Thus, when analyzing NIF for the outer
network, we traverse BVHs for objects instead of executing NIF
for the rays originating from the inside of AABBs, and vice versa.
First, we analyze the impact of R in NIF for the outer network
in Fig. 4. Generally, grids with higher resolution R take a longer

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

47

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

131.91 microseconds 135.49 microseconds 153.09 microseconds
PSNR: 48.39 dB PSNR: 49.75 dB PSNR: 45.70 dB

(a) R = 64 (b) R = 256 (c) R = 1024 Reference

Figure 4: Visualizations of differences with various resolutions in grids for the outer network with the THAI STATUE scene. The second row
shows errors ×3 in each rendered image in the first row. All images are rendered after 128 training spp. The inference time and PSNR are
shown below each image.

B
U

N
N

Y
(N

orm
al)

B
U

N
N

Y
(D

epth)
D

R
A

G
O

N
(N

orm
al)

D
R

A
G

O
N

(D
epth)

(a) Reference (b) R = 256 (c) Error of (b) (d) R = 32 (e) Error of (d)

Figure 5: Comparison of grid resolutions when NIF is used for
primary ray casting. All images are rendered after 32 training spp.
The top and bottom rows of each model show shading normal and
depth from the camera.

execution time for inference. But for the quality, PSNR peaks at
R = 256 and starts to decrease with even higher resolutions. Visu-
alizations of differences show that with R = 64, errors are signifi-
cant in the shadow of the edge of the object while with R = 1024,
higher errors can be seen close to the object boundary. This is be-
cause the number of samples hitting near the object boundary is
relatively small and with higher resolutions, more training samples
are required to train a feature grid since each cell encodes more
precise regions. Requiring more training samples is not suitable for
our case of online training described in Sec. 4.2. Thus, we choose
to use R = 256 in this paper to evaluate the performance.

Additionally, in Fig. 5, we also evaluate the impact of R when
NIF is used for primary ray casting. To use NIF for primary ray
casting, we set shading normal and depth from the camera for the
output of the networks instead of zero or one as discussed in Sec. 3.
As shown in Fig. 5, errors can be significantly reduced using the

U
niform

Im
portance

(a) 32 training spp (b) Error of (a) ×3 (c) 128 training spp (d) Error of (c) ×3

Figure 6: Comparison of sampling method used to generate train-
ing samples. The first and second rows are the results using uniform
and light importance sampling methods, respectively.

higher resolution both for shading normal and depth. These results
illustrate that using higher resolutions can improve image quality in
any case where NIF is used for primary and secondary ray casting
though it requires more training samples. Furthermore, we analyze
the effectiveness of the dimensions of latent vectors in the outer
network by tuning N from 3 to 7 with the fixated R = 256. In this
analysis, we find that a higher value of N results in a higher PSNR
despite taking more time for inference. In this paper, we choose
N = 3 to prioritize performance, but generally, it is recommended to
tweak N to balance performance and quality in different use cases.
Based on the analysis, we select R = 256 and N = 3 for NIF for the
outer network as our default settings.

In NIF for the inner network, both 1D and 2D grids are em-
ployed, which results in a lot of combinations for R and N. How-
ever, changing the resolutions R of these grids does not drastically
affect the quality as those in NIF for the outer network. Though
higher resolutions take more inference time and show lower PSNR
values without enough training samples, a similar PSNR of about
41 dB can be achieved both for one and two-dimensional grids with
the THAI STATUE scene. Therefore, for all grids in NIF for the
inner network, we use R = 128 which shows a better balance be-
tween performance and quality. Also, for the dimension of latent
vectors N, we examine it with multiple combinations for one and
two-dimensional grids by varying N in a one-dimensional grid from
2 to 5 and N in a two-dimensional grid from 3 to 6. In this analysis,
N = 3 in a one-dimensional grid and N = 5 in a two-dimensional
grid show the well-balanced result between performance and qual-
ity. Thus, we use the configuration described in Table 1 in all our

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

48

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

R
endered

E
rror×

3

PSNR: 31.36 dB PSNR: 31.32 dB
(a) Single Shared NN (b) Single NN per object (c) Reference

Figure 7: Comparison between one shared network and one network per object in NIF. All images are rendered after 64 spp training using
(a) a single shared NN and (b) a single NN per object. (c) is a reference image.

