
High-Performance Graphics (2023)
J. Bikker and C. Gribble (Editors)

Compressed Opacity Maps for Ray Tracing

S. Fenney1 and A. Ozkan1

1Imagination Technologies, UK

> 0

� 3

� 7

� 11

� 15

A
ve

ra
ge

 A
lp

ha
 T

es
ts

 /
R

ay

Figure 1: Left: a view of ‘San Miguel’ (PBRT model, camera 20, 640x480, 64 primary rays/pixel). Centre: Heat map of 17.5M alpha tests
performed on primary rays. Right: Heat map of alpha tests with (approximated) opacity maps - 4.6M tests.

Abstract
Recently, schemes have been proposed for accelerating ‘alpha-tested’ triangles in ray-tracing through the use of precomputed,
three-level Opacity Masks/Maps that can significantly reduce the need for expensive of ‘Any-Hit shader’ invocations. We
propose and compare two related schemes, VQ2 and VQ4, of compressing such maps that provide both random access and
low-cost decompression. Each compressed opacity map, however, relates to a pair of adjacent triangles, taking advantage of
correlation across the shared edge and matching likely underlying hardware primitive models.

CCS Concepts
• Computing methodologies → Ray tracing; Visibility;

1. Introduction

Contemporary graphics APIs, such as DirectX® and Vulkan®, sup-
port ray tracing of alpha-tested geometry by requiring relevant ray-
triangle intersections be subsequently refined by running an ‘Any-
Hit’ shader to determine visibility/presence within the triangle,
[Khr23a]. (To avoid potential confusion, the APIs’ ‘Any-Hit’ dif-
fers in meaning to the more traditional usage as in, e.g., [Smi98].)
Given that the traversal of the Bounding Volume Hierarchy [Cla76],
and triangle intersection tests may be performed by dedicated,
pipelined hardware, interrupting that process with shader execu-
tion generally results in a significant performance penalty. Having
a means to reduce these interruptions that i) does not significantly
increase the memory bandwidth nor introduce additional memory
latency, and ii) has only a small impact on the silicon area of the
hardware intersection test units, is very desirable.

A related problem occurs in rasterisation where alpha testing
needs to be logically done prior to the depth buffer update. Such
a test can interfere with the efficiency of both Tile-based Deferred
Renderers (TBDRs), e.g. [Ima], or early Z-test systems, [GKM93].
To mitigate this, Howson [How15] proposes an ‘Opacity State
Map’ that stores a low-resolution, low-precision version of the tex-
ture’s alpha component, reducing it to just four states. This map is
sampled in advance of the normal Z/Alpha test. The first two states
are ‘fully opaque’ and ‘fully transparent’. These, which we will re-
fer to as O and T, result in an automatic pass/fail, avoiding a full
alpha test. The third and fourth states, ‘Partially Transparent’ and
‘Mixed’, both require the full alpha-test process. We shall refer to
the union of these latter states as ‘Check Texture’, C. Although
Howson’s ‘Opacity State Map’ can be shared between multiple
triangles, accessing it requires performing an upfront perspective-
correct texture mapping operation, which is relatively costly.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/hpg.20231133 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-8489-4096
https://orcid.org/0000-0002-5052-9776
https://doi.org/10.2312/hpg.20231133

S. Fenney & A. Ozkan / Compressed Opacity Maps for Ray Tracing

With respect to ray tracing, [GBW20] instead propose storing
a ‘custom’ per-triangle opacity mask, which is addressed via the
triangle’s barycentric coordinates as determined by a ray intersec-
tion. Figure 2 illustrates an example opacity mask for a portion
of an alpha-tested triangle plus leaf texture, using 64 sub-triangles,
providing an expected 53% reduction in shader invocation. Each
sub-triangle in the mask has one of three states corresponding to
Howson’s O, T, and combined C. Akin to rasterisation, only the C
state requires the shader execution. Depending on the resolution of
the mask, Gruen et al found their technique provided a 19∼86%
reduction in the expensive Any-Hit invocation, with the higher res-
olutions providing the greater savings. (Note, throughout this pa-
per, ‘savings’ will refer to the reduction in any-hit execution made
compared to a system without opacity masks/maps)

3

0

1

11

4

9

7

15

8

13

63

48

61

62

27

16

25

28

19

31

..

29

21

32

23

35

24

33

..

56

...

55

40

53

37

52

51

36

49 59

..

57

B=(0,0,1)

B=(1,0,0) B=(0,1,0)

2

6

1412

20 2218

38 44 46

3430

474539

26

17

10

58 605450

B=(0,0,1)

B=(0,1,0)B=(1,0,0)

T
C

O

Opacity
State Key

5

42

41 43

Figure 2: Example of Gruen et al’s Opacity mask with 64 sub-
regions.

To illustrate the potential savings, the left panel of Figure 1
shows a view of the ‘San Miguel’ model rendered with PBRT-v3,
[PJH16], using 64 samples per pixel. The centre panel is a heat
map illustrating the average number of alpha tests performed per
pixel, i.e. effectively Any-Hit shader invocations, for just the pri-
mary rays. The right panel shows a simulation of using opacity
maps that short-cuts the process. In the original, 17.5 million al-
pha tests were performed on the primary rays alone - using opac-
ity maps, this reduces to 4.6 million. Note that the secondary rays
also require significant alpha testing - approximately 71 million
tests in this example - with the costs potentially exacerbated by
the likely reduced coherency of those rays. Another example, the
PBRT ‘landscape’ scene, is shown in Figure 12.

