
High-Performance Graphics (2023)
J. Bikker and C. Gribble (Editors)

Minimal Convolutional Neural Networks for Temporal Anti Aliasing

K. Herveau1 , M. Piochowiak1,2 , C. Dachsbacher1

1 Karlsruhe Institute of Technology, Institute for Visualization and Data Analysis, Germany
2 Helmholtz Information & Data Science School for Health, Germany

Abstract
Existing deep learning methods for performing temporal anti aliasing (TAA) in rendering are either closed source or rely
on upsampling networks with a large operation count which are expensive to evaluate. We propose a simple deep learning
architecture for TAA combining only a few common primitives, easy to assemble and to change for application needs. We use a
fully-convolutional neural network architecture with recurrent temporal feedback, motion vectors and depth values as input and
show that a simple network can produce satisfactory results. Our architecture template, for which we provide code, introduces
a method that adapts to different temporal subpixel offsets for accumulation without increasing the operation count. To this end,
convolutional layers cycle through a set of different weights per temporal subpixel offset while their operations remain fixed.
We analyze the effect of this method on image quality and present different tradeoffs for adapting the architecture. We show that
our simple network performs remarkably better than variance clipping TAA, eliminating both flickering and ghosting without
performing upsampling.

CCS Concepts
• Computing methodologies → Antialiasing; Neural networks; Rendering;

1. Introduction

Rendering and especially rasterization fundamentally rely on a
sampling process to obtain colors for the pixels in the image frame.
This inevitably results in aliasing artifacts because of the discrete
nature of this process. In the past, many different techniques in the
field of anti aliasing have been developed to reduce or remove these
artifacts. Ideally, aliasing is reduced by increasing the sampling rate
and combining multiple samples for a single pixel color, either in
the form of supersampling or multi-sample anti aliasing [Ake93].
However, this approach results in higher computational load and
memory consumption. Since the introduction of deferred shading
rendering pipelines, such methods are no longer feasible and tem-
poral anti aliasing (TAA) emerged as one of the most popular anti
aliasing variants [YLS20]. TAA solves the aliasing problem by dis-
tributing subpixel samples over multiple frames which are accumu-
lated after a reprojection step. Alternative approaches rely on spa-
tial filtering by identifying aliased regions - such as jagged edges
- and blurring them with an adaptive kernel [Res09]. Both meth-
ods are prone to overblurring and TAA can lead to visible ghosting
artifacts.

In recent years, neural networks were utilized to solve the alias-
ing problem while reducing ghosting and artifacts. Neural solu-
tions mainly rely on explicitly recreating additional subpixel sam-
ples through neural supersampling [XNC∗20, Liu20]. This makes
larger framebuffers and subsequently large networks necessary.
In this paper, we propose a minimal, fully-convolutional neural

network architecture that utilizes kernel prediction without super-
sampling to perform anti aliasing. Kernel prediction allows the
network to output per pixel filter kernels instead of direct col-
ors which, after its successful usage in networks for Monte Carlo
denoising [VRM∗18], was shown to work well for anti aliasing
too [TVLF20]. Our architecture outputs a temporal and a spatial
kernel, allowing for temporal supersampling as common in TAA
as well as for spatial filtering. We show that our small network re-
duces ghosting and overblurring artifacts in comparison with TAA
and has a high temporal stability. Our implementation is compact
in its description, highly optimizable and yields promising results.
In particular, our contributions are:

• a minimal neural network architecture for temporal anti aliasing,
• a method to let networks adapt to a set of temporal subpixel jit-

ters from renderers without increasing their operation count,
• an analysis of adaptions on different architecture parts to gain

insights into the requirements for TAA networks.

In section 2 we give an overview of related works from anti
aliasing for real time rendering and deep learning solutions from
denoising and supersampling. We present fundamentals required
for performing temporal anti aliasing with neural networks in sec-
tion 3 and explain our architecture in section 4 and its training in
section 5. Finally, we evaluate the architecture with regards to its
anti aliasing properties, reduction of artifacts, and operational cost
including a comparison with a typical non-neural TAA solution.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/hpg.20231134 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0146-7820
https://orcid.org/0000-0003-1980-6146
https://orcid.org/0000-0003-4690-3574
https://doi.org/10.2312/hpg.20231134