(a) NIF (b) Reference (c) Error of (a) ×3

Figure 8: The scene with overlapping objects, rendered after 64
training spp. PSNR is 40.47 dB.

experiments because they show nearly the best-balanced results be-
tween performance and quality.

6.2. Comparison of Sampling Method

We used ray directions with light importance sampling to generate
training samples for the networks in our implementation. To show
the effectiveness of importance sampling, we compare it with uni-
form sampling in Fig. 6. As shown in Fig. 6, importance-sampled
rays significantly reduce errors, especially with low training spp.
Even with 128 training spp, we can still see significant errors with
uniform sampling, especially in the shadow of a small object on the
left. This is because the number of training samples we generate is
proportional to the size of the object.

6.3. Comparison with Single NN per Object

As we described in Sec. 4.1, we only need to train a single NN per
NIF because the same one can be used for querying the occlusion
result of all objects in a scene. We call this type of implementation
"the shared NN." Since how a shared NN implementation affects
the accuracy of the output needs to be clarified, we compared our
implementation to a case where an NN is allocated for each object.
Fig. 7 shows a comparison of these two approaches. Both methods
achieve a similar PSNR of about 31.3 dB, so our implementation of
shared NN is effective. Furthermore, it has another advantage since

(a) NIF (b) Reference (c) Error of (a) ×3

Figure 9: The rendered images of a scene illuminated by area
lights, rendered after 128 training spp. PSNR is 43.58 dB.

a shared NN simplifies the complexity of implementation and re-
source usage on GPUs. The error images show that the shared NN
can also achieve better results, especially in distant areas, while
it shows higher errors close to the camera. The reason is that the
number of training samples is proportional to the object’s size on
the screen, and training a single NN per object requires more train-
ing samples compared to the shared NN. This is another advantage
of using the single shared NN.

6.4. Handling Scenes with Overlapping Objects

NIF can handle scenes where multiple objects intersect geometri-
cally with each other and have their AABBs overlapped. This is
because, during the ray casting stage in training, a single ray can
result in multiple data points if it intersects with or is within dis-
tinct AABBs. For example, two data points will be generated and
will both contribute to the training of the inner network if a shadow
ray originated from an intersection region of two AABBs. Fig. 8
illustrates the results of such an example where three objects (two
Torus-like shapes and a SUZANNE model) intersect with each other.

6.5. Extension for Various Types of Light Sources

The NIF framework is designed to support various types of light
sources. Not only can it render with IBL, but it is also capable of
generating images with other types of lights such as an area light

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

49

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

0 200 400 600 800

DRAGON A

DRAGON B

CENTAUR A

CENTAUR B

THAI STATUE

THAI STATUE LOW

THAI STATUES

STATUES A

STATUES B

Runtime (Microseconds)

Ray Cast Outer Grid Outer Inf. Inner Grid Inner Inf. Base

Figure 10: Runtime performance comparison.

and a point light. It could be further extended to support multiple
light sources, provided that a sufficient number of samples are used
for training. Fig. 9 shows the rendered result of a scene illuminated
by area lights. In this example, we first compute the positions where
the primary rays intersect with the objects. Then, we perform im-
portance sampling from those positions directly to the light source
during the training and the secondary ray casting phase.

