
High-Performance Graphics (2023)
J. Bikker and C. Gribble (Editors)

PSAO: Point-Based Split Rendering for Ambient Occlusion

T. Neff†1 , B. Budge2 , Z. Dong2 , D. Schmalstieg1 and M. Steinberger1

1Graz University of Technology, Austria
2Meta Reality Labs Research, USA

Figure 1: Example frame from the Robot Lab scene rendered using point-based split ambient occlusion (PSAO). PSAO accurately reproduces
contact shadows throughout the scene, while still handling long-range ambient occlusion (AO) comparable to a per-pixel ray traced solution.
Shading atlas streaming (SAS) struggles with large geometry, blurring contact shadows across surfaces and exhibiting distortion artifacts
depending on scene geometry. Screen-space ambient occlusion (SSAO) fails to represent the AO on thin, complex objects such as railings in
the background, and produces unnatural halos around depth discontinuities such as around the wheels of the robot buggy.

Abstract
Recent advances in graphics hardware have enabled ray tracing to produce high-quality ambient occlusion (AO) in real-time,
which is not plagued by the artifacts typically found in real-time screen-space approaches. However, the high computational cost
of ray tracing remains a significant hurdle for low-power devices like standalone VR headsets or smartphones. To address this
challenge, inspired by point-based global illumination and texture-space split rendering, we propose point-based split ambient
occlusion (PSAO), a novel split-rendering system that streams points sparsely from server to client. PSAO first evenly distributes
points across the scene, and then subsequently only transmits points that changed more than a given threshold, using an efficient
hash grid to blend neighboring points for the final compositing pass on the client. PSAO outperforms recent texture-space
shading approaches in terms of quality and required network bit rate, while demonstrating performance similar to commonly
used lower-quality screen-space approaches. Our point-based split rendering representation lends itself to highly compressible
signals such as AO and is scalable towards quality or bandwidth requirements by adjusting the number of points in the scene.

CCS Concepts
• Computing methodologies → Rendering;

† The work was primarily done during an internship at Meta.

1. Introduction

The recent introduction of hardware ray-tracing on desktop GPUs
significantly changed the architecture of real-time graphics pipelines,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/hpg.20231131 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-6559-5653
https://orcid.org/0009-0005-9305-3260
https://orcid.org/0000-0002-9026-6886
https://orcid.org/0000-0003-2813-2235
https://orcid.org/0000-0001-5977-8536
https://doi.org/10.2312/hpg.20231131


Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

by combining traditional rasterization workloads with ray-traced
effects for enhanced realism. However, these expensive effects are
usually limited to high-end desktop GPUs. In contrast, the majority
of real-time graphics applications have to run on low-power devices
such as phones, which can very efficiently rasterize and shade simple
materials, but cannot benefit from hardware ray-tracing due to power
and performance limits. As a result, game streaming services such
as GeForce Now have become a popular alternative to on-device
rendering for low-power devices. These services typically operate
by streaming a compressed video from the cloud to the client de-
vice, which necessitates a high-bandwidth network connection and
requires the server location to be close enough to the client to ensure
low network latency. These requirements prohibit the usage of such
streaming services on high-latency mobile networks or in scenarios
where extremely low latency is required, such as in XR.

To address these issues, recent work has introduced on split-
rendering techniques [RLC*11; LD12; MVD*18; MNV*21; HSS19;
HSS21; NMSS22] that decouple the rendering system by offloading
expensive portions of the rendering equation to a powerful server,
while performing simple geometry passes directly on a low-power
client device. However, this line of research mostly focuses on
computing the shading fully on the server, which can lead to artifacts
with view-dependent portions of the rendering equation if server
updates are delivered at a lower frame rate than used on the client.
Furthermore, these approaches assign an oversimplified workload
to the client device, usually consisting only of rasterization and
texture mapping, while leaving the client’s potential for performing
low-complexity fragment shader computations underutilized.

In contrast to computing the full shading workload on the server,
we take inspiration from recent hybrid graphics pipelines and ad-
vances in ray-tracing [Gau20] and focus on integrating high-quality
AO on low-power devices. AO is a popular approximation of por-
tions of global illumination, where surface points are darkened pro-
portionally to the volume of objects in close proximity. Traditionally,
a real-time graphics pipeline relies on screen-space ray-marching of
the depth buffer [MML12; BS09; BSD08; JWPJ16] to approximate
short-range AO. However, these screen-space approximations can
produce artifacts as any occluded geometry behind the depth buffer
cannot be considered during ray marching, leading to halos, wrongly
occluded regions, and over-blurring depending on the reconstruction
filter. Consequently, heuristics and carefully tuned reconstruction
filters are needed to suppress the most severe artifacts. Since these
tuning steps are cumbersome, the recent addition of hardware ray-
tracing support led to increased popularity of ray-traced AO [Gau20],
which can handle arbitrarily long distances between objects (given
sufficient sampling). Depending on the scene, long-range AO can
even be a substitute for standard shadow computation of direct shad-
ows. Unfortunately, despite hardware ray-tracing slowly appearing
on mobile phones and integrated desktop processors, even a single
ray per visible pixel may still be too expensive, because high-quality
AO requires hundreds of samples (albeit temporally amortized) to
be noise-free.

Inspired by recent trends in split-rendering and ray-traced AO,
we aim to close this gap by introducing PSAO. PSAO splits the
graphics pipeline between a powerful server that computes high-
quality ray-traced AO and a low-power client that autonomously

computes simple shading, while optionally compositing the AO on
top. We deviate from common split-rendering representations such
as texels in UV space [HY16], individual triangles [HSS21; HSS19]
or groups of triangles [MVD*18; NMSS22]. Instead, inspired by
recent advances in global illumination [HBHB21], we use a sparse
hash grid representation of points that stores the AO.

This architecture additionally decouples our split-rendering repre-
sentation from object geometry, sidestepping distortion and res-
olution problems as well as the requirement for a unique sur-
face parametrization that commonly plagues texture-space split-
rendering approaches.

PSAO works by distributing points on object surfaces, for which
AO is computed by ray tracing towards the scene geometry via a
powerful server. This server efficiently compresses and encodes
points, determines which points change more than a threshold, and
only sends these points to the client. Both server and client store
points within a hash table that is indexed by the 3D grid cell index
of the voxel grid of each mesh instance. To reconstruct the AO,
the client computes a simple weighted sum of neighboring grid
cells for each fragment, using the hash table to look up the correct
point cells. Due to the sparse storage, sparse network updates, and
high degree of compression that can be applied to our AO points,
PSAO outperforms MPEG-encoded texture-space split-rendering
approaches in terms of network bandwidth. With PSAO, we make
the following contributions:

• We introduce a novel split-rendering data structure for recon-
structing ray-traced AO using points in a 3D hash grid.