The Vulkan® Application Programming Interface has recently
introduced an ‘Opacity Micromap’ extension, [Khr23b], similar to
that of Gruen et al, but which instead supports both a four-state
mode, comprising O, T, and two variants of C, and a two-state
mode, with just O and T. The latter may, for example, be used for
stochastic sampling in global illumination where potential aliasing
may not be an issue. The micromap also differs from [GBW20] in
that it employs a ‘space filling curve’ ordering for the sub-triangles

rather than the ‘raster’ order. On some GPUs, [NVI23], the opacity
micromap can achieve “a doubling of scene traversal performance
in applications with alpha-tested geometry”.

2. Initial Observations

The approach of [GBW20] creates maps for individual triangles but
we note:

• In scenes such as ‘San Miguel’, Unreal Engine’s ‘Downtown
West’, or Amazon’s ‘Lumberyard-Bistro’, foliage and flowers
are usually modelled by a mesh of two or more contiguous prim-
itives with a shared, alpha texture. Further, [NVI23] suggests a
leaf “might be described using a couple of triangles”. Similarly,
one would expect, say, a chain link fence or dilapidated window
to be formed from rectangular sections.

• At least two hardware ray tracing systems, Intel’s [GB22] and
Imagination’s [Ima21], store and/or test rays against triangle
pairs. There are perhaps three primary advantages for doing so:

1. Bounding Volume Hierarchies, BVHs, generally use Axis
Aligned Bounding Boxes, AABBs, ([MOB*21]). The AABB
for a contiguous pair of triangles is rarely much larger than
either of the two AABBs of the constituent triangles. Treat-
ing them as a pair will thus usually reduce BVH footprint,
traversal depth, and AABB testing effort.

2. When performing the ray vs. triangle-pair intersection tests,
the calculations relating to the common edge can be reused in
the evaluation.

3. A triangle pair can be stored more compactly than two indi-
vidual triangles, which can save memory bandwidth and in-
crease cache utilisation.

The encoding scheme of [GBW20] uses 2 bits per sub-region but
they note that three states could use “less than 2 bits”. We assume
this implies using ≈ log23 bits per state, as in some Block Trunca-
tion Compression schemes, [FNK94], perhaps encoding 5 regions
in every 8 bits. Although this would be near optimal for equiprob-
able, random data, opacity maps are rarely ‘noise’.

When performing alpha testing in Z-buffer rasterisation, unless
a system has hardware support for automatic ‘order independent
translucency’, [Seg98], or, perhaps, the application implements a
multi-pass scheme such as [SML11], developers often just apply a
threshold and use the ‘discard’ in the fragment shader to create a
binary ‘fully transparent/fully opaque’ result. This avoids the need
to sort geometry but typically introduces artefacts.

Ray tracing, on the other hand, orders the intersections. We thus
expect applications may take advantage of partial transparency par-
ticularly for primary, reflection/refraction, and point-light shadow
rays. Therefore, when accessing the source texture map, the sam-
pling process in the any-hit shader is likely to at least use bilinear
filtering. This implies that sampled alpha values will be continuous
across the triangle and thus it should be impossible, in practice, to
change instantly from fully opaque to fully transparent. (Due to the
likely difficulty of exactly matching the floating-point calculation
results of mask/map creation with that of the sampling performed
by the GPU, we feel it would be unwise to use point-sampling in

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

24

S. Fenney & A. Ozkan / Compressed Opacity Maps for Ray Tracing

the shader. Taking a conservative approach, i.e. using a continuous
filter, seems prudent.)

Finally, given today’s memory latencies, it would be advanta-
geous for the opacity map to be stored adjacent to, and read at the
same time as, the triangle vertex data and, preferably, to be of com-
parable size.

3. Compressed Opacity Maps

We propose storing a square opacity map for each pair of adja-
cent triangles and using square sub-regions with, e.g. 16x16 (Fig-
ure 3) or 32x32 resolution. It is expected that there will be conti-
nuity across the shared triangle edges. Further, given the computed
barycentric coordinates, square sub-regions should be marginally
simpler to index than sub-triangles.

smleaf BistroFlower Chainlink

T
C

O

Opacity
State Key

Figure 3: Examples of textured triangle pairs with 16x16 Opacity
Maps.

A lossy compression scheme is employed to reduce the memory
footprint. Fast random access to the opacity map is essential, but
many compression methods, e.g. Huffman, do not permit constant-
time decoding of an arbitrary value. Several compression schemes
were investigated, e.g. a 3-level quad-tree hierarchy and a ‘wavelet
mod 3’, with the aim of providing fast ‘random access’, but Vector
Quantisation, (VQ), [GG91], particularly appealed due to its sim-
plicity to decode in hardware. VQ can be summarised as a system
that takes an input array of J, n-dimensional vectors and approxi-
mates it using i) a ‘codebook’ which is an array of K vectors, K < J,
and ii) J indices, one per input vector, each of which identifies the
corresponding‘best’ representative in the codebook.