K. Herveau& M. Piochowiak & C. Dachsbacher / Minimal Convolutional Neural Networks for Temporal Anti Aliasing

2. Related Work

Anti aliasing has a long history in computer graphics and render-
ing. Classically, the aliasing problem was countered using multi-
sample anti aliasing [Ake93] (MSAA). But in combination with
deferred rendering pipelines, MSAA lost it’s practicality and be-
came less common as it leads to high loads on memory band-
width [YLS20, CMFL15]. Single-frame methods that rely on mor-
phological filters [Res09] (MLAA) and edge detection [Lot09]
(FXAA) are usable in combination with deferred rendering. How-
ever, they are prone to overblurring and can misidentify patterns
as aliasing since they do not solve the fundamental undersampling.
For that reason, temporal anti alisiang [YNS∗09] (TAA) is mostly
used in modern real time rendering engines. Lei et al. [YLS20]
present an excellent survey of TAA methods. As opposed to ap-
plying a locally higher sampling rate within a single frame as
in MSAA, TAA accumulates samples over time. To this end, a
moving subpixel jitter is applied on the camera projection dur-
ing rendering and the reprojected output of consecutive frames
is averaged. The extensions of morphological anti aliasing pro-
posed by Jimenez et al. also include temporal accumulation for
that reason [JESG12]. Commonly, a Halton 2,3 sequence is used
for subpixel jitters [Kar14] which we also include in our approach.
For moving cameras, reprojection using motion vectors as well
as a rejection mechanism for previous samples that takes occlu-
sion or changing illumination into account are required. This re-
jection is often heuristically solved, by clamping or clipping color
history to a color space bounding box of pixels in a local neigh-
borhood of the new sample [Kar14]. Salvi presents variance clip-
ping TAA which takes the variance of color samples in such a
neighborhood into account for clipping and produces comparably
good results [Sal16]. TAA contains many challenges that need to
be tuned manually [Ped16], including motion vector accuracy, re-
projection, identifying stale history for rejection, or finding well
performing blending weights [ZLY∗21]. Classic approaches often
suffer from blurry output images or flickering from inaccurate his-
tory rejection [Ped16]. In recent years, deep learning solutions be-
came popular for handling different subsampling problems with
early techniques already mentioning anti aliasing [NAM∗17] while
commonly being applied to problems like denoising [CKS∗17,
HMS∗20, TVLF20] and upsampling [Wat20, Liu20, XNC∗20].

Previous results from neural denoising showed that the predic-
tion of local filter weights per pixel instead of a direct color yields
better image quality is trained faster, a method called kernel predic-
tion [HY21]. Kalantari et al. [KBS15] propose this method for of-
fline denoising of path traced images while Vogel et al. [VRM∗18]
extended the approach with motion reprojection. Kernel prediction
was subsequently adapted for neural Monte Carlo denoising in real
time applications. Hasselgren et al. [HMS∗20] use a combined ker-
nel prediction denoiser and direct sample guidance network. Fan
et al. [FWHB21] compute an encoding of filter kernels to reduce
the typically large number of weights of the kernel output layers
in their networks. While computing TAA instead of denoising, our
approach uses kernel prediction instead of directly outputting pixel
colors.

Supersampling differs from anti aliasing in the sense that it cre-
ates a high resolution output from a low resolution input. This high

resolution output could be filtered down to form a low resolution
image without aliasing, but it is usually directly used. Anti aliasing
instead directly outputs the low resolution anti aliased image with-
out explicitly creating the additional subpixel samples for an input
image. Early experiments for neural temporal anti aliasing with-
out upsampling were presented by Salvi [Sal17]. Even though non-
deep learning solutions are still part of active research [AMD20],
neural solutions are becoming fast enough for real time and are
currently used in a wide range of video games and game engines.
DLSS [Liu20] uses motion reprojection and temporal accumula-
tion for neural supersampling. The DLSS framework also features
a variant that directly performs anti aliasing called DLAA. Xiao
et al. [XNC∗20] present a large architecture that contains individ-
ual networks for processing the last 8 temporal subpixel samples.
Our network does not have individual network paths for different
frames to keep the number of required operations for computing
pixel kernels low. Instead, we rotate through different sets of net-
work weights linked to the current subpixel jitter index to handle
samples independently in the temporal accumulation. Thomas et
al. [TVLF20] significantly downscale the computational complex-
ity of an image reconstruction network through integer quantiza-
tion.

Deep learning solutions for TAA solve problems that non-neural
approaches face, mainly overblurring, ghosting, and flickering, but
at the same time are expensive to compute because they rely on a
larger number of instructions per pixel. In this paper, we investi-
gate a minimal and simple convolutional kernel prediction network
that is able to outperform variance clipping TAA without requir-
ing manual finetuning, but at the same time does not rely on a high
instruction count.

3. Background

Spatial single-frame anti aliasing uses a variety of methods and
often relies on morphological information. Edge detection and
smoothing are commonly used to remove aliasing artifacts [Lot09,
Res09]. This produces decent results, but often leads to an over-
smoothing of edges or details. The way TAA incorporates tempo-
ral information requires a variety of techniques to be viable such
as motion vector reprojection and history rejection which are quite
cheap to compute. It is typical to apply a cheaper anti aliasing algo-
rithm on top of TAA, such as FXAA, which effectively produces
one spatial pass and one pass using temporal information. This
can result in overblurring or ghosting artifacts. To build a power-
ful neural network architecture, we want to allow the network to
combine these two data streams, spatial and temporal, and create
an output based on both at once instead of two separated passes.
The reference images for training the networks are produced from
renderings at higher resolutions that are downsampled. To gather
multiple samples per pixel, pixel jittering is always used, i.e. the
subpixel position during rasterization or ray casting is offset from
the center. We discuss this in more detail in Section 5.

3.1. Temporal Accumulation

Motion vectors are obtained directly out of the renderer and can
be computed using the camera projection matrix from the previous

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

34



K. Herveau& M. Piochowiak & C. Dachsbacher / Minimal Convolutional Neural Networks for Temporal Anti Aliasing

frame. Each pixel has a motion vector m = (x,y) representing the
offset of that pixel from the previous to the current frame measured
in decimal point pixels. The equation of the reprojected color values
R as a function of the input image I is:

Ri, j = I(i−mi, j,x, j−mi, j,y). (1)

This reprojection queries arbitrary positions in the input image, re-
quiring interpolation. By default, most frameworks offer bilinear
interpolation. Due to the artifacts caused by bilinear interpolation,
we decided to use Catmull-Rom interpolation as a higher order in-
terpolation scheme. This is a good compromise as it removes most
artifacts from bilinear interpolation but does not introduce ringing
and is relatively cheap [YLS20]. In our case, the motion vectors are
first computed from the difference between the current view’s depth
buffer position, and its backprojected version in the previous posi-
tion’s camera UV space. All other specific motions overwrite the
existing motion vectors. Typically in TAA, the color framebuffer
of a new frame C is blended with the reprojected history buffer R
using an exponential moving average [YNS∗09] as