6.6. Performance Evaluation

We compared the performance of NIF against its BVH-based im-
plementation as a counterpart and measured the runtime differences
to demonstrate the speedup of our method. For the baseline BVH-
based implementation, we utilized the state-of-the-art SAH BVH
builder with the support of the hardware ray tracing cores on the
RDNA3 GPU [AMD23]. Also, we used wave matrix multiply accu-
mulate (WMMA) instruction for NN execution. Table 2 shows the
performance breakdown of each stage in NIF. Fig. 10 illustrates the
data in a stacked bar chart to provide a visualized comparison. From
the data, the notation Grid indicates the transformation process of
preparing the inputs for the NN by featuring the grid as described
in Equation 3 and 5, whereas Inference denotes the process of pre-
dicting whether the inputs would result in occlusions by perform-
ing inference with the NN. As shown in the results, when NIF is
adopted in the ray tracing pipeline and thus prevents the GPU from
performing the BVH traversal on the most divergent part of the tree
(i.e. the bottom-level BVH), the ray casting time is reduced by up to
35%, or the performance improvement of 1.53× is achieved for the
THAI STATUE scene, which has 10M triangles. The performance
improvement varies depending on the scenes. Some factors bring
performance improvement in NIF. First, NIF does not traverse the
bottom-level BVH whose structure and size could be complex and
large, especially for an object with a large number of triangles. It
causes divergent execution and memory access. At the same time,
it is known that some rays can traverse more than others which
stalls the entire GPU execution, making such execution inefficient.
On the other hand, NIF only traverses the top-level BVH, which
is relatively small; thus, the execution is less divergent than the
traversal of the entire BVH. NIF runs NN inference whose mem-
ory access is coherent and execution is uniform, which is ideal for
GPUs. This results in better utilization of GPUs. We can also see

0 10 20 30 40 50
0

200

400

600

Number of Polygons in Millions (M)

R
un

tim
e

(M
ic

ro
se

co
nd

s)

(a)

200 300 400 500 600
0

200

400

600

Number of Rays processed in Thousands (K)

R
un

tim
e

(M
ic

ro
se

co
nd

s)

(b)

Figure 11: (a) Scene complexity and execution time. (b) Number of
rays processed by NIF and execution time.

that ray casting in NIF is relatively expensive, as shown in Fig. 10.
This is mainly due to the amount of data we need to write to global
memory and the number of atomic operations required.

Based on the results, we can see that the execution time is not
correlated to the scene complexity or the number of polygons in
the scene, as depicted in Fig. 11a. Instead, as shown in Fig. 11b,
the execution time is linearly proportional to the number of rays
processed by NIF which is the summation of (b) and (c) in Table 2.
These results show that NIF is effective when applied to a com-
plex geometry. Since the computational cost is not proportional to
the model complexity in NIF, applying NIF to a model with low
complexity could not gain much benefit from it. This is shown in
the THAI STATUE LOW scene where there are only 0.5K trian-
gles, which results in no performance improvement. Comparing the
THAI STATUE and the THAI STATUE LOW scenes also shows this
nature. Although both scenes look almost the same, the BVH ray
cast time has a considerable difference between these two scenes
due to the bottom-level BVH traversal. On the other hand, NIF
only takes almost the same time for these two scenes. Note that
the training time is also linearly proportional to the amount of in-
put data. In this experiment, it varies from 0.1 seconds (CENTAUR

A) to 1 second (THAI STATUES) for a single spp. The test scenes
and their corresponding differences are depicted in Fig. 12. Note
that the differences are amplified to make them more visible.

Additionally, we demonstrated that our method can also acceler-
ate ray casting in a more complex scene and be used in one unified
rendering framework while preserving the conventional ray-tracing
pipeline with BVHs, which is shown in Fig. 1 where six complex
models are placed in the BISTRO scene. As discussed above, apply-
ing NIF to a model with low complexity is ineffective, thus in this
scene, we execute NIF only for the complex models which have
more than 100K triangles while we traverse BVHs for other simple
geometries. Therefore, we can embed NIF into a regular ray tracing
pipeline and convert some parts of highly divergent workloads (i.e.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

50

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

Table 2: Runtime performance breakdown in microseconds, and statistics. (a) is the number of shadow rays cast. (b) and (c) are the number
of rays processed by the outer network and inner network, respectively.