VQ has been used in graphics for compression of image data,
[Hec82], and textures, [BAC96] which, in turn, inspired the 2bpp
and 1bpp texture compression in the Dreamcast console [Seg98]. It
fell out of favour mainly because of the expense of overcoming the
memory latency of the dependent codebook access. If, however,
the indices and codebook are contiguous and both loaded simul-
taneously in ‘local storage’, the latency associated with the indi-
rection can be eliminated. Utilising VQ, storage costs of around
1 bit/region for a 16x16 opacity map or even 0.5 bits/region for
32x32 are feasible. Such maps would be similar in size to a cache
line, typically 32∼128bytes.

With any fixed-rate compression scheme, however, there must

exist source data that cannot be compressed losslessly and opacity
maps are no different. We note, though, that it is always safe to re-
place an O or T state in the source map with a C in the compressed
variant. Unfortunately, such a substitution comes at performance
penalty since that replacement would result in a shader invocation
that the opacity map is aiming to reduce. [GBW20] demonstrated
that higher resolution opacity maps provide greater reductions in
shader execution due to the higher proportions of O and T states.
This raises the question: given an assumption of a fixed-storage
budget for each opacity map, will the relative gain in performance
that is achieved by compression - thus permitting higher resolu-
tions - significantly outweigh any losses due to conservative substi-
tutions?

The paper will now describe and compare two VQ-based com-
pression schemes: VQ2, storing 16x16 maps at 1 bit/region, and
VQ4, which stores 32x32 maps at 0.5 bits/region.

4. VQ2: A 2x2 VQ, 1 bit/region scheme

For the 1 bit/region compression mode, VQ2, a 16x16 map reso-
lution was chosen, giving a storage budget of 256 bits that must
at least contain the vector indices and codebook. The map is di-
vided into 64, 2x2 vectors, and the codebook stores a small subset
of the set of all possible vectors, PV2x2. Initially, it may appear
that |PV2x2|= 34, each thus requiring≈ 7 bits to encode. However,
by the continuity assumption in section 2, O and T states cannot
co-exist in the same vector. This implies |PV2x2| = 31, suggesting
the 5-bit encoding of figure 4 for each entry in the codebook; the
‘Palette Mode’ flag indicates if the per-region modes are chosen
from either {O,C} or {T,C}, and the remaining fields are 1-bit in-
dices into the selected palette.

Palette Mode
Top
left

Bottom
left

Top
right

Bottom
right

5 bits

Figure 4: 5-bit codebook vector encoding

The VQ encoding also requires 64 indices. To meet the 256-bit
budget, each index clearly must have fewer than 4 bits. An index
size of 3-bits was chosen as a 2-bit index was too restrictive. This
leaves 64 bits for the codebook and additional fields.

Example scene data indicated that the three 2x2 vectors which
are uniformly O, T, or C, are particularly common, each typically
occurring with probabilities of 11∼29%. Rather than explicitly
placing these in a codebook, it seemed prudent to dedicate 3 in-
dices, e.g. {0,1,2}, to implicitly represent {T,C,O}, leaving 5 in-
dices to access explicitly stored vectors.

4.1. Utilising Symmetry

From observations of model data, it became apparent that the natu-
ral symmetries, both reflections and rotations, in the source opacity
maps could be utilised to improve compression. To illustrate, we
take the smleaf example of figure 3, divide the map into quadrants
and, for clarity, remove the ‘uniform’ vectors, as shown in figure 5.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

25

S. Fenney & A. Ozkan / Compressed Opacity Maps for Ray Tracing

smleaf
Uniform vectors

‘removed’

Figure 5: Examples of symmetry in opacity map

Using the top left quadrant, TL, as a reference, we note that the
vectors circled in red also appear in the bottom left quadrant, BL,
but rotated 90° anticlockwise, and again in the top right, TR, and
bottom right, BL, except rotated by 270° and 180° respectively.
Identical behaviour can be seen with the vectors circled in blue.
In other samples, reflections about the x-axis, y-axis, and the lines
x = y, x =−y were observed.

To utilise this, the compression scheme stores a transformation
‘matrix’ for the TR, BL, and BR quadrants, each chosen from the
set, {Identity, Rotate 90° Anticlockwise, Reflect Top/Bottom, Reflect
X=-Y, Reflect Left/Right, Reflect X=Y, Rotate 180°, Rotate 270° An-
ticlockwise}. The TL quadrant’s transform is always the identity.
When a stored codebook vector is accessed, the associated quad-
rant’s transformation is applied.

Any of the above set of 8 can be constructed using just three base
transforms, [Reflect Left/Right, Reflect Top/Bottom, Rotate 90° An-
ticlockwise], selectively applying these, in turn, to a vector. The
encoding is summarised in table 1. In hardware this requires 12,
2-input multiplexor units and a per-quadrant 3-bit field, indicating
which of the base transforms to apply. (Alternatively, an equivalent
process can be applied to the coordinates accessing the contents of
the vector - this latter approach is preferable for the 0.5 bit/region
method, VQ4, discussed in Section 5). It should be noted that, al-
though the transformation process was inspired by observed sym-
metries, it can also be regarded simply as a method of synthesising
additional vectors from those stored in the codebook.

ReflectLR ReflectT B Rotate90 Result
0 0 0 Identity
0 0 1 Rotate90
0 1 0 ReflectT B
0 1 1 ReflectX=−Y
1 0 0 ReflectLR
1 0 1 ReflectX=Y
1 1 0 Rotate180
1 1 1 Rotate270

Table 1: Per-quadrant transform encoding/construction. Opera-
tions are performed right to left.