Ii, j = α ·Ci, j +(1−α) ·Ri, j (2)

where alpha is a constant blend factor. It is possible to vary alpha
per pixel, for exampling for rejecting a deprecated history buffer
by setting α = 1. More commonly, the history buffer R is rectified
using clamping or clipping with a bounding box of neighborhood
samples from C in color space to prohibit ghosting artifacts from
occlusion or illumination changes [Ped16, YLS20]. Variance Clip-
ping TAA, for example, adapts the size of the bounding box based
on the first two moments of color samples in the local neighbor-
hood of pixels [Sal16].

3.2. Kernel Prediction

CNNs operating on image data usually directly predict pixel col-
ors which allows the networks to “dream up” features but may in-
duce artifacts like color shifts and lead to longer training times.
With kernel prediction [KBS15, TVLF20], instead of generating a
color buffer, the CNN outputs one or more K-sized per pixel ker-
nels. These replace the constant α in eq. (2) and are used in a fixed
function step to compute a weighted sum of neighboring pixels in
several buffers as the final color output I. This limits the network
to only transform inputs using existing color information. It is de-
sirable to allow the network to mix multiple input buffers using
n = K ×K weights per kernel, requiring several per-pixel kernels.
For example, two kernels can be used to interpolate colors from the
new frame’s color samples C and the history buffer R:

Ii, j = ∑
n

α
C
n ·Ci+dxn, j+dyn +∑

n
α

R
n ·Ri+dxn, j+dyn , (3)

where (dxn,dyn)∈ {x | x ∈ [−⌊K
2 ⌋,⌊

K
2 ⌋]}×{y | y ∈ [−⌊K

2 ⌋,⌊
K
2 ⌋]}

and ∑n α
C
n +∑n α

R
n = 1. This leads to the combined processing of

spatial and temporal filtering that was motivated earlier. The choice
of the different inputs is crucial to the performance of the network.
The final trainable layer of the network must output the set of all
weights α per pixel. This layer is memory intensive as an entire
frame of size W ×H pixels accumulated with N K-sized per-pixel
kernels requires the generation of W ×H×K×K×N interpolation
weights.

Input / Output

Input

(6)

Conv2D
3x3

(6 / 12)

color mix

Frame Feedback
Kernel Network

Conv2D
1x1
(5)

Conv2D
3x3

(6 / 12)

Conv2D
5x5

(6 / 12)

Conv2D
5x5
(50)

subpixel offset cycling weights

per pixel kernel weights
2 5x5 kernels
= 50 channels

RGB Output

Motion

Depth

RGB
Catmull-Rom

Reproject

+*
*

Figure 1: Architecture of the TAA network with layer counts in
parentheses. The reprojected feedback uses Catmull-Rom interpo-
lation and is implemented as a recurrent network layer. Three of
the stages use a different set of layer weights depending on the Hal-
ton 2,3 index that is used for subpixel offsetting during rendering.
The final layer outputs two 5× 5 filter kernels applied to the new
RGB buffer and previous network output.

4. CNN with kernel prediction

TAA typically makes use of motion vector and depth buffers. These
are used for history rejection to drop an accumulated pixel color
from the history buffer that no longer belongs to the same surface.
Figure 1 shows the architecture of our network which uses the same
data as input. The multi-layer convolutional neural network is em-
bedded in a feedback loop that feeds the new frame’s output color
as an additional input to the next frame’s processing. This feedback
loop is implemented with an recurrent neural network cell (RNN)
that we detail further down.

The main network consists of four convolutional layers that pro-
duce two 5×5 sized filter kernels per pixel (red in Figure 1). These
kernels are used to compute a weighted sum of pixels in a local
neighborhood from the current frame’s color input and the previous
frame’s reprojected color output according to Equation (3). Before
generating the kernels in the final layer, the network also outputs
a five layer sized state carried over to the next frame’s processing
alongside the RGB output (blue). In the following, we present the
stages of the network in detail.

Network Input The kernel prediction network receives the cur-
rently rendered RGB frame in low-dynamic range, normalized to
values between 0 and 1. The network works better with values in
this range compared to the [0,255] range. These images are con-
catenated with per pixel motion vectors and depth values. Addition-
ally, a feedback loop concatenates eight additional channels from
the network output of the previous frame to this input. These feed-
back channels consist of the previously anti-aliased RGB output
and five freely trainable channels that are conceptually equivalent
to a hidden state of an RNN.

Temporal Feedback Before the last convolutional layer of the ker-
nel prediction network generates the per-pixel kernels, we use a
small 1× 1 convolution to output five additional channels (blue in
Figure 1). In addition to the network’s RGB output, these are car-
ried over to the next frame to store additional temporal information.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

35



K. Herveau& M. Piochowiak & C. Dachsbacher / Minimal Convolutional Neural Networks for Temporal Anti Aliasing

In the next frame’s processing, we use the motion information from
the renderer to reproject these feedback channels. The reprojection
is performed with Catmull-Rom interpolation. This reduces typi-
cal bilinear interpolation artifacts, and improves frequency content
in the images, which is especially important for convolutions. The
code for this part is released separately as a side contribution of
this project, as it is not available in Tensorflow. The Catmull-Rom
implementation typically used in production is orders of magnitude
faster than ours. This has been investigated in the past (e.g. [Kar14]
for Catmull-Rom, [SN15] for other kernels), making it out of the
scope of our paper. Our implementation is sufficient for proof-of-
concept purposes. The RNN cell functions as a way to feed the
network its own output. Note that using a loop or successive appli-
cations of the model is a valid approach. Choosing the RNN format
allows us to use well documented functionalities such as different
training window sizes, unrolling, managing hidden states and state-
ful mode. The total RNN implementation’s hidden state consists of
the current anti-aliased RGB output after the color mix operation
(detailed just after) and the five freely trainable channels. Addition-
ally, we keep track of the currently processed index of the Halton
2,3 sequence that the renderer uses for subpixel jittering.