Scene DRAGON A DRAGON B CENTAUR A CENTAUR B THAI STATUE THAI STATUE LOW THAI STATUES STATUES A STATUES B
of Triangles 7.2M 7.2M 2.5M 2.5M 10M 0.5M 50M 17.5M 52.8M
(a) 1.2M 1.3M 1.1M 1.2M 855K 855K 803K 855K 942K
(b) 366K 387K 243K 285K 171K 172K 445K 376K 298K
(c) 130K 141K 110K 126K 44K 44K 176K 124K 137K

BVH Ray Cast 625.26 578.07 592.02 595.00 391.00 260.56 774.05 692.09 680.82

NIF:
Ray Cast 139.49 135.53 123.39 120.77 86.21 91.8 119.86 113.05 141.01
Outer Grid 49.55 34.85 37.99 29.09 21.43 21.09 49.3 43.34 45.55
Outer Inference 185.12 193.19 127.17 144.57 92.15 92.23 220.67 189.91 153.24
Inner Grid 46.1 48.78 45.09 41.12 19.08 19.08 67.76 54.59 63.07
Inner Inference 84.75 88.08 72.53 81.03 36.18 35.81 108.98 81.93 88.67

NIF Total 505.01 500.43 406.17 416.58 255.05 260.01 566.57 482.82 491.54

Speedup 1.24 1.16 1.46 1.43 1.53 1.00 1.37 1.43 1.39

the bottom-level BVH) into more coherent workloads. Even for this
complex case, our method can reduce the ray casting time by about
15% while preserving the image quality.

7. Conclusions and Future Work

In this paper, we introduced a novel approach called Neural Inter-
section Function to accelerate ray casting. It acts as an alternative
to the bottom-level BVH traversal and can be integrated into the ex-
isting ray tracing pipeline. Together with its two neural networks,
outer and inner, and the specialized input parameterization featur-
ing grid encoding to eradicate aliased rays, we showed that NIF can
represent geometry with sufficient accuracy, so the shadow com-
puted using the proposed method is close enough to the one com-
puted using BVH ray casting. Instead of using NN to reconstruct
a single object which is all the previous work has focused on, we
showed that it is possible to embed NN into a rendering pipeline
which has never been shown before. The experiments demonstrate
that our method can significantly improve performance while pre-
serving image quality, especially for a scene with a large number
of triangles. Depending on the scene and how complex the object
model is, a maximum of 1.53× speedup is observed. This is the
performance as of today. However, the relative performance in the
future hardware depends on the architecture. A lot of effort has
been invested to accelerate NN and matrix multiplication which
also benefits NIF, making it likely that the relative performance of
NIF to increase in the future.

Although NIF provides several advantages, it also bears some
limitations in our current implementation. Currently, we only use
rays based on the current viewpoint to train NIF. The accuracy of
NIF would be lower if used for queries from arbitrary rays that
deviate too much; therefore, NIF is required to be trained again
in order to achieve better accuracy for other viewpoints and light
sources. This is a drawback of the simplification and a design trade-
off we did for our implementation. Extension to dynamic scenes
efficiently with our training methodology remains our future work.
Additionally, the proposed method can be further optimized to im-
prove the efficiency of ray querying by reducing redundancies. For
example, theoretically, we do not need to query the same ray from
NIF multiple times if any of the intersection points to an object has
been found already. Therefore, despite being considered marginal,

D
R

A
G

O
N

A
D

R
A

G
O

N
B

C
E

N
TA

U
R

A
C

E
N

TA
U

R
B

T
H

A
IS

TAT
U

E
T

H
A

IS
TAT

U
E

L
O

W
T

H
A

IS
TAT

U
E

S
S

TAT
U

E
S

A
S

TAT
U

E
S

B

(a) NIF (b) Reference (c) Error of (a) ×3

Figure 12: The scenes for performance evaluation rendered after
32 training spp with 128 inference spp.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

51

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

there is an opportunity for optimization, although it comes with the
complexity in the execution logic and the GPU kernel design which
is likely not worth the effort as of today. Last but not least, to eval-
uate the performance in our paper, we used NIF to compute the
visibility of secondary rays. However, as shown in Fig. 5, NIF can
be also used for primary ray casting, encoding other information
such as shading normal and depth than visibility. NIF should be
extended to encode more geometric information, but we still need
further analysis for more practical use to investigate if NIF is appli-
cable to other types of rays such as deeper paths of shadow rays.