The remaining 55 bits store a total of 11, 5-bit vectors in a
code book. Three are shared between all quadrants and are ac-
cessed via indices {3,4,5}. The remaining indices, {6,7}, access
per-quadrant codebook entries. Although the arbitrary ordering of

the vectors relating to {3,4,5} and the four pairs corresponding
to {6,7} could theoretically provide an additional ⌊log2(3!)⌋+ 4
encoding bits, we have not investigated utilising this.

An overview of the stored data and the decode process is shown
in figure 11.

4.2. Compression Algorithm

With reference to algorithm 1, we coded a naïve compressor that
brute-forces all 29 quadrant transform combinations. For each such
combination, it applies a greedy algorithm that simply chooses the
global and local codebook candidates directly from the input vec-
tors, i.e. selecting in turn those that contribute to the fewest total
C states. The choice of assigning a vector to global or per-quadrant
codebooks is a simple heuristic of how many quadrants contain that
vector. Once the codebook is determined, each source vector is as-
signed the best available representative and a score is calculated.
The transform and associated codebook with the least score is cho-
sen.

4.3. Compression Results

In evaluating VQ2, a set of 170 alpha textures, drawn from various
sources including ‘San Miguel’, ‘Lumberyard-Bistro’, Unreal En-
gine’s ‘Downtown West’, PBRT’s ‘landscape’, as well as textures
previously provided by developers for texture compression evalua-
tion, were de-noised of spurious outliers, cropped to rectangles that
removed excess transparent borders, and were then assumed to map
to triangle pairs. Images that were clearly intended to be ‘texture at-
lases’, e.g. a collection of several flowers, were first manually sub-
divided into smaller images. Note that the assumption of mapping
to just a pair of triangles is at times not ideal - a small number of
the set would be better mapped to more triangles that more tightly
bound the non-transparent areas.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180A
lp

ha
 e

va
lu

at
io

n
sa

vi
ng

s
(%

)
m

ad
e

pe
r

m
ap

Data set index (sorted by uncompressed savings)

Shader Invocation Savings for 16x16

Source Map (uncompressed)

Compressed (VQ2)

2x64 Sub-Triangles

Gain on Equivalent Storage

Figure 6: VQ2: Savings across test set: source, compressed, vs two
64-sub-triangle opacity masks/micromaps

To quantify the behaviour of the lossy compressor, the reduc-
tion in alpha tests using opacity maps was collated across the test
set for both the original and compressed 16x16 maps. The results
are shown in Figure 6; the maps here being ordered from those

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

26

S. Fenney & A. Ozkan / Compressed Opacity Maps for Ray Tracing

Algorithm 1 VQ2 Compression
BestScore← INTmax
Vecs← InputVecs without uniform vectors
for all T possible transform combinations do

LocalVecs← apply T to Vecs
OrderedVecs←sort LocalVecs
for all V in OrderedVecs do

V.score← count number of C states
end for
MergedVecs ←combine OrderedVecs duplicates, sum

scores
PrioritisedVecs←sort MergedVecs by decreasing score
CreateCodeBook(PrioritisedVecs, LocalCodeBook)
LocalScore← EvaluateCodeBook(LocalVecs,LocalCodeBook)
if LocalScore < BestScore then

BestScore← LocalScore
CodeBook← LocalCodeBook
if BestScore = 0 then

break
end if

end if
end for

procedure CREATECODEBOOK(PrioritisedVecs, CB)
CB.Globals← [] ▷ clear codebook entries
CB.Quadrants← []
while (CB not full) ∧(PrioritisedVecs not empty) do

V ← Take lowest scoring vector from PrioritisedVecs
Dest← unassigned ▷ Codebook assignment heuristic
if V only in one quadrant, q then

if CB.Quadrantq not full then
Dest← AddToQuadrant

else if CB.Globals not full then
Dest← AddToGlobal

end if
else ▷ V is in multiple quadrants

if CB.Globals not full then
Dest← AddToGlobal

else
Dest← AddToQuads

end if
end if

if Dest = AddToGlobal then
CB.Globals+=V

else if Dest = AddToQuads then
for all q in V.quadrants do

if CB.Quadrantq not full then
CB.Quadrantq +=V

end if
end for

end if
end while

end procedure

with the greater proportion of C states, thus with the least savings,
through to those with the fewest C states, i.e. the greatest savings.
The relatively small difference in performance between source and
compressed data indicates that, despite the simplistic compressor,
relatively few replacements of O or T with C are made.

As a benchmark, the graph also plots a 256-bit encoding using
the 2bit/region opacity mask/micromap scheme with two sets of 64
sub-triangles. Given the same memory budget, the lossy compres-
sion typically achieves a gain in excess of 10%.

Finally, across the 170 images, 80 of the possible 512 transform
combinations were used. Of these, 50 were unique, while the most
frequently used, selected in 15% of the cases, was [TR: Rotate 90°,
BL: Reflect Top/Bottom, BR: Reflect X=Y].