We unroll the network for training, but for inference a stateful
implementation that iteratively processes one frame after the other
is used. We observed a noticeable difference in final output quality
between stateful and non stateful, the stateful version performing
better.

Kernel Prediction Network The kernel prediction network (red
in Figure 1) consists of four fully convolutional layers which use
zero padding to retain the size of the feature maps. We evaluate
the network in two variants using either six or twelve output chan-
nels in the first three layers. The last of the four layers outputs the
two 5× 5 filter kernels. Those kernels are later used in the kernel-
weighted color mix operation to compute a weighted sum of the
pixel neighborhoods in the RGB buffers from the currently ren-
dered frame and the previous anti-aliased network output. The out-
put size of this final layer is equal to the number of elements in both
kernels. We use a ReLU activation after each layer except the last
one, wkere we apply a sigmoid activation to normalize the sum of
all kernel elements for a given pixel to 1. The hidden layer with a
1×1 convolution uses no activation function. We propose a method
to let the network adapt to the cycle of jittering subpixel positions
from the renderer: The last three layers of the kernel prediction net-
work use eight different sets of weights W0 . . .W7. For each index
in the jitter sequence j, the same set of weights W j is always used
within the layers. Note that this duplication does not increase the
number of operations in the network as only one set of weights is
used at a time. Thus, instead of introducing new computation paths
this only leads to a slightly higher memory consumption to store
the seven additional sets of weights. We show the impact of these
sets of weights in section 6.

5. Training

5.1. Dataset

The training data is made of renderings of camera flythroughs in
3 scenes at a resolution of 2560× 1440 pixels. These images are

resized to 640×480 pixels using a Blackmann-Harris filter to cre-
ate reference images without aliasing. Renderings from the same
flythroughs at a native 640×480 @24 resolution are used as train-
ing input data. The image sequences contain successions of smooth
and sudden movements at different speeds. The scenes have been
chosen to contain difficult cases for anti aliasing such as high-
frequency geometry, frequent visibility changes, and challenging
low-frequency aliasing (almost vertical doorframes etc).

We used 3 different scenes. Staircaqse contains doors, stairs with
empty space between each step, a thin railing, large columns and
wide glass windows, projecting shadows. Cafeteria contains very
thin geometry (wires) that aren’t properly resolved by the input,
(but the reference properly does), straight edges with tables and
chairs and difficult occlusions with the cafeteria’s lampshades. Fi-
nally, the livingroom contains designer chairs that have a thin black
stripe, a couch and a textured floor.

The renderer cycles through 8 different subpixel jitter offsets
from a Halton 2,3 sequence. For that reason, training happens on
a windows containing 8 frames, ensuring that all jitter indices were
considered in the training step once. In particular, this is relevant so
that backpropagation is always carried out on each of the 8 different
sets of weights that we use in the last three convolutional layers of
the kernel prediction network (see section 4). During training, all
sequences within a batch start with the same jitter index for perfor-
mance purposes, but different batches start with different indices.

5.2. Data Processing

The network is trained on patches of 8 consecutive frames with
a size of pw × ph = 128× 128 pixels that are extracted from the
dataset sequences. Our data is augmented using channel switch-
ing, and randomized patch selection. All possible starting posi-
tions are precomputed, then shuffled which ensures that the net-
work processes the entire dataset prior to any repetition while the
order of the input varies. For each of the n j = 8 different jitter posi-
tions, we store a separate dictionary containing all possible training
patches that start with the respective subpixel jitter index. For a se-
quence of n f = 100 frames and resolution w×h= 640×480 pixels,
(w− pw)(h− ph)(n f − (n j −1)) = (640−128)(480−128)(100−
7) = 16,760,832 patches are distributed over these eight dictionar-
ies. We use several sequences, totaling more than 500 frames. The
number of possible starting positions is so large that the processing
of all patches far surpasses available training time. This motivates
us to define an epoch as 1600 processed patches.

Neural Networks or machine learning models are susceptible to
overfitting. Main causes of overfitting in our case could be models
with too many parameters or degrees of freedom, low data variety,
long training times. In our case, the network typically trains on less
than one percent of the total training data but still performs very
well on the entire dataset. Our parameter count is very low com-
pared to the complexity of the task and the diversity of the dataset.
This leads us to believe that our network is at very low risk of over-
fitting, and in practice, we did not notice any overfitting.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

36



K. Herveau& M. Piochowiak & C. Dachsbacher / Minimal Convolutional Neural Networks for Temporal Anti Aliasing

5.3. Training Loss

The loss for training a temporal anti aliasing network has to ac-
count for several effects. We penalize undesirable artifacts and re-
ward closeness to the reference. Our general loss function is split
into three parts as known from other image reconstruction net-
works [KBS15, TVLF20, HMS∗20]. Different weights control the
influence of the individual losses:

• The reference loss Lr is the sum of all pixel-wise absolute L1
differences between the network output and the reference image.