• We demonstrate that our point-based representation outperforms
common texture-space split-rendering representations in terms
of quality, achieving better quality at up to 75% less network
bandwidth.

• We show that the client rendering pass of PSAO has similar run-
time performance (reconstructing at ≈ 0.7−1 ms on a desktop
GPU) as commonly used screen-space AO methods, at a much
higher image quality due to being able to represent long-distance
AO.

• Finally, we verify that PSAO can tolerate low server frame rates
similarly to texture-space shading approaches, leading to further
potential savings in network bandwidth and server load.

2. Related work

Real-time ambient occlusion AO [ZIK98] is a popular special ef-
fect that simulates the soft shadowing that occurs when ambient light
is cast into a scene. These soft shadows usually appear around object
creases or caves, or in areas where objects are close to each other,
resulting in visually pleasing contact shadows and increased depth
cues. Usually, AO is computed by casting rays across the hemisphere
around a given surface normal to determine a percentage of rays
that are occluded at a given distance [Lan04]. AO was pioneered by
the movie production industry for offline rendering [Lan04], which
did not need to adhere to real-time rendering requirements, and used
ray-tracing to determine the AO.

The first real-time capable AO method was developed for the
video game Crysis [Mit07]. It utilized the depth buffer in screen
space to sample nearby rays by testing against the depth buffer,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

2



Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

blurring the final result for a smoother output. This approach,
SSAO, is the foundation for modern real-time AO approaches to
this day. In the years after, methods such as HBAO+ [BSD08] or
GTAO [JWPJ16] build on the same principles of SSAO with further
improvements in efficiency and quality. While all of these screen-
space approaches are widespread and usable on lower-power devices
such as phones, they often suffer from artifacts such as ghosting,
blurring, or halos. These artifacts can be mitigated for short-range
AO using heuristics and filters, but the information provided only
by the screen-space depth and normal is fundamentally limited, pro-
hibiting full access to neighboring scene geometry when computing
AO in screen space.

As a result, recent work has also explored hybrid or alterna-
tive ways to compute AO in real time. VXAO [NVI16] vox-
elizes the scene in real time and performs cone tracing to com-
pute more accurate occlusion values at the cost of performance.
NNAO [HSK16], DeepShading [NAM*17], DeepAO [ZXL*20]
and AO-Net [WZZ*23] reformulate the AO computation as a neural
network inference problem, demonstrating competitive performance
with modern handcrafted methods on some data sets, at the cost of
much more expensive computation.

With the introduction of hardware ray tracing support in modern
GPUs, it is now feasible to compute ray traced AO [Gau20] in
real-time, given adequate reconstruction filters (such as temporal
anti-aliasing). However, any ray-traced AO occupies a substantial
amount of ray tracing budget per frame, ruling out the application
on low-power devices, such as phones.

To summarize, the most popular ways for online AO recompute
the AO at least partially for every pixel in every frame, either through
ray tracing, via screen-space depth buffer tests or via neural network
inference. Neither of these approaches offers a simple way to decou-
ple the AO computation from the rest of the render pipeline, e.g., to
compute them at a lower frame rate or stream them over a network.

Split rendering Split rendering denotes a generalization of de-
coupled shading [RLC*11; LD12], where portions of the graphics
pipeline are executed on one device (usually a powerful server), en-
coded within an intermediate representation, sent to another device
(usually a lightweight client), and finally decoded and reconstructed
effectively splitting the rendering load between multiple devices.
The core of any split rendering algorithm is its intermediate represen-
tation, i.e., the space and data structure used for storing intermediate
rendering results, and the strategy by which server and client coop-
erate via this representation. These data structures range from on-
surface caches [WTS*23; SWTS23] to compute direct illumination,
spheres or grids to efficiently cache volumetric clouds [WLT*23]
or participating media [SWT*23], or caches operating in texture
space [BJ22; MVD*18; NMSS22; HY16].

Recently, research in split rendering has largely focused on
geometry-based texture-space shading methods [MVD*18; HSS21;
NMSS22; HSV*22] that are suitable for MPEG compression and
streaming to a lower-power client device. Although these approaches
improve network bandwidth efficiency, image quality, and render-
ing speed, they are fundamentally tied to the underlying geometric
representation. Poor geometric quality (e.g., tiny and sliver-y tri-
angles) or poor texture coordinates (e.g., strong distortions) can

severely affect the quality that the intermediate representation can
provide in texture space. Avoiding these conditions can be notori-
ously difficult if existing content must be used, since such content is
often created without texture-based streaming in mind. Furthermore,
texture-based streaming methods typically have elevated computa-
tional cost for dynamic memory management on the client, which
has to divide resources between decoding and rendering. Hence,
achieving reliable frame rate targets may become difficult.

A second group of split rendering methods focuses on dynami-
cally managing, allocating, and shading tiles of texels in mipmapped
textures [HY16; Bak16; BJ22]. These methods usually require com-
plicated dynamic memory management as well, including virtual
texturing, to handle non-unique surface parameterizations. Further-
more, significant effort has to be made to ensure over-shading
due to mipmapping does not significantly increase the compute
cost [NMSS22]. Finally, although these variants of texture-space
shading methods can be suitable for large-scale shading amortiza-
tion on the server, it is non-trivial to extend them to a split-rendering
approach which has a low-power client as its target.

Decoupled ambient occlusion Recently, alternative representations
for storing AO or global illumination have increased in popular-
ity [HBHB21], mostly due to being temporally coherent, which al-
lows efficient spatio-temporal accumulation and filtering [SKW*17]
and tight integration with widespread temporal anti-aliasing solu-
tions [YLS20]. These storage representations go all the way back to
radiance caching [WRC88], where radiance samples can be stored
in world space, and can later be used for reconstruction, e.g., via
splatting [GKBP05]. Alternatively, another way to decouple AO is
to store it as surface elements [Bun05] containing a position, ra-
dius, and normal, and accessing them during fragment shading via
a hierarchical data structure or textures. Most relevant to our work,
recent advances in ray tracing have inspired hybrid approaches
that combine ray tracing with hash-grid based data structures to
efficiently store and retrieve AO samples and accumulate them
spatio-temporally [Gau20]. However, these methods usually assume
powerful GPUs that can handle complex multi-level hash struc-
tures, incorporate expensive spatio-temporal filtering, and run on
a single system, thus disregarding memory consumption of the in-
ternal point representation. With PSAO, we take inspiration from
these approaches, simplifying the hash-grid based data structures
to be highly compressible and fast to look up in the context of a
split-rendering system.