Acknowledgments

We are grateful to our team members for their help with the neu-
ral network implementation and optimizations, and proofreading.
We would also like to thank the Amazon Lumberyard team for the
BISTRO scene [Lum17], the Stanford Computer Graphics Labora-
tory for STANFORD BUNNY, DRAGON, LUCY, ASIAN DRAGON,
and THAI STATUE models, and Michael Milano for CENTAUR

model.

References

[AMD21] AMD: Hip programming guide v4.5, 2021. URL:
https://rocmdocs.amd.com/en/latest/Programming_
Guides/HIP-GUIDE.html. 5

[AMD23] AMD: RDNA 3 instruction set architecture, 2023.
URL: https://www.amd.com/system/files/TechDocs/
rdna3-shader-instruction-set-architecture-feb-2023_
0.pdf. 1, 8

[BCV13] BENGIO Y., COURVILLE A., VINCENT P.: Representation
learning: A review and new perspectives. IEEE transactions on pattern
analysis and machine intelligence 35, 8 (2013), 1798–1828. 3

[CAPM20] CHIBANE J., ALLDIECK T., PONS-MOLL G.: Implicit func-
tions in feature space for 3d shape reconstruction and completion. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(jun 2020), IEEE. 2

[CZ19] CHEN Z., ZHANG H.: Learning implicit fields for generative
shape modeling. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2019), pp. 5932–5941. doi:10.
1109/CVPR.2019.00609. 2

[CZG∗21] CHEN Z., ZHANG Y., GENOVA K., FANELLO S., BOUAZIZ
S., HÄNE C., DU R., KESKIN C., FUNKHOUSER T., TANG D.: Mul-
tiresolution deep implicit functions for 3d shape representation. In
2021 IEEE/CVF International Conference on Computer Vision (ICCV)
(2021), pp. 13067–13076. doi:10.1109/ICCV48922.2021.
01284. 2

[FZT∗22] FENG B. Y., ZHANG Y., TANG D., DU R., VARSH-
NEY A.: Prif: Primary ray-based implicit function. In
Computer Vision – ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part III
(Berlin, Heidelberg, 2022), Springer-Verlag, p. 138–155. URL:
https://doi.org/10.1007/978-3-031-20062-5_9,
doi:10.1007/978-3-031-20062-5_9. 2

[GB10] GLOROT X., BENGIO Y.: Understanding the difficulty of train-
ing deep feedforward neural networks. In International Conference on
Artificial Intelligence and Statistics (2010). 5

[GCV∗19] GENOVA K., COLE F., VLASIC D., SARNA A., FREE-
MAN W. T., FUNKHOUSER T.: Learning shape templates with struc-
tured implicit functions. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (2019), pp. 7154–7164. 2

[JSM∗20] JIANG C., SUD A., MAKADIA A., HUANG J., NIESSNER
M., FUNKHOUSER T., ET AL.: Local implicit grid representations for
3d scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2020), pp. 6001–6010. 2

[KB15] KINGMA D. P., BA J.: Adam: A method for stochastic opti-
mization. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (2015), Bengio Y., LeCun Y., (Eds.). 5

[KH18] KAO C., HSU W.: Exploring hidden coherency of ray-
tracing for heterogeneous systems using online feedback method-
ology. Vis. Comput. 34, 5 (2018), 633–643. URL: https:
//doi.org/10.1007/s00371-017-1403-8, doi:10.1007/
s00371-017-1403-8. 2

[KMX∗21] KUZNETSOV A., MULLIA K., XU Z., HAŠAN M.,
RAMAMOORTHI R.: Neumip: Multi-resolution neural materials.
Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4 (July
2021). 3

[Lum17] LUMBERYARD A.: Amazon lumberyard bistro, open research
content archive (orca), July 2017. URL: http://developer.
nvidia.com/orca/amazon-lumberyard-bistro. 10