• For the gradient loss Lg, we compute this difference on the gra-
dient images of the reference and output images in x and y di-
rection.

• Additionally, we compute a temporal loss Lt as the pixel-wise
difference of temporal gradients in the reference and the net-
work output. Lt is used to reduce flickering and other temporal
artifacts.

We also experimented with using Nvidia’s FLIP [ANA∗20] as a
training loss, but this led to poor convergence and significantly
longer training times. The main reason is the gaussian filters used in
the FLIP metric spread out the contribution of each pixels, causing
a blur that requires more training. The parameter pixel_per_degree
was tested on a sensible range of values and we observed no ob-
vious benefit of using FLIP for training We introduce a per pixel
aliasing mask M for the training images which contains a value
between 0 and 1 per pixel. Values closer to one identify pixels con-
taining aliasing artifacts. The mask is computed by summing up all
RGB channel-wise differences between the training input and refer-
ence images. Additionally, we multiply the mask with a sensitivity
parameter and clip values to [0,1]. As a last step, a 3× 3 dilation
is applied to guarantee that all pixels of aliasing regions are con-
sidered. We use this mask to create two versions of our three loss
functions each by weighting them either with M or (1−M). The
first identifies loss in regions containing aliasing which correlates
to the network lacking anti aliasing properties. The latter identifies
loss in regions were the input and reference images were already
close. Here, the network should at best avoid any alteration of the
input data at all. A high loss in these regions usually stems from
artifacts like ghosting or overblurring. We give all these parts dif-
ferent weights when computing the final loss.

We choose these weights to adjust the influence of each loss,
allowing us to study a balanced situation or a situation where one
loss dominates the others. This reweighting is necessary to consider
all losses in the backpropagation as Lt in particular is roughly ten
times smaller than Lr and Lg. Finally, we adapt the loss given the
aliasing mask M so that image regions containing aliasing are 1.5
times as much important as the non-aliased regions. Though we did
not conduct a large scale hyperparameter investigation, all six loss
weights could be fine tuned and even modified through training
with dedicated frameworks. Since we train on patches consisting
of 8 frames, we compute the loss only on the last output frame to
let the network accumulate temporal information. The training net-
work uses an Adam optimizer [KB14] with β1 = 0.9, β2 = 0.999,
ε = 10−7 and clamping gradients to 1. Our initial learning rate of
0.001 follows an exponential decay with 1000 decay steps and a
decay rate of 0.96. We train on a batch size of 24 where each batch

OURSOURS 4.6244.624 VCTAAVCTAA 5.4725.472

INPUTINPUT 5.0255.025 REFREF

Figure 2: Numbers are RMSE. The edges are very consistently an-
tialiased without blurring (left) while vctaa noticeably degrades the
sharpness in the orange closeup. The artifact on the lighting of the
stairs (center) is not present in our method.

OURSOURS 4.5824.582 VCTAAVCTAA 5.2515.251 TARGETTARGET

Figure 3: Numbers are RMSE. Comparison of behavior during fast
camera movement. Our method resolves correctly the railing and
stairs that are distorted by VCTAA.

element consists of 8 successive frames of the same portion of the
image in subsequent frames.

6. Results

We evaluated the network on three different scenes. A large stair-
case with many long and thin straight lines. A cafeteria, with diffi-
cult thin geometry on the lamps. A studio with some textures and
a transition through a glass window. We compare our results with
variance clipping TAA and with our reference. See also our supple-
mentary video.

In Figure 2, we present a direct comparison between our method,
variance clipping TAA [Sal16] and the input including root-mean-
square errors (RMSE). Our method retains crisp edges without
overblurring.

We did not detect ghosting artifacts using our method. Figure 3

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

37



K. Herveau& M. Piochowiak & C. Dachsbacher / Minimal Convolutional Neural Networks for Temporal Anti Aliasing

shows that variance clipping TAA (VCTAA) tends to blow up thin
features during fast movement, while our method retains proper
edges.

The flickering produced by our final network is reduced and even
better than the reference. The flickering in the reference comes
from the large amount of occlusions and disocclusions happen-
ing quickly on a relatively low resolution. Our network creates a
much smoother result. The numerous occlusions happening in the
overlapping stairs and railing area produce high temporal frequen-
cies that our network has been trained to reduce via the temporal
weights in our loss function.

resolution Catmull-Rom model color mix
2560x1440 350.241 2.892 9.204
1920x1080 264.871 2.827 8.789

640x480 180.294 2.368 8.841
Table 1: In milliseconds (ms). Our Tensorflow implementation of
Catmull-Rom is comparably unoptimized. The color mix combines
the 50 output channels with the the input image and the reprojected
previous frame. Measured on an RTX 3060 with Tensorflow python
framework using 32bit computation.

Our unoptimized implementation takes almost 200ms per frame,
Table 1. This time is dominated by our naive implementation of
Catmull-Rom, as this operation was not natively supported by Ten-
sorflow. The inference time is remarkably fast with no more than
3ms. This is before any optimizations such as TensorRT [Nvi23],
which performs remarkably well on convolutional networks (offer-
ing more than 6× speedups) and using reduced precisions, e.g. by
using half floats where applicable (half floats should not be used
with sigmoids). Our feedback loop implementation as a recurrent
neural network (RNN) creates compatibility issues with TensorRT
which can be resolved by replacing the RNN with a simpler cell
that streamlines the data of the previous frame to the next. We be-
lieve that our proof-of-concept network can be implemented in real
time applications if modest optimizations can be performed.