3. Point-based Split Rendering for Ambient Occlusion

Traditional split rendering approaches, which represent shading
of geometric primitives in texture space, typically require expen-
sive preprocessing of the geometry to enable fast memory man-
agement [MVD*18] while keeping distortion in texture space to
a minimum [NMSS22; MVD*18; HSS19; HSS21]. The prepro-
cessing fundamentally modifies the geometric representation by en-
forcing a maximum triangle size and splitting triangles with highly
non-uniform edge lengths. As a consequence, a bloated geometric
representation can significantly influence the network transmission
rate, making it necessary to re-tune all scene parameters when a
different geometric resolution of source assets is desired.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

3



Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

30 FPS

Point 
Generation

Memory 
Management

Update & 
Rendering

Networking

Server

Client

Transforms & Scene Updates

CellData

PointData
PointData
PointData
PointData
PointData
PointData
PointData

... HashBucket

hash(x, y, z)

...

... ...

getCellOffset(x, y, z)

Point 
Representation

Networking
Rendering

60 FPS

Figure 2: The PSAO pipeline spans server and client by storing highly compressed points inside grid cells that are accessed via a hash table.
The server (left, green) handles initial point generation, dynamically manages the hash grid memory, updates and renders AO points based on
scene changes, and compresses points for networking if they changed above a threshold. The client receives updates to the hash and point
structures incrementally. It renders the AO on top of a standard geometry pass at its native display rate by looking up the nearest AO points for
each fragment, thus effectively decoupling the client from the server. The client sends scene updates and camera transformations to the server
to inform the server of any changes that need consideration for the AO points.

To circumvent the issues caused by tying the split-rendering
representation to geometry, we introduce PSAO, an efficient split-
rendering method that depends on points in space rather than geomet-
ric primitives. With PSAO, we generate points uniformly for each
mesh instance, compute high-quality ray-traced ambient occlusion,
and efficiently pack, compress, and send points from a powerful
server to a lightweight client. The client only needs to render a
simple basic color pass and can efficiently sample the ray-traced AO
on top to improve the realism of the rendered image.

The full PSAO pipeline is shown in Figure 2: First, initial point
positions are generated in a fast point generation pass. Second,
in the server update pass, the server computes the new position,
normal and AO for each currently visible point. For each point
where changes exceed a threshold, the server modifies the internal
hash table structures to efficiently update the changed points. For
both server and client, the networking pass executes network (de-
)compression and copies the incoming or outgoing data into the
respective buffers. Finally, the client render pass, which is decoupled
from the server, uses the updated data structures to efficiently look up
points in a virtualized 3D grid and reconstruct the AO contribution
per pixel.

3.1. Point generation

For our implementation of PSAO, we generate all initial point po-
sitions in a preprocessing pass. To do this, we compute the total
surface area of each mesh instance, and spawn a fixed number of
points (randomly distributed using a uniform distribution given in
triangle barycentrics) per unit area on the surface of each mesh
instance. Afterwards, to ensure the points are well-distributed over
the whole mesh, we use Poisson disk rejection [Yuk15] to remove

half of all the initially generated points. During point generation,
we spawn points on both sides of triangles that are double-sided
(using the respective normal), and we reject points that would fall
on masked transparent surfaces.

3.2. Memory management

After spawning points, we perform an initial memory management
pass that assigns all spawned points to a grid cell inside a virtual
3D grid of cells per mesh instance. PSAO generates updates affect-
ing the memory management and networking stage on grid cells
(CellData), where each CellData contains at most seven points
in our default configuration. Our memory management structure
is visualized in Figure 3. First, we determine the grid resolution
based on the size of the axis-aligned bounding box of the given
mesh instance and the total surface area. Second, we determine a
HashBucket for each point by hashing the dense 3D grid index
of each point. In our default configuration, we store 8 entries in
each HashBucket, which can each refer to different CellData.
To compute the hash function of a 3D point, we use a simple hash
function of the following form

H(p) = px + py ∗Dx ∗17+ pz ∗Dx ∗Dy ∗31 (1)

where px, py, pz are the x, y and z component of a given point,
and Dx and Dy are the x and y dimensions of the virtual grid for
the given mesh instance. For our hash table, we conservatively
allocate memory based on 4× the number of average cells derived
from the Poisson disk radius from point generation, divided by the
bucket size of 8, which is sufficient in practice to avoid overflows in
HashBucket due to hash collisions. From the HashBucket, we
allocate a new CellData if necessary, and then assign each point
to its corresponding CellData. As a result, after initial allocation,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4



Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

Cell (x, y, z)

Add Cell

... X X X ...
Hash

Table

Hash bucket i = 

hash(cell)p1

p2
p3 p4

... X ...
Point

Cells

Allocate new 

cell j

p5, p6, p7

p4

p3

p2

p1
Send hash 
bucket i & 
point cell j

CellData

Cell (x, y, z)

Remove Cell

... X X X X ...
Hash

Table

Hash bucket i = 

hash(cell)

... X X X ...
Hash

Table

Clear hash 

bucket entry

Send hash 
bucket i

Cell (x, y, z)

Update Points

... X X X X ...
Hash

Table

Hash bucket i = 

hash(cell)p1

p2
p3 p4

... X X ...

Point

Cells

Find and 

update cell j

Send point 
cell j

p5, p6, p7

p4

p3

p2

p1

CellData

Figure 3: The memory management of PSAO is done fully on the server-side and kept simple to ensure fast look-ups on the client and efficient
network compression. When adding a new point cell, we first hash its integer coordinates and find a free slot in the corresponding hash bucket,
before allocating a new point cell from a global point cell buffer. Afterwards, the newly added point cell and updated hash bucket can be
compressed and sent to the client. When removing point cells, we clear the corresponding hash bucket entry and free the point cell entry on the
server side. We only transmit the updated hash bucket to the client, as that is sufficient for the client to skip the deleted cell during rendering.
Finally, if points within a cell are updated, added, or removed, we update them individually on the server side, and send the full point cell to
the client for simplicity.

each CellData can be looked up by hashing its 3D grid position
to find the correct HashBucket, and iterating over the entries in
the HashBucket to find the matching CellData. Note that in
our default configuration, we discard points that would overflow
entries in either HashBucket or CellData, which does not lead
to noticable artifacts in practice as there are usually a sufficient
number of points in neighboring cells. Each point in CellData
is packed into 32 bits: one bit as an allocation flag, 15 bits for the
position (quantized within the grid cell it resides in), eight bits for
the oct-encoded normal vector, and eight bits for the AO value. In
practice, this packing uses tolerances which are conservative enough
to never observe differences in the resulting image quality; we can
potentially cut the bit rate to 24 or even 16 bits for higher efficiency.