5. VQ4: A 4x4 VQ, 0.5 bit/region scheme

Because higher resolutions provide greater shader savings - albeit
with diminishing returns (see figure 7) - we wanted to explore using
a larger opacity map, i.e. 32x32, yet avoid quadrupling the indexing
storage compared to a 16x16. A more ambitious approach, VQ4,
featuring 4x4 vectors with a target of 0.5 bits per region was thus
evaluated. VQ4 applies the same fundamental principles as VQ2,
however the details differ. As with VQ2, the map has 64 vectors
but the larger memory footprint allows the ‘luxury’ of 4-bit indices.
VQ4 also re-uses the quadrant transformation encodings of VQ2.
Together, these leave a budget of 247 bits for the codebook.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180A
lp

ha
 e

va
lu

at
io

n
sa

vi
ng

s
(%

)
m

ad
e

pe
r

m
ap

Data set index (sorted by savings)

Shader Invocation Savings for Multiple Resolutions

128x128

96x96

64x64

48x48

32x32

16x16

8x8

Figure 7: Uncompressed opacity map savings for multiple resolu-
tions. Note that savings ‘per region’ soon diminish.

5.1. Codebook vector representation

Using 4x4 vectors instead of 2x2 implies some new limitations.
From the continuity assumption, rather than having 316 (≈4.3e7)
possible vectors, one can demonstrate that |PV4x4| = 231713, i.e.
< 218. Encoding and decoding using the ideal 18 bits, however,
seemed impractical. Instead, a completely arbitrary 4x4 vector is
considered to comprise four, 2x2 mini vectors, each of which reuses
the scheme of figure 4, yielding a 20-bit encoding.

We note that there is a correspondence between each 4x4 and
an equivalent 2x2 in a lower resolution, 16x16 map. It therefore

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

27

S. Fenney & A. Ozkan / Compressed Opacity Maps for Ray Tracing

follows that any uniformly O or T 2x2 vector in a 16x16 map,
implies the matching 4x4 vector in the 32x32 map must also be,
respectively, fully O or T and therefore frequently occurring. As
with VQ2, VQ4 has a means to implicitly store such vectors. In
the case of uniform C vectors, it is less beneficial; the purpose of
a higher resolution map is to reduce the expected probability of C
sub-regions, and thus it follows that uniform C vectors occur less
often. Nevertheless, in this presentation it is assumed the uniform
C vector will also be implicitly represented.

Although in the general case, both T and O states may coexist
in a single 4x4 vector, there are frequent occurrences of vectors
composed only of {O,C} or {T,C}, thus allowing a more com-
pact 17-bit representation, similar to that of VQ2. Further, by iden-
tifying cases with horizontal or vertical partitions of {O,C} and
{T,C} allows 18-bit encodings. The VQ4 scheme evaluated thus
uses the codebook encodings of table 2 which meets the 247-bit
budget. VQ4 does not use the per-quadrant codebooks of VQ2.

Index Range Encoding Storage Budget
(bits)

0..2 Uniform T, C, or O 0
3..5 Simple {O,C} or {T,C} 51

6 Vertical partition 18
7 Horizontal partition 18

8..15 Generic vectors 160

Table 2: VQ4 Index/Codebook Assignment

5.2. Compression Algorithm

The naïve algorithm of VQ2 is inadequate for the more ambitious
4x4 representation. Some VQ encoding algorithms, e.g. [Wu92],
use principal component analysis to identify spatial splitting planes,
but given each of the 16-dimensions only has 3 possible ‘integer’
values, attempting to partition sets of vectors with arbitrary 16-
dimensional planes did not seem suitable. Instead, we opted to use
an algorithm inspired by [Hec82], where partitioning simply uses
the major axes.

As with the VQ2 compressor, VQ4 evaluates all 512 quadrant
transform options, and for each determines a codebook. This latter
step is summarised in algorithm 2. This maintains a list of parti-
tions of the transformed vector set, beginning with a single partition
containing all bar the uniform O, T, and C vectors, since these are
‘free’. Nearly all partitions are represented by the best ‘compatible’
vector, i.e. one in which, for each dimension, if there is more than
one of {O,T,C} in the vectors of the partition in that dimension,
the representative must use a conservative C. An illustration of the
compatible vector generation process, for 2x2 vectors, can be seen
in figure 8.

Each partition also maintains a ‘loss’ score which indicates the
total number of conservative C substitutions that would be made if
all vectors used the representative. A greedy algorithm picks the
partition with the expected ‘most to gain’, i.e, the one with the
largest ‘loss’, and divides it into two smaller partitions, selecting
the axis and value which minimises the total loss. The process re-
peats until the number of partitions reaches the required number of

(c) (d)(a) (b)

Figure 8: Calculation of a compatible vector: (a) and (b) represent
two source 2x2 vectors, (c) illustrates their overlap, while (d) shows
the resulting best compatible vector

codebook entries. This description has ‘glossed over’ the handling
of the 17- and 18 -bit encodings listed in table 2 but we propose to
post-process the codebook should there be, for example, too many
20-bit vectors. In practice, however, we have not yet found a case
where this was required.

An example of the results of this process is shown in figure 9.
Here, 85 of the 834 source O and T states were replaced with C.

Maple Source Transformed Lossy Compression

Figure 9: ‘Maple Leaf’ VQ4 compression example - source, trans-
formed, & lossy vector representation. The codebook entry circled
in red is not present in the transformed source but is the most com-
patible with the source vectors it represents. The example high-
lighted in blue represents one vector exactly and two others, con-
servatively. One, circled in orange, has been represented by a uni-
form C vector.

5.3. Compression Results

As with VQ2, the data set was compressed and the relative sav-
ings compared against the source maps. These results are shown
in figure 10. The drop in savings for the compressed data is rel-
atively greater in VQ4 than VQ2 but, in general, it still performs
around 10% better than an equivalent 512-bit, uncompressed map,
i.e. 16x16, as was shown as the source map in figure 6.