We computed the total number of operations required for
each layer, following the equations for counting multiply-add-
accumulate and add operations:

MAC = K2 ∗ I ∗O

ADD = O

FLOPS = (2∗MAC+ADD)∗W ∗H

with the kernel size K, the number of input and output channels I
and O, and W , H the width and height of the image. We evaluate
the same network we used for the measurements in section 6.

With our smaller network, with six internal channels, the count
drops to 18740 ∗W ∗ H. The activation functions (ReLU) of the
first layers and the softmax of the final layer add in total 2000
operations per pixel, largely dominated by the cost of exponenti-
ation. The color mix operation takes 100 operations per pixel. The
Catmull-Rom interpolation requires less than a 100 operations per
pixel. Better and faster alternatives to Catmull-Rom interpolation
exist, we only used it as a proof of concept. The total number of
floating point operations is below 50000 per pixel. Despite being

Layer K I O Total
layer 1 3 11 12 2388
layer 2 3 12 12 2604
layer 3 5 12 12 7212
kernel 5 12 50 30050
hidden 1 12 5 125
total 42379

Table 2: Computation details for the number of FLOPs of the net-
work itself (upper bound). 40k FLOPs/pixel

NO SWITCHNO SWITCH 8.6438.643 2-3-K-H2-3-K-H 8.5078.507

2-3-K2-3-K 8.5018.501 REFREF

Figure 4: Top right: RMSE. Comparison of the effect of using sev-
eral sets of weights for one layer and switching them in sync with
the jitter id cycle. left: constant weights. center switching sets for
all layers except the first. right only switching sets for layers 2, 3,
kernel prediction (our default configuration).

sizeable amount it is by no means out of reach for a well-optimized
pipeline. The vast majority of these operations is in the kernel pre-
diction layer, which suggests that adopting another strategy could
result in great improvement in performance.

6.1. Jitter

The absence of subpixel jitter specific sets of weights for the last
three convolution layers heavily reduces the quality of the anti
aliasing as shown in Figure 4. The previous frame being repro-
jected has a different jitter pattern than the current frame, causing
the network to improperly combine them. The network would need
to adapt to each different combination of jitter patterns and asso-
ciated motion vectors. Having one set of weights per jitter posi-
tion removes this burden entirely from the network. These images
have been generated by networks with an equal number of train-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

38



K. Herveau& M. Piochowiak & C. Dachsbacher / Minimal Convolutional Neural Networks for Temporal Anti Aliasing

2 LAYERS2 LAYERS 9.1589.158 3 LAYERS3 LAYERS 9.1119.111

4 LAYERS4 LAYERS 9.1159.115 4 LAYERS4 LAYERS

Figure 5: Top right: RMSE. Different layer count with equal train-
ing epochs. More layers take longer to train and take longer to
compute. Less layers lead to subpar quality.

ing epochs. The center image requires more training to perform at
least as well an the right image as shown by their lower RMSE.
Our method of using a different set of weights for each respective
camera subpixel jitter position in the convolution layers performs
significantly better than using only one set of weights. These re-
sults suggest investigating the use of different sets of weights in
combination with the generation of the jitter pattern by the network
itself.

6.2. Internal Layers

The number of internal layers and their size plays a big role in the
runtime. Chaining layers implies introducing computation depen-
dency, which can make the process slower. Bigger layers on the
other hand, benefit fully from parallelism. In our experiments, two
layers were insufficient for a well-performing network, while im-
provement were not noticeable above three.

6.3. Hidden Layers

In addition to the anti aliased output, the network’s feedback loop
contains a trainable state that is updated every iteration. The up-
date step has its own layer through which information is stored in
the per pixel state given the input data (blue convolutional layer
in Figure 1). This memory area has the size of a frame, but has as
many channels as we desire. Giving the network enough state space
is crucial, but a larger state increases inference time and memory
consumption. Our analysis of the hidden layer channels reveals that
they essentially consist of various edge detection filters, seemingly

00 44 88

Figure 6: Left: Resembles a directional edge detection filter, the
lines on the ceiling can help grasping what function is at play. Cen-
ter: Another edge detection, but combined with a depth gradient
although it is remapped in some way. Note that these two images
are quite dark. Right: Seemingly another edge detection but also
flattening the non edge parts of the scene.

Figure 7: Weights are adjusted for the temporal loss (tmp) to be
the most impactful, followed by the gradient loss. We noted better
results by having the gradient loss being higher than the reference
loss. The alias prefix refers to the loss in image regions with alias-
ing, while the ghost prefix denotes loss on regions without aliasing
which typically occurs because of ghosting artifacts.

decomposing the image, as can be seen in Figure 6 which displays
three of the state’s channels. An exact interpretation is impossible,
but these images offer us a better understanding of what informa-
tion these channels are used for, and therefore what information
the network may lack in case one reduces the amount of available
channels. In our experiments, using more than five channels did not
offer significantly better quality.

6.4. Loss Weights

We tested different loss weight values (more details: Section 5.3,
see Figure 7). The training was performed on an Nvidia Titan V,
and took 8h. One noticeable finding is that having a dominant tem-
poral loss increases image stability and reduces flickering, even to
levels better than the reference. Temporal effects are difficult to
convey in words, see the accompying video, notably the ascent of
the staircase. During the ascent, the pillars behind the bars on the
top of the image can be seen quickly popping in and out, and later,
the geometry behind the railing and stairs creates similar patterns.