3.3. Server update

At the beginning of each server frame, we first determine coarse
point visibility by skipping every point outside an extended field
of view to ensure parity with related methods [MVD*18]. For each
visible point, we compute updated point positions and normals (in-
cluding any normal maps) based on the current frame’s skinning
information and rigid-body animations. We then compute the up-
dated AO value by tracing rays from each point towards the scene
geometry using cosine hemisphere sampling in the direction of the
normal. We use hardware ray-tracing extensions for ray tracing and
update acceleration structures every server frame. Given the updated
AO, position, and normal, we apply a threshold to the difference vs
the previous frame, and discard all points below the threshold. This
ensures that network bandwidth and memory management perfor-
mance is kept lean. For each point that requires an update, we use
atomics to perform efficient memory management directly on the
GPU. If a point moves to a new CellData, we allocate memory for
it in our HashBucket and CellData buffers. Simultaneously,
each CellData that contains changed points is marked as dirty to
prepare it for network transmission in subsequent passes.

3.4. Networking

After updating all visible points, allocating new CellData, and
marking changed CellData as dirty, the server simultaneously
prepares the data that will be sent to the client as well as updates its
own internal data structures. To this extent, the server first updates
each changed HashBucket and copies it to a persistently mapped
buffer that can subsequently be compressed on the CPU. Afterwards,
each CellData within the changed HashBucket is also updated
with the newly changed positions, values and normals of each point,
and similarly copied to a CPU-mapped buffer. For both the Hash-
Bucket updates and the CellData updates, we perform a fast
compaction step on the server that reorders them such that empty en-
tries are at the end of each list, which is later used on the client side
for faster skipping of empty entries. After preparing both the Hash-
Bucket and CellData updates, the server compresses them on
the CPU using off-the-shelf fast compression algorithms, such as
zstd [Met23] or lz4 [Col23]. After the client receives the data from
the server, it updates its internal representation of the HashBucket
and CellData structures, which it can subsequently use to render
frames decoupled from the server.

3.5. Client rendering

The client is decoupled from the server, and autonomously renders a
simple color pass using the scene geometry. It sends its current cam-
era pose and all scene updates to the server, and receives updated
AO information every time the server updates. The main render pass
of the client is a standard forward or deferred rendering pass. After
the main scene color is determined (using basic materials and light-
ing), the client samples the AO information received from the server.
To reconstruct the final AO value, the client considers the nearest
2×2×2 cell volumes around the shaded world-space fragment po-
sition. The client hashes each dense grid index in this 2×2×2 area
to look up all 8 HashBucket structs. For each HashBucket, we

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

5



Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

Table 1: Image quality results of PSAO vs. SAS and SSAO. All methods run at 60 Hz on both server and client. For SAS, we denote the
per-patch downsampling bias factor B as SAS-B. For PSAO, we denote the number of points per unit area N as PSAO-N. Across the board,
PSAO outperforms both SAS and SSAO in terms of quality at a much lower network bandwidth compared to SAS. For Robot Lab, the large
number of skinned animated characters lead to a higher base network bandwidth compared to the other scenes, but PSAO is still able to
compress the AO points much more effectively than the texture-space packing of SAS, leading to a much higher quality even at lower point
counts. SSAO cannot compete with the ray traced long-distance AO of PSAO and SAS, only achieving better quality than SAS on the almost
fully static Space scene.

Robot Lab Space Sponza

Renderer LPIPS ↓ PSNR ↑ FLIP ↓ Mbit/s LPIPS ↓ PSNR ↑ FLIP ↓ Mbit/s LPIPS ↓ PSNR ↑ FLIP ↓ Mbit/s

SAS-32 .0087 31.86 .0380 44.05 .0090 25.70 .0814 17.00 .0053 32.21 .0444 26.68
SAS-8 .0057 33.61 .0341 50.62 .0082 25.98 .0778 26.29 .0037 33.51 .0410 43.73
PSAO-512 .0047 34.07 .0313 25.69 .0068 26.80 .0666 4.66 .0060 31.42 .0500 7.21
PSAO-1024 .0034 35.20 .0296 53.81 .0056 27.72 .0614 9.30 .0046 32.55 .0468 14.03
PSAO-1536 .0030 35.61 .0289 83.86 .0050 28.16 .0591 13.81 .0042 32.79 .0456 20.77
PSAO-2048 .0031 35.47 .0291 113.31 .0048 28.40 .0578 18.22 .0035 33.61 .0444 27.53
SSAO .0081 31.42 .0497 - .0072 26.96 .0876 - .0141 26.90 .0956 -

perform a simple linear search to find the matching CellData cor-
responding to each of the 8 neighboring cells. For each CellData,
every allocated point is included in a weighted sum to reconstruct
the final AO value. The weight αi is given as:

αi = max
(

0,
r−∥pi −x∥

r

)
, (2)

where r is a configurable interpolation radius that we set to the
average radius computed during the Poisson disk rejection when
generating the initial points; pi is the AO point with index i stored
in CellData, and x is the current fragment position. Note that
all positions and vectors are first transformed into the local space
of their corresponding mesh instance, which reduces point updates
for meshes undergoing simple rigid body transforms. These trans-
formations are done using the last received server transformation
data to ensure validity of the sampled AO data relative to the given
shaded surface fragment when server and client are not running in
lockstep. This way, PSAO does not exhibit screen-space ghosting,
and increased network latency merely leads to AO values being
applied with a delay on object surfaces, thus also decoupling AO
between server and client. We refer to our supplementary video for
a showcase of this behavior under different server frame rates. To
reduce the impact of AO contributions leaking through surfaces, we
additionally apply a heuristic based on the angles of the fragment
normal and AO point vectors: We set the weight

αi = 0, if (npi ·nx)≤ Tn or
(

npi ·
pi −x

∥pi −x∥

)2

≥ Td , (3)

where npi is the normal of the AO point pi; nx is the normal of
the current fragment x; Tn is a threshold for the normal vector
criterion, and Td is a threshold for the distance vector criterion. We
experimentally evaluated Tn = 0.1 and Td = 0.7 to catch common
cases of artifacts due to sampling unsuitable neighboring points,
and use these throughout our evaluation. These heuristics enforce
similarity to the current fragment normal; AO points that lie directly
behind the current fragment are not considered for reconstruction.