6. Future Work

With the existing VQ2 and VQ4 modes, we believe that improve-
ments could be made to the compressors to achieve fewer substi-
tutions. The VQ4 compressor algorithm, for example, though far
better than that used to evaluate VQ2, still employs a greedy ap-
proach - an alternative, back-tracking search might yield superior
results. It may also be possible to find a means of utilising the un-
used ‘implicit’ encoding space - i.e. taking advantage of the other-
wise arbitrary order of some of the codebook vectors, though this
would require additional comparison hardware. One such use may
be to offer an alternative to always assuming a uniform C vector.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

28

S. Fenney & A. Ozkan / Compressed Opacity Maps for Ray Tracing

Algorithm 2 VQ4 Codebook Generation
procedure CREATECODEBOOK(MergedVecs, CB)

CB← [] ▷ clear codebook entries
Partitions [0] .Members← all MergedVecs
Partitions [0] .Rep← AllC ▷ Force All Check texture
Partitions [0] .Score←ComputeNumSubstitutions(Partitions [0])
NumPartitions← 1

while (CB not full) ∧(NumPartitions > 0) do
P← Take highest score partition from Partitions
if P.Score = 0 then

Partitions+=P ▷ lossless compression
break

end if
BestPartScore← INTmax
for all non-constant dimensions, D, in P do

for all possible partitions of D of P do
Create partitions PA and PB from P using D
if P.Rep = AllC then ▷ maintain one AllC

Either PA.Rep← AllC or PB.Rep← AllC
end if
LocalScore← Score(PA)+Score(PB)
if LocalScore < BestScore then

BestPartsA← PA
BestPartsB← PB
BestScore← LocalScore

end if
end for

end for
Partitions+=BestPartsA ▷ including score and rep
Partitions+=BestPartsB

end while
for all P in Partitions do

CB+=P.Rep
end for

end procedure

Our BVH builder should also be updated to produce, where pos-
sible, tighter AABBs around triangle pairs that have opacity maps,
or even to discard some triangles; visual inspection of test scenes
certainly suggests that some existing models could be made more
efficient.

The ‘Opacity Micromap’ of [Khr23b] has a two-state mode,
which never executes the Any-Hit shader, and is intended, say, for
stochastic sampling use cases. Further, any four-state micromap
can be interpreted as two-state. We plan to investigate a similar
approach for interpreting the three-state opacity map as two-state,
possibly by using the 2x2 vectors to determine hit/miss probabili-
ties in combination with a hash of the hit’s barycentric coordinate
LSBs.

Some other questions remain to be answered:

• As the compression is lossy, is there an advantage in favouring
one of T or O over the other when deciding whether to replace
with C?

• For ‘traditional’ any hit use cases, [Smi98], such as shadow rays,

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180A
lp

ha
 e

va
lu

at
io

n
sa

vi
ng

s
(%

)
m

ad
e

pe
r

m
ap

Data set index (sorted by uncompressed savings)

Shader Invocation Savings for 32x32

Source Map 32x32

Compressed (VQ4)

Uncompresssed 16x16

Gain on Equivalent Storage

Figure 10: VQ4: Alpha test Savings: Source vs Compressed vs
Same storage cost

where the order of intersections is not critical, when an alpha-
tested intersection finds a C state, would it be beneficial to defer
or queue the any-hit shader evaluation in the expectation that
(opaque or) other alpha-tested geometry may find an O with
lower overall cost?

6.1. ‘Paint by Brush’

Although VQ-based methods have been presented, a number of dif-
ferent compression schemes were considered, such as wavelets and
a hierarchy method - as mentioned in Section 3. However, there
is another experimental approach we’d like to explore that we’ve
termed ‘Paint by Brush’. This method was inspired by Roger Jo-
hansson’s Mona Lisa project, [Joh08]. Here, Johansson used an
evolutionary algorithm to construct a replica of the Mona Lisa that
is made up of translucent polygons, stacked on top of each other.

This approach can be adapted for opacity maps as well. A list
of shapes or ‘brushes’ can be defined and applied on top of each
other, similar to layers in image editing software, to approximate a
given image. For example, placing an O square on top of a larger C
background, would create a square of O state surrounded by a ring
of C state. Additional shapes can be added on, similar to ‘press-
ing a brush on paper’ controlled by using brush type, size, rotation,
centre position, and ‘colour’, i.e. {O, C, T}. Assuming a fixed num-
ber of brush operations, such a system allows random access for a
given location by testing for inclusion in all the ‘applied brushes’
in parallel. The difficulty is in developing an efficient compressor:
This method is likely intuitive to a human, but implementation in
a program, without resorting to the slow, random mutation method
of Johansson, is a more challenging task.

7. Conclusions

We have presented methods of storing compressed opacity maps
that allow reductions in potentially expensive Any-Hit shader in-
vocations which are close to that achieved by the uncompressed
data, yet at 50% or even 25% of the memory budget. Alternatively,
this can be seen as offering the benefits of a higher resolution for

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

29

S. Fenney & A. Ozkan / Compressed Opacity Maps for Ray Tracing

the same storage footprint. Using a vector quantisation approach
means that the decompression process is inexpensive, particularly
for implementation in a hardware ray-triangle intersection tester.
The data sizes are comparable to the triangle/triangle pair coordi-
nate data and so can be loaded simultaneously to reduce latency
without significant additional bandwidth.