6.5. Discussion

Our method only focuses on anti aliasing, but in most cases, several
post processing techniques are performed on the output. It was our
choice to not include denoising or upscaling, but it remains a lim-
itation of this method for its adoption in industry context. It could

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

39



K. Herveau& M. Piochowiak & C. Dachsbacher / Minimal Convolutional Neural Networks for Temporal Anti Aliasing

very well be adapted to perform both denoising and anti aliasing,
but this is out of the scope of this paper.

One weaker point of this technique is texture reconstruction. We
noted a slight loss of quality on complex and slanted textures. This
could perhaps be handled by a sharpening pass.

Our method improves the quality of low frequency image fea-
tures, such as doorframes that are almost vertical, or slightly slanted
objects in general. Low frequency context is very difficult to deal
with for almost all anti aliasing techniques because of the use of
regular grids. For this reason, the helpfulness of camera subpixel
offset jittering is limited in traditional anti aliasing. Since the jitter-
ing happens identically on all pixels within the same framebuffer,
the frequency content only changes after each frame. Exponential
moving averages and neighborhood rectifications, as commonly
used, cannot capture these changes efficiently enough. Applying
different subpixel offsets to pixels even within the frame would
allow for a better distribution of samples and for a better subse-
quent reconstruction for most of these cases. One such possibility
is full raytracing, which would allow the use of low discrepancy se-
quences or even optimized sequences such as step blue noise. One
possible future work would be to use a CNN directly on the ray-
tracing output (ray position in frame and rbg color) and allow the
network to perform both antialiasing and denoising. The network
would also predict optimal ray positions.

7. Conclusion

We provided a small and concise convolutional neural network ar-
chitecture for temporal anti aliasing. Our analysis compares dif-
ferent variations of the network on different dimensions. We show
that using different sets of weights for some layers is crucial and
allows a lot more performance without needed additional compu-
tation, only more memory. We also suggested to take this research
deeper into the real-time raytracing pipeline by having the network
suggest sample positions and perform the reconstruction step. This
would be an almost all-in-one Neural Network, capable of denois-
ing, antialiasing and adaptive sampling.

Acknowledgements

The first author has been funded by the Central Innovation Pro-
gramme for small and medium-sized enterprises (FKZ: ZF4720101
MS9). The second author is PhD student at the Helmholtz Infor-
mation & Data Science School for Health (HIDSS4Health). We
would like to thank Nym L. Colpart for their help in making the
supplementary material. Our thanks extend to Stephan Bergman,
Alexander Devaykin and Thomas Willberger for their insights and
guidance throughout the project.

References

[Ake93] AKELEY K.: Reality engine graphics. In Proceedings of the
20th annual conference on Computer graphics and interactive tech-
niques (1993), pp. 109–116. doi:10.1145/166117.166131. 1,
2

[AMD20] AMD: Fidelityfx. In www.amd.com/en/technologies/radeon-
software-fidelityfx. (2020). 2

[ANA∗20] ANDERSSON P., NILSSON J., AKENINE-MÖLLER T., OS-
KARSSON M., ÅSTRÖM K., FAIRCHILD M. D.: FLIP: A Difference
Evaluator for Alternating Images. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 3, 2 (2020), 15:1–15:23. 5

[CKS∗17] CHAITANYA C. R. A., KAPLANYAN A. S., SCHIED C.,
SALVI M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Interactive
Reconstruction of Monte Carlo Image Sequences Using a Recurrent De-
noising Autoencoder. ACM Transactions on Graphics 36, 4 (jul 2017).
doi:10.1145/3072959.3073601. 2

[CMFL15] CRASSIN C., MCGUIRE M., FATAHALIAN K., LEFOHN A.:
Aggregate g-buffer anti-aliasing. In Proc. ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games (New York, NY, USA,
2015), i3D ’15, Association for Computing Machinery, p. 109–119.
URL: https://doi.org/10.1145/2699276.2699285, doi:
10.1145/2699276.2699285. 2

[FWHB21] FAN H., WANG R., HUO Y., BAO H.: Real-time Monte
Carlo Denoising with Weight Sharing Kernel Prediction Network. Com-
puter Graphics Forum 40, 4 (2021), 15–27. doi:10.1111/cgf.
14338. 2

[HMS∗20] HASSELGREN J., MUNKBERG J., SALVI M., PATNEY A.,
LEFOHN A.: Neural Temporal Adaptive Sampling and Denoising. Com-
puter Graphics Forum 39, 2 (2020), 147–155. doi:10.1111/cgf.
13919. 2, 5

[HY21] HUO Y., YOON S.-E.: A survey on deep learning-based Monte
Carlo denoising. Computational Visual Media 7 (2021), 169–185. doi:
10.1007/s41095-021-0209-9. 2

[JESG12] JIMENEZ J., ECHEVARRIA J. I., SOUSA T., GUTIERREZ
D.: SMAA: Enhanced Morphological Antialiasing. Computer Graph-
ics Forum (Proc. of Eurographics) 31, 2 (2012). doi:10.1111/j.
1467-8659.2012.03014.x. 2

[Kar14] KARIS B.: High-quality temporal supersampling. Advances in
Real-Time Rendering in Games, SIGGRAPH Courses 1, 10.1145 (2014),
2614028–2615455. 2, 4

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint (2014). doi:10.48550/arXiv.1412.6980.
5

[KBS15] KALANTARI N. K., BAKO S., SEN P.: A Machine Learn-
ing Approach for Filtering Monte Carlo Noise. ACM Transactions on
Graphics 34, 4 (jul 2015). doi:10.1145/2766977. 2, 3, 5