The final reconstructed AO value is then given as

AO(x) =

{
1

∑
N
i=0 αi

∑
N
i=0 (αi ·AO(pi)) , if ∑

N
i=0 αi ̸= 0

1, otherwise,
(4)

where N is the total number of points in the surrounding 2×2×2
volume, and AO(pi) is the ray-traced AO value that was computed in
the last server frame. In practice, given that we keep at most 7 points
in each individual cell, we reconstruct the final result by blending
at most 56 points within a 2×2×2 hash cell area surrounding the
current fragment. Note that the reconstruction involves only simple
instructions, and accessing all points of a given cell is efficient as
consecutive points within CellData fit into the same cache line.

4. Evaluation

We implemented PSAO inside NVidia’s Falcor real-time render-
ing framework [KCK*22] and compare it against two baselines:
SAS [MVD*18], which is a modern real-time texture-space stream-
ing approach, and Falcor’s implementation of SSAO. For all base-
lines, we set the AO distance to be 0.6 meters. For PSAO, the main
configuration parameters are the number of points per unit area
(which we vary throughout the evaluation) as well as the server
frame rate. For network compression of PSAO on the server, we use
the zstd [Met23] compression library with a compression level of
15 and a compression strategy of 4.

Shading atlas streaming We configure SAS to limit the atlas size
and the sizes of patches in the atlas in order to reduce the required
network bandwidth to a similar level as PSAO. We only store the AO
value inside the atlas encoded as 24-bit RGB. For the measurement
of network bit rate, we only measure the required network band-
width for transmitting the atlas and ignore auxiliary information,
such as patch updates that are sent via an auxiliary TCP stream. Note
that SAS can benefit from highly optimized MPEG compression and
is thus able to potentially shade more texels compared to the straight-
forward compression utilized by PSAO. To keep the comparison
between PSAO and SAS as fair as possible, we do not preprocess the

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

6



Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

scene geometry for SAS. This results in slightly suboptimal geome-
try for SAS, but experiments on a subset of our test scenes do not
suggest massive improvements for SAS with better scene geometry.
For SAS, we downscale patches by a factors f ∈ [8,16,32], keeping
a minimum resolution of 2× 2 texels for each patch in the atlas.
Furthermore, we vary the server frame rate to evaluate its decoupled
rendering performance compared to PSAO. We configure the video
encoding of SAS to use a standard lossy real-time codec.

Screen-space ambient occlusion For SSAO, we use the default
settings provided in Falcor, and do not vary the server frame rate, as
decoupling the screen-space AO buffer from the client frame rate
would not be possible without major ghosting artifacts.

4.1. Evaluation setup

Test scenes We test on three scenes that use physically-based ma-
terials and have been expanded with dynamic lights and shadows.
Sponza contains additional moving spotlights and physically ani-
mated boulders, which test the limits of update rates for both PSAO
and SAS. Space contains freely available assets from the Unity asset
store, and contains some moving asteroids as well as high-frequency
specular materials and animated lights. However, the animated ob-
jects in Space are positioned relatively far from other objects, mak-
ing it a mostly static test case for rendering AO. Finally, Robot
Lab is a Unity sample scene that contains mostly diffuse materials
and no animated lights, and we extended it by adding 23 skinned
character models from Khronos’ glTF sample repository to evaluate
the effectiveness of all approaches on skinned/deformable models.
We evaluate two camera paths on each scene, each containing 900
frames at 60 Hz for a total duration of 15 s each.

Comparison setup All AO approaches are evaluated by composit-
ing the reconstructed AO on top of a 4× supersampled forward
renderer to ensure that any differences in measured quality are solely
caused by differences in AO. All methods are compared against a
per-pixel ray-traced ambient occlusion reference (RTAO) that is ren-
dered with 512 samples per pixel. To determine the resulting image
quality, we measure PSNR, LPIPS [ZIE*18] and FLIP [ANA*20]
compared to the reference result. Furthermore, for PSAO and SAS,
we measure the network bandwidth required to update the split-
rendering representation. All methods are evaluated at a resolution
of 1920× 1080, running on a workstation containing an NVidia
RTX 4090 GPU with 24 GB of memory and an Intel i9-13900K
CPU with 64 GB memory.

4.2. Image quality

We present averaged quantitative results in Table 1. Overall, across
all test scenes, PSAO achieves the highest quality when measured
in LPIPS, PSNR and FLIP, outperforming SAS and SSAO at only
512 points per unit area in Robot Lab and Space, and outperforming
SAS in Sponza when using 2048 points per unit area. Especially
Robot Lab and Space contain many large triangles, which can lead
to distortion in the texture-space representation of SAS. SSAO is
not competitive in terms of quality in any of our test scenes with
the chosen AO distance. This is likely because SSAO cannot ac-
curately produce long-distance AO from screen space information

alone, leading to massive halo and blur artifacts. Only in the almost
fully static Space scene can SSAO outperform SAS, but still falls
well behind PSAO in even the most sparse configuration. We also
compare PSAO against SAS at lower server frame rates of [5,15,30]
to evaluate the effectiveness of PSAO in even lower bandwidth sce-
narios, as well as how it performs against SAS with higher latencies
between server and client frames. These results are shown in Fig-
ure 5. Averaged across all scenes, PSAO adapts to low server frame
rates just as well as SAS, which was designed for handling low
server frame rates and high latency scenarios. We also present a
selection of rendered frames in Figure 4, comparing PSAO against
SAS, SSAO and the ground truth ray-traced AO. Across all scenes,
PSAO best resembles the ray-traced per-pixel ambient occlusion
(RTAO) reference. In contrast, SSAO struggles to resolve the long-
distance AO correctly, leading to overall brighter outputs and strong
halo artifacts, such as around the boulders in Sponza or around
the skinned characters in Robot Lab. SAS achieves quality on par
with PSAO on meshes with finely subdivided geometry, such as the
flower vase in Sponza, the more detailed machinery in Robot Lab, or
the space ship in Space. However, for coarsely subdivided geometry,
such as the floors in all scenes, or sliver-y non-uniform triangles
such as the tubes in Robot Lab, SAS distorts its AO representation
in texture-space as it can’t perfectly match the required resolution
while staying within the shading budget. These distortions manifest
as either blurred patches of occluded or visible regions (such as
on the floor in Sponza, near the flower pot) or patches that cannot
correctly consider normal maps due to lack of texture-space reso-
lution, such as on the tubes in Robot Lab. To rule out insufficient
subdivision as the cause of quantitative differences for SAS, we also
evaluated Sponza after subdividing the scene such that triangles are
small enough to not run into under-sampling issues. When prepro-
cessed like this, SAS-8 and SAS-32 achieve an average PSNR of
34.00 and 32.69 in Sponza, respectively, with a negligible impact
on average network bandwidth. This shows that geometric prepro-
cessing can help slightly to improve image quality when storing
AO in texture space, although not significantly enough to warrant
increased complexity and preprocessing times.