Acknowledgements

We wish to thank our colleagues at Imagination Technologies for
their support in this research and to the reviewers who provided
excellent suggestions on improving the content of this paper.

References
[BAC96] BEERS, ANDREW C., AGRAWALA, MANEESH, and CHADDHA,

NAVIN. “Rendering from Compressed Textures”. Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’96. New York, NY, USA: Association for Comput-
ing Machinery, 1996, 373–378. ISBN: 0897917464. DOI: 10.1145/
237170 . 237276. URL: https : / / doi . org / 10 . 1145 /
237170.237276 3.

[Cla76] CLARK, JAMES H. “Hierarchical Geometric Models for Visible
Surface Algorithms”. Commun. ACM 19.10 (1976), 547–554. ISSN:
0001-0782. DOI: 10.1145/360349.360354. URL: https://
doi.org/10.1145/360349.360354 1.

[FNK94] FRÄNTI, P., NEVALAINEN, O., and KAUKORANTA, T. “Com-
pression of Digital Images by Block Truncation Coding: A Survey”. The
Computer Journal 37.4 (Jan. 1994), 308–332. ISSN: 0010-4620. DOI:
10.1093/comjnl/37.4.308. eprint: https://academic.
oup.com/comjnl/article- pdf/37/4/308/1067221/
370308.pdf. URL: https://doi.org/10.1093/comjnl/
37.4.308 2.

[GB22] GRUEN, HOLGER and BARZACK, JOSHUA. A Quick Guide to
Intel’s Ray Tracing Architecture. 2022. URL: https : / / www .
youtube.com/watch?v=SA1yvWs3lHU 2.

[GBW20] GRUEN, HOLGER, BENTHIN, CARSTEN, and WOOP, SVEN.
“Sub-Triangle Opacity Masks for Faster Ray Tracing of Transparent
Objects”. Proc. ACM Comput. Graph. Interact. Tech. 3.2 (2020). DOI:
10.1145/3406180. URL: https://doi.org/10.1145/
3406180 2, 3.

[GG91] GERSHO, ALLEN and GRAY, ROBERT M. Vector Quantization
and Signal Compression. USA: Kluwer Academic Publishers, 1991.
ISBN: 0792391810 3.

[GKM93] GREENE, NED, KASS, MICHAEL, and MILLER, GAVIN. “Hi-
erarchical Z-Buffer Visibility”. Proceedings of the 20th Annual Confer-
ence on Computer Graphics and Interactive Techniques. SIGGRAPH
’93. Anaheim, CA: Association for Computing Machinery, 1993, 231–
238. ISBN: 0897916018. DOI: 10.1145/166117.166147. URL:
https://doi.org/10.1145/166117.166147 1.

[Hec82] HECKBERT, PAUL. “Color image quantization for frame buffer
display”. ACM Siggraph Computer Graphics 16.3 (1982), 297–307.
URL: https : / / dl . acm . org / doi / 10 . 1145 / 800064 .
801294 3, 6.

[How15] HOWSON, JOHN. Opacity Testing For Processing Primitives In
A 3D Graphics Processing System. 2015. URL: https : / / www .
freepatentsonline.com/y2015/0221127.html 1.

[Ima] IMAGINATION TECHNOLOGIES. Tile-Based Deferred Rendering
(TBDR). URL: https : / / docs . imgtec . com / starter -
guides/powervr-architecture/topics/tile-based-
deferred-rendering.html 1.

[Ima21] IMAGINATION TECHNOLOGIES. PowerVR Photon. 2021. URL:
https://www.imaginationtech.com/products/gpu/
graphics-architecture/powervr-photon 2.

[Joh08] JOHANSSON, ROGER. Genetic programming: Evolution of mona
lisa. Dec. 2008. URL: https://rogerjohansson.blog/2008/
12/07/genetic- programming- evolution- of- mona-
lisa/ 7.

[Khr23a] KHRONOS, VULKAN WORKING GROUP. Vulkan® 1.3.250 - A
Specification: Any-Hit Shaders. 2023. URL: https://registry.
khronos.org/vulkan/specs/1.3- extensions/html/
vkspec.html#shaders-any-hit 1.

[Khr23b] KHRONOS, VULKAN WORKING GROUP. Vulkan® 1.3.250 - A
Specification: Opacity Micromap. 2023. URL: https://registry.
khronos.org/vulkan/specs/1.3- extensions/html/
vkspec.html#VK_EXT_opacity_micromap 2, 7.

[MOB*21] MEISTER, DANIEL, OGAKI, SHINJI, BENTHIN, CARSTEN,
et al. “A Survey on Bounding Volume Hierarchies for Ray Tracing”.
Computer Graphics Forum 40.2 (2021), 683–712. DOI: https : / /
doi . org / 10 . 1111 / cgf . 142662. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
142662. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.142662 2.

[NVI23] NVIDIA. Ada GPU Architecture. 2023. URL: https : / /
images . nvidia . com / aem - dam / Solutions / geforce /
ada/nvidia-ada-gpu-architecture.pdf 2.

[PJH16] PHARR, MATT, JAKOB, WENZEL, and HUMPHREYS, GREG.
Physically Based Rendering: From Theory to Implementation (3rd ed.)
3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Nov.
2016, 1266. ISBN: 9780128006450 2.