[MB22] MEISTER D., BITTNER J.: Performance comparison of bound-
ing volume hierarchies for gpu ray tracing. Journal of Computer
Graphics Techniques (JCGT) 11, 4 (October 2022), 1–19. URL: http:
//jcgt.org/published/0011/04/01/. 1

[MLL∗21] MARTEL J. N., LINDELL D. B., LIN C. Z., CHAN E. R.,
MONTEIRO M., WETZSTEIN G.: Acorn: Adaptive coordinate networks
for neural representation. ACM Trans. Graph. (SIGGRAPH) (2021). 2

[MOB∗21] MEISTER D., OGAKI S., BENTHIN C., DOYLE M. J.,
GUTHE M., BITTNER J.: A survey on bounding volume hierarchies
for ray tracing. Computer Graphics Forum 40, 2 (2021), 683–712.
URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/cgf.142662, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.142662, doi:https:
//doi.org/10.1111/cgf.142662. 1

[MON∗19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3d reconstruction in
function space. In Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR) (2019). 2

[MRNK21] MÜLLER T., ROUSSELLE F., NOVÁK J., KELLER A.: Real-
time neural radiance caching for path tracing. ACM Trans. Graph. 40,
4 (July 2021). URL: https://doi.org/10.1145/3450626.
3459812, doi:10.1145/3450626.3459812. 5

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. In ECCV (2020). 2, 3

[NVI18] NVIDIA: NVIDIA Turing GPU Architecture,
2018. URL: https://www.nvidia.com/content/
dam/en-zz/Solutions/design-visualization/
technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf. 1

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: Deepsdf: Learning continuous signed distance func-
tions for shape representation. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2019). 2, 3

[SRF∗21] SITZMANN V., REZCHIKOV S., FREEMAN W. T., TENEN-
BAUM J. B., DURAND F.: Light field networks: Neural scene represen-
tations with single-evaluation rendering. In Proc. NeurIPS (2021). 2

[TTG∗20] TRETSCHK E., TEWARI A., GOLYANIK V., ZOLLHÖFER M.,
STOLL C., THEOBALT C.: PatchNets: Patch-Based Generalizable Deep
Implicit 3D Shape Representations. European Conference on Computer
Vision (ECCV) (2020). 2

[XTS∗22] XIE Y., TAKIKAWA T., SAITO S., LITANY O., YAN S.,
KHAN N., TOMBARI F., TOMPKIN J., SITZMANN V., SRIDHAR S.:
Neural fields in visual computing and beyond. Computer Graphics
Forum (2022). doi:10.1111/cgf.14505. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

52

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://doi.org/10.1109/CVPR.2019.00609
https://doi.org/10.1109/CVPR.2019.00609
https://doi.org/10.1109/ICCV48922.2021.01284
https://doi.org/10.1109/ICCV48922.2021.01284
https://doi.org/10.1007/978-3-031-20062-5_9
https://doi.org/10.1007/978-3-031-20062-5_9
https://doi.org/10.1007/s00371-017-1403-8
https://doi.org/10.1007/s00371-017-1403-8
https://doi.org/10.1007/s00371-017-1403-8
https://doi.org/10.1007/s00371-017-1403-8
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://jcgt.org/published/0011/04/01/
http://jcgt.org/published/0011/04/01/
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142662
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142662
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142662
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142662
https://doi.org/https://doi.org/10.1111/cgf.142662
https://doi.org/https://doi.org/10.1111/cgf.142662
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3450626.3459812
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://doi.org/10.1111/cgf.14505

S. Fujieda & C. C. Kao & T. Harada / Neural Intersection Function

[YYCM21] YAO S., YANG F., CHENG Y., MOZEROV M. G.: 3d
shapes local geometry codes learning with sdf. In 2021 IEEE/CVF
International Conference on Computer Vision Workshops (ICCVW)
(2021), pp. 2110–2117. doi:10.1109/ICCVW54120.2021.
00239. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

53

https://doi.org/10.1109/ICCVW54120.2021.00239
https://doi.org/10.1109/ICCVW54120.2021.00239