4.3. Network bandwidth

Comparing the results in Table 1 demonstrates that the split AO
representation of PSAO can be compressed highly efficiently. In
the almost fully static Space scene, PSAO outperforms SAS in
terms of quality at a data rate of only 4.66 MBit/s. In the highly
dynamic Sponza, SAS closes the gap in quality, but is still outper-
formed in terms of required network bandwidth by PSAO—PSAO
requires 27.53 MBit/s vs. SAS at 43.73 MBit/s at the highest quality,
and SAS at the lowest quality is outperformed by PSAO-1024 at
14.03 MBit/s. Finally, in Robot Lab, which contains many animated
skinned characters, we again see that the cheapest configuration of
PSAO achieves better quality than SAS at half the network band-
width. Due to the large number of animated meshes, the network
bandwidth of PSAO is higher than in the other scenes, but PSAO still
achieves much better quality than SAS at equal or lower bandwidth.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

7



Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

Figure 4: Qualitative comparison of rendered frames between PSAO using 1024 points per unit area, ray-traced per-pixel ambient occlusion
(RTAO), SSAO and SAS.

4.4. Client rendering speed

For PSAO, reconstructing the final AO value by performing hash
lookups and computing a weighted sum of all points in the neigh-
borhood takes ≈ 0.4−0.5 ms. This does not significantly change
with larger point counts—PSAO samples a consistent number of
points per frame, keeping rendering performance consistent. For
SAS, reconstructing the final AO value is essentially free—it is
just a bilinear texture lookup. However, SAS additionally requires
decoding of MPEG frames and geometric structures, which can
substantially increase load on lower-power client devices. Finally,
SSAO renders in ≈ 0.3 ms including a blur filter. However, if a depth
and normal buffer are not available already, the additional depth
and normal prepass required by SSAO can lead to substantially in-
creased render times of up to 1 ms, depending on the scene. Overall,

PSAO is competitive with SSAO in terms of real-time rendering
performance on the client side, presenting an attractive solution if
powerful servers are available for a split AO setup.

5. Discussion and conclusion

With PSAO, we showed that combining sparse point-based represen-
tations with modern ray tracing pipelines can provide an attractive
solution for split rendering and streaming of AO. Inspired by recent
work that stores global illumination surfels, we distribute points
evenly across surfaces and compute AO only for these points, rather
than per pixel. By storing points in virtualized grid cells that are
accessed via a hash table, we can easily access neighboring points
of any given fragment during run time. Furthermore, we showed that
AO points can be compressed into 32 bits per point by quantizing

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

8



Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

Server Frame Rate

FL
IP

0.04

0.05

0.06

0.07

0.08

5 15 30 60

SAS-8 SAS-32 PSAO-512 PSAO-1024 PSAO-1536
PSAO-2048 SSAO

Figure 5: At varying server frame rates, PSAO outperforms SAS
when averaged across all scenes. For SAS, we denote the per-patch
downsampling bias factor B as SAS-B. For PSAO, we denote the
number of points per unit area N as PSAO-N. Even at only 5 frames
per second, PSAO can keep up with SAS, which was tuned for low
server frame rate streaming of texture-space shading.

point positions, normals and AO values. As a result, PSAO achieves
rendering speed comparable to screen-space AO approaches, while
achieving better quality than texture-space shading approaches. At
equal image quality, PSAO achieves up to 2−4× lower network bit
rates compared to the MPEG compressed shading of SAS.

It can be noted that while our focus was on split rendering, PSAO
is not limited to split-rendering setups. Figure 5 demonstrates that
ray-traced ambient occlusion can be rendered at an effective frame
rate of 15 or even 5 frames per second while retaining high quality,
and so PSAO could be beneficial even for non-split renderers by
computing the ray tracing updates across meshes in a round-robin
fashion at a reduced frame rate, and using PSAO for AO.

The main limitation of our prototype PSAO implementation is the
static point generation—we currently never add additional points
to the scene and only spawn them once during point generation.
However, our memory management would allow adding points dy-
namically, which can be combined with visibility culling techniques
to spawn and delete points and whole cells dynamically as certain
mesh instances or clusters of points become visible.

Second, PSAO uses a very simple heuristic to determine whether
or not any given point needs to be re-transmitted over the network—
the server needs to ray trace visible points to compute this heuristic.
This is sub-optimal for server performance, but could be addressed
in the future by checking mesh bounding boxes and rejecting points
directly if their distance to moving meshes is larger than the AO
distance that is used for ray tracing. It can be noted that this would
also help server scalability.

Finally, PSAO currently does not implement countermeasures
against leaking of AO during reconstruction. If a fragment samples
a point that would be occluded by a surface between point and
fragment, the resulting AO will be inaccurate. In practice, a suffi-
ciently dense point distribution keeps these artifacts at a minimum.
However, if additional performance budget is available on the client,
PSAO could be extended to store highly compressed coarse depth

buffers along oct-encoded directions [HBHB21], which can then be
used to perform coarse depth tests during point sampling.

In the future, PSAO also could be extended to other view-
independent quantities like diffuse GI, although it would be best
suited for quantities that can be quantized efficiently and sampled
sparsely on object surfaces. Furthermore, PSAO sidesteps many
issues that plague traditional texture-space split rendering pipelines
by decoupling the representation from geometry, removing the need
for geometry preprocessing and enabling gradual level-of-detail by
simply scaling the number of points. To summarize, we believe that
PSAO demonstrates that point-based split rendering can be a useful
alternative for low-frequency quantities like AO, especially when
compared to approaches based on MPEG compressed textures.

References
[ANA*20] ANDERSSON, PONTUS, NILSSON, JIM, AKENINE-MÖLLER,

TOMAS, et al. “FLIP: A Difference Evaluator for Alternating Images”.
Proceedings of the ACM on Computer Graphics and Interactive Tech-
niques 3.2 (2020), 15:1–15:23 7.

[Bak16] BAKER, DAN. Object Space Lighting. Game Developers Confer-
ence. 2016. URL: http://www.cogsci.rpi.edu/~destem/
gamearch / gdc16 / Object - Space - Lighting - Rev - 21 .
pptx 3.

[BJ22] BAKER, DANIEL and JARZYNSKI, MARK. “Generalized Decou-
pled and Object Space Shading System”. Eurographics Symposium on
Rendering. Ed. by GHOSH, ABHIJEET and WEI, LI-YI. The Eurograph-
ics Association, 2022. ISBN: 978-3-03868-187-8. DOI: 10.2312/sr.
20221163 3.