[Seg98] SEGA. Guppy/SET5 System Architecture. 1998 2, 3.

[Smi98] SMITS, BRIAN. “Efficiency Issues for Ray Tracing”. J. Graph.
Tools 3.2 (1998), 1–14. ISSN: 1086-7651. DOI: 10.1080/10867651.
1998 . 10487488. URL: https : / / doi . org / 10 . 1080 /
10867651.1998.10487488 1, 7.

[SML11] SALVI, MARCO, MONTGOMERY, JEFFERSON, and LEFOHN,
AARON. “Adaptive Transparency”. Proceedings of the ACM SIG-
GRAPH Symposium on High Performance Graphics. HPG ’11. Vancou-
ver, British Columbia, Canada: Association for Computing Machinery,
2011, 119–126. ISBN: 9781450308960. DOI: 10.1145/2018323.
2018342. URL: https : / / doi . org / 10 . 1145 / 2018323 .
2018342 2.

[Wu92] WU, XIAOLIN. “Color Quantization by Dynamic Programming
and Principal Analysis”. ACM Trans. Graph. 11.4 (1992), 348–372.
ISSN: 0730-0301. DOI: 10.1145/146443.146475. URL: https:
//doi.org/10.1145/146443.146475 6.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

30

https://doi.org/10.1145/237170.237276
https://doi.org/10.1145/237170.237276
https://doi.org/10.1145/237170.237276
https://doi.org/10.1145/237170.237276
https://doi.org/10.1145/360349.360354
https://doi.org/10.1145/360349.360354
https://doi.org/10.1145/360349.360354
https://doi.org/10.1093/comjnl/37.4.308
https://academic.oup.com/comjnl/article-pdf/37/4/308/1067221/370308.pdf
https://academic.oup.com/comjnl/article-pdf/37/4/308/1067221/370308.pdf
https://academic.oup.com/comjnl/article-pdf/37/4/308/1067221/370308.pdf
https://doi.org/10.1093/comjnl/37.4.308
https://doi.org/10.1093/comjnl/37.4.308
https://www.youtube.com/watch?v=SA1yvWs3lHU
https://www.youtube.com/watch?v=SA1yvWs3lHU
https://doi.org/10.1145/3406180
https://doi.org/10.1145/3406180
https://doi.org/10.1145/3406180
https://doi.org/10.1145/166117.166147
https://doi.org/10.1145/166117.166147
https://dl.acm.org/doi/10.1145/800064.801294
https://dl.acm.org/doi/10.1145/800064.801294
https://www.freepatentsonline.com/y2015/0221127.html
https://www.freepatentsonline.com/y2015/0221127.html
https://docs.imgtec.com/starter-guides/powervr-architecture/topics/tile-based-deferred-rendering.html
https://docs.imgtec.com/starter-guides/powervr-architecture/topics/tile-based-deferred-rendering.html
https://docs.imgtec.com/starter-guides/powervr-architecture/topics/tile-based-deferred-rendering.html
https://www.imaginationtech.com/products/gpu/graphics-architecture/powervr-photon
https://www.imaginationtech.com/products/gpu/graphics-architecture/powervr-photon
https://rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/
https://rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/
https://rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#shaders-any-hit
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#shaders-any-hit
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#shaders-any-hit
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#VK_EXT_opacity_micromap
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#VK_EXT_opacity_micromap
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#VK_EXT_opacity_micromap
https://doi.org/https://doi.org/10.1111/cgf.142662
https://doi.org/https://doi.org/10.1111/cgf.142662
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142662
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142662
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142662
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142662
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142662
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://doi.org/10.1080/10867651.1998.10487488
https://doi.org/10.1080/10867651.1998.10487488
https://doi.org/10.1080/10867651.1998.10487488
https://doi.org/10.1080/10867651.1998.10487488
https://doi.org/10.1145/2018323.2018342
https://doi.org/10.1145/2018323.2018342
https://doi.org/10.1145/2018323.2018342
https://doi.org/10.1145/2018323.2018342
https://doi.org/10.1145/146443.146475
https://doi.org/10.1145/146443.146475
https://doi.org/10.1145/146443.146475

S. Fenney & A. Ozkan / Compressed Opacity Maps for Ray Tracing

Top
right

256 bits

Quadrant Transform
Selection 3x3bits

Bottom
left

Bottom
right

Region Address
4+4 bits

3+3A) Select Index

196

3B) Select Vector

Vector Indices
8x8 x 3bits

55

Code Book
11 x 5 bits

Global
 3 x 5bits

TL
2x5

TR
2x5

BL
2x5

BR
2x5

Sub-region LSBs (1+1)

C) Transform +
Select

Quadrant (1+1)

5

9

2

Figure 11: 1bit/region opacity map data and decode process: i) MSBs of input coordinates select the index, ii) which in conjunction with
quadrant identifies the representative vector and iii) vector or coordinate LSBs are transformed and the final result selected.

> 0

� 2

� 4.1

� 6.2

� 8.3

A
ve

ra
ge

 A
lp

ha
 T

es
ts

 /
R

ay

Figure 12: PBRT Landscape model: Left: Render with 256 primary rays/pixel. Centre: Heat map of primary ray alpha tests - average 1.5/ray.
Right: Heat map with (approximated) opacity maps - average 0.6/ray.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

31