[Liu20] LIU E.: DLSS 2.0 – Image reconstruction for real-time rendering
with deep learning. In GPU Technology Conference (GTC) (2020). 1, 2

[Lot09] LOTTES T.: FXAA. In Nvidia White Paper (2009). URL:
developer.download.nvidia.com/assets/gamedev/
files/sdk/11/FXAA_WhitePaper.pdf. 2

[NAM∗17] NALBACH O., ARABADZHIYSKA E., MEHTA D., SEIDEL
H.-P., RITSCHEL T.: Deep Shading: Convolutional Neural Networks
for Screen Space Shading. Computer Graphics Forum 36, 4 (2017), 65–
78. doi:10.1111/cgf.13225. 2

[Nvi23] NVIDIA: Tensorrt. In https://developer.nvidia.com/tensorrt
(2023). 6

[Ped16] PEDERSEN L. J. F.: Temporal reprojection anti-aliasing in IN-
SIDE. Game Developers Conference 3, 4 (2016), 10. 2, 3

[Res09] RESHETOV A.: Morphological Antialiasing. In Proc. of ACM
SIGGRAPH / Eurographics conference on High Performance Graphics
(New York, NY, USA, 2009), HPG ’09, Association for Computing Ma-
chinery, p. 109–116. doi:10.1145/1572769.1572787. 1, 2

[Sal16] SALVI M.: An excursion in temporal super sampling. Game
Developers Conference 3, 7 (2016), 12. 2, 3, 5

[Sal17] SALVI M.: Deep learning: The future of real-time rendering.
ACM SIGGRAPH Courses: Open Problems in Real-Time Rendering 12
(2017). 2

[SN15] SACHT L., NEHAB D.: Optimized Quasi-Interpolators for Image
Reconstruction. IEEE Transactions on Image Processing 24, 12 (2015),
5249–5259. doi:10.1109/TIP.2015.2478385. 4

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

40

https://doi.org/10.1145/166117.166131
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/2699276.2699285
https://doi.org/10.1145/2699276.2699285
https://doi.org/10.1145/2699276.2699285
https://doi.org/10.1111/cgf.14338
https://doi.org/10.1111/cgf.14338
https://doi.org/10.1111/cgf.13919
https://doi.org/10.1111/cgf.13919
https://doi.org/10.1007/s41095-021-0209-9
https://doi.org/10.1007/s41095-021-0209-9
https://doi.org/10.1111/j.1467-8659.2012.03014.x
https://doi.org/10.1111/j.1467-8659.2012.03014.x
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1145/2766977
developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1145/1572769.1572787
https://doi.org/10.1109/TIP.2015.2478385


K. Herveau& M. Piochowiak & C. Dachsbacher / Minimal Convolutional Neural Networks for Temporal Anti Aliasing

[TVLF20] THOMAS M. M., VAIDYANATHAN K., LIKTOR G., FORBES
A. G.: A Reduced-Precision Network for Image Reconstruction.
ACM Transactions on Graphics 39, 6 (nov 2020). doi:10.1145/
3414685.3417786. 1, 2, 3, 5

[VRM∗18] VOGELS T., ROUSSELLE F., MCWILLIAMS B., RÖTHLIN
G., HARVILL A., ADLER D., MEYER M., NOVÁK J.: Denoising with
Kernel Prediction and Asymmetric Loss Functions. ACM Transactions
on Graphics (Proc. SIGGRAPH) 37, 4 (2018), 124:1–124:15. doi:10.
1145/3197517.3201388. 1, 2

[Wat20] WATSON A.: Deep learning techniques for super-resolution in
video games. arXiv preprint (2020). doi:10.48550/arXiv.2012.
09810. 2

[XNC∗20] XIAO L., NOURI S., CHAPMAN M., FIX A., LANMAN D.,
KAPLANYAN A.: Neural Supersampling for Real-Time Rendering.
ACM Transactions on Graphics 39, 4 (aug 2020). doi:10.1145/
3386569.3392376. 1, 2

[YLS20] YANG L., LIU S., SALVI M.: A Survey of Temporal An-
tialiasing Techniques. Computer Graphics Forum 39, 2 (2020), 607–621.
doi:10.1111/cgf.14018. 1, 2, 3

[YNS∗09] YANG L., NEHAB D., SANDER P. V., SITTHI-AMORN P.,
LAWRENCE J., HOPPE H.: Amortized Supersampling. ACM Transac-
tions on Graphics 28, 5 (dec 2009), 1–12. doi:10.1145/1618452.
1618481. 2, 3

[ZLY∗21] ZENG Z., LIU S., YANG J., WANG L., YAN L.-Q.: Tem-
porally Reliable Motion Vectors for Real-time Ray Tracing. Computer
Graphics Forum 40, 2 (2021), 79–90. doi:https://doi.org/10.
1111/cgf.142616. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

41

https://doi.org/10.1145/3414685.3417786
https://doi.org/10.1145/3414685.3417786
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.48550/arXiv.2012.09810
https://doi.org/10.48550/arXiv.2012.09810
https://doi.org/10.1145/3386569.3392376
https://doi.org/10.1145/3386569.3392376
https://doi.org/10.1111/cgf.14018
https://doi.org/10.1145/1618452.1618481
https://doi.org/10.1145/1618452.1618481
https://doi.org/https://doi.org/10.1111/cgf.142616
https://doi.org/https://doi.org/10.1111/cgf.142616