[BS09] BAVOIL, LOUIS and SAINZ, MIGUEL. “Multi-Layer Dual-
Resolution Screen-Space Ambient Occlusion”. SIGGRAPH 2009: Talks.
SIGGRAPH ’09. New Orleans, Louisiana: Association for Computing
Machinery, 2009. ISBN: 9781605588346. DOI: 10.1145/1597990.
1598035. URL: https : / / doi . org / 10 . 1145 / 1597990 .
1598035 2.

[BSD08] BAVOIL, LOUIS, SAINZ, MIGUEL, and DIMITROV, ROUSLAN.
“Image-Space Horizon-Based Ambient Occlusion”. ACM SIGGRAPH
2008 Talks. SIGGRAPH ’08. Los Angeles, California: Association for
Computing Machinery, 2008. ISBN: 9781605583433. DOI: 10.1145/
1401032 . 1401061. URL: https : / / doi . org / 10 . 1145 /
1401032.1401061 2, 3.

[Bun05] BUNNELL, MICHAEL. “Chapter 14 Dynamic Ambient Occlusion
and Indirect Lighting”. Vol. 2. Jan. 2005, 223–233 3.

[Col23] COLLET, YANN. LZ4 - Extremely fast compression. https://
github.com/lz4/lz4. 2023 5.

[Gau20] GAUTRON, PASCAL. “Real-Time Ray-Traced Ambient Occlusion
of Complex Scenes Using Spatial Hashing”. ACM SIGGRAPH 2020
Talks. SIGGRAPH ’20. Virtual Event, USA: Association for Computing
Machinery, 2020. ISBN: 9781450379717. DOI: 10.1145/3388767.
3407375. URL: https : / / doi . org / 10 . 1145 / 3388767 .
3407375 2, 3.

[GKBP05] GAUTRON, PASCAL, KRIVÁNEK, JAROSLAV, BOUATOUCH,
KADI, and PATTANAIK, SUMANTA. “Radiance Cache Splatting: A GPU-
Friendly Global Illumination Algorithm”. Eurographics Symposium on
Rendering (2005). Ed. by BALA, KAVITA and DUTRE, PHILIP. The
Eurographics Association, 2005. ISBN: 3-905673-23-1. DOI: 10.2312/
EGWR/EGSR05/055-064 3.

[HBHB21] HALEN, HENRIK, BRINCK, ANDREAS, HAYWARD, KYLE,
and BEI, XIANGSHUN. “Global Illumination Based on Surfels”. ACM
SIGGRAPH 2021 Courses. 2021 2, 3, 9.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

9

http://www.cogsci.rpi.edu/~destem/gamearch/gdc16/Object-Space-Lighting-Rev-21.pptx
http://www.cogsci.rpi.edu/~destem/gamearch/gdc16/Object-Space-Lighting-Rev-21.pptx
http://www.cogsci.rpi.edu/~destem/gamearch/gdc16/Object-Space-Lighting-Rev-21.pptx
https://doi.org/10.2312/sr.20221163
https://doi.org/10.2312/sr.20221163
https://doi.org/10.1145/1597990.1598035
https://doi.org/10.1145/1597990.1598035
https://doi.org/10.1145/1597990.1598035
https://doi.org/10.1145/1597990.1598035
https://doi.org/10.1145/1401032.1401061
https://doi.org/10.1145/1401032.1401061
https://doi.org/10.1145/1401032.1401061
https://doi.org/10.1145/1401032.1401061
https://github.com/lz4/lz4
https://github.com/lz4/lz4
https://doi.org/10.1145/3388767.3407375
https://doi.org/10.1145/3388767.3407375
https://doi.org/10.1145/3388767.3407375
https://doi.org/10.1145/3388767.3407375
https://doi.org/10.2312/EGWR/EGSR05/055-064
https://doi.org/10.2312/EGWR/EGSR05/055-064


Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

[HSK16] HOLDEN, DANIEL, SAITO, JUN, and KOMURA, TAKU. “Neural
Network Ambient Occlusion”. SIGGRAPH ASIA 2016 Technical Briefs.
SA ’16. Macau: Association for Computing Machinery, 2016. ISBN:
9781450345415. DOI: 10.1145/3005358.3005387. URL: https:
//doi.org/10.1145/3005358.3005387 3.

[HSS19] HLADKY, JOZEF, SEIDEL, HANS-PETER, and STEINBERGER,
MARKUS. “Tessellated Shading Streaming”. Computer Graphics Forum
(Proc. Eurographics Symposium on Rendering 2019) (2019). ISSN: 1467-
8659. DOI: 10.1111/cgf.13780 2, 3.

[HSS21] HLADKY, J., SEIDEL, H.P., and STEINBERGER, M. “Snake-
Binning: Efficient Temporally Coherent Triangle Packing for Shading
Streaming”. Computer Graphics Forum 40.2 (2021), 475–488. DOI:
https://doi.org/10.1111/cgf.142648. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
142648. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.142648 2, 3.

[HSV*22] HLADKY, JOZEF, STENGEL, MICHAEL, VINING, NICHOLAS,
et al. “QuadStream: A Quad-Based Scene Streaming Architecture for
Novel Viewpoint Reconstruction”. ACM Trans. Graph. 41.6 (Nov. 2022).
ISSN: 0730-0301. DOI: 10.1145/3550454.3555524. URL: https:
//doi.org/10.1145/3550454.3555524 3.

[HY16] HILLESLAND, KARL E and YANG, JC. “Texel Shading”. Pro-
ceedings of the 37th Annual Conference of the European Association
for Computer Graphics: Short Papers. EG ’16. Goslar Germany, Ger-
many: Eurographics Association, 2016, 73–76. DOI: 10.2312/egsh.
20161018 2, 3.

[JWPJ16] JIMENEZ, JORGE, WU, XIAN-CHUN, PESCE, ANGELO, and
JARABO, ADRIAN. “Practical Real-Time Strategies for Accurate Indirect
Occlusion”. SIGGRAPH 2016 Courses. 2016 2, 3.

[KCK*22] KALLWEIT, SIMON, CLARBERG, PETRIK, KOLB, CRAIG,
et al. The Falcor Rendering Framework. https : / / github .
com/NVIDIAGameWorks/Falcor. Aug. 2022. URL: https://
github.com/NVIDIAGameWorks/Falcor 6.

[Lan04] LANDIS, HAYDEN. “Production-Ready Global Illumination”.
2004 2.

[LD12] LIKTOR, GÁBOR and DACHSBACHER, CARSTEN. “Decoupled
Deferred Shading for Hardware Rasterization”. Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D
’12. Costa Mesa, California: Association for Computing Machinery,
2012, 143–150. ISBN: 9781450311946. DOI: 10.1145/2159616.
2159640. URL: https : / / doi . org / 10 . 1145 / 2159616 .
2159640 2, 3.

[Met23] META PLATFORMS, INC. Zstandard. https://github.com/
facebook/zstd. 2023 5, 6.

[Mit07] MITTRING, MARTIN. “Finding next Gen: CryEngine 2”. ACM
SIGGRAPH 2007 Courses. SIGGRAPH ’07. San Diego, California: Asso-
ciation for Computing Machinery, 2007, 97–121. ISBN: 9781450318235.
DOI: 10.1145/1281500.1281671. URL: https://doi.org/
10.1145/1281500.1281671 3.

[MML12] MCGUIRE, MORGAN, MARA, MICHAEL, and LUEBKE, DAVID.
“Scalable Ambient Obscurance”. Proceedings of ACM SIGGRAPH / Euro-
graphics High-Performance Graphics 2012 (HPG ’12) (June 2012). High-
Performance Graphics 2012. URL: https://casual-effects.
com/research/McGuire2012SAO/index.html 2.

[MNV*21] MUELLER, JOERG H., NEFF, THOMAS, VOGLREITER, PHILIP,
et al. “Temporally Adaptive Shading Reuse for Real-Time Rendering and
Virtual Reality”. ACM Trans. Graph. 40.2 (Apr. 2021). ISSN: 0730-0301.
DOI: 10.1145/3446790. URL: https://doi.org/10.1145/
3446790 2.

[MVD*18] MUELLER, JOERG H, VOGLREITER, PHILIP, DOKTER, MARK,
et al. “Shading Atlas Streaming”. ACM Transactions on Graphics 37.6
(Nov. 2018). DOI: 10.1145/3272127.3275087 2, 3, 5, 6.

[NAM*17] NALBACH, O., ARABADZHIYSKA, E., MEHTA, D., et al.
“Deep Shading: Convolutional Neural Networks for Screen Space Shad-
ing”. Computer Graphics Forum 36.4 (2017), 65–78. DOI: https :
/ / doi . org / 10 . 1111 / cgf . 13225. eprint: https : / /
onlinelibrary . wiley . com / doi / pdf / 10 . 1111 / cgf .
13225. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.13225 3.

[NMSS22] NEFF, T., MUELLER, J. H., STEINBERGER, M., and SCHMAL-
STIEG, D. “Meshlets and How to Shade Them: A Study on Texture-
Space Shading”. Computer Graphics Forum 41.2 (2022), 277–287. DOI:
https://doi.org/10.1111/cgf.14474. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
14474. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.14474 2, 3.

[NVI16] NVIDIA. “VXAO: Voxel Ambient Occlusion”. 2016 3.

[RLC*11] RAGAN-KELLEY, JONATHAN, LEHTINEN, JAAKKO, CHEN, JI-
AWEN, et al. “Decoupled Sampling for Graphics Pipelines”. ACM Trans.
Graph. 30.3 (May 2011). ISSN: 0730-0301. DOI: 10.1145/1966394.
1966396. URL: https : / / doi . org / 10 . 1145 / 1966394 .
1966396 2, 3.

[SKW*17] SCHIED, CHRISTOPH, KAPLANYAN, ANTON, WYMAN,
CHRIS, et al. “Spatiotemporal Variance-Guided Filtering: Real-Time
Reconstruction for Path-Traced Global Illumination”. Proceedings of
High Performance Graphics. HPG ’17. Los Angeles, California: Asso-
ciation for Computing Machinery, 2017. ISBN: 9781450351010. DOI:
10.1145/3105762.3105770. URL: https://doi.org/10.
1145/3105762.3105770 3.

[SWT*23] STOJANOVIC, ROBERT, WEINRAUCH, ALEXANDER,
TATZGERN, WOLFGANG, et al. “Efficient Rendering of Participating
Media for Multiple Viewpoints”. Computer Graphics Forum 42.8 (2023).
DOI: 10.1111/cgf.14874. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.14874 3.

[SWTS23] STADLBAUER, PASCAL, WEINRAUCH, ALEXANDER,
TATZGERN, WOLFGANG, and STEINBERGER, MARKUS. “Surface Light
Cones: Sharing Direct Illumination for Efficient Multi-viewer Rendering”.
Computer Graphics Forum 42.8 (2023). DOI: 10.1111/cgf.14875.
URL: https://onlinelibrary.wiley.com/doi/abs/10.
1111/cgf.14875 3.

[WLT*23] WEINRAUCH, ALEXANDER, LORBEK, STEPHAN, TATZGERN,
WOLFGANG, et al. “Clouds in the Cloud: Efficient Cloud-Based Ren-
dering of Real-Time Volumetric Clouds”. Computer Graphics Forum
42.8 (2023). DOI: 10 . 1111 / cgf . 14876. URL: https : / /
onlinelibrary . wiley . com / doi / abs / 10 . 1111 / cgf .
14876 3.

[WRC88] WARD, GREGORY J., RUBINSTEIN, FRANCIS M., and CLEAR,
ROBERT D. “A Ray Tracing Solution for Diffuse Interreflection”. Pro-
ceedings of the 15th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’88. New York, NY, USA: Associ-
ation for Computing Machinery, 1988, 85–92. ISBN: 0897912756. DOI:
10 . 1145 / 54852 . 378490. URL: https : / / doi . org / 10 .
1145/54852.378490 3.

[WTS*23] WEINRAUCH, ALEXANDER, TATZGERN, WOLFGANG, STADL-
BAUER, PASCAL, et al. “Effect-based Multi-viewer Caching for Cloud-
native Rendering”. ACM Trans. Graph. 42.4 (Jan. 2023) 3.

[WZZ*23] WANG, JIAYI, ZHOU, FAN, ZHOU, XIANG, et al. “AO-Net:
Efficient Neural Network for Ambient Occlusion”. Graphics Interface
2023. 2023. URL: https://openreview.net/forum?id=b-
3cQ_h4kqz 3.

[YLS20] YANG, LEI, LIU, SHIQIU, and SALVI, MARCO. “A Survey of
Temporal Antialiasing Techniques”. Computer Graphics Forum 39.2
(2020), 607–621. DOI: https://doi.org/10.1111/cgf.14018.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1111/cgf.14018. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/cgf.14018 3.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

10

https://doi.org/10.1145/3005358.3005387
https://doi.org/10.1145/3005358.3005387
https://doi.org/10.1145/3005358.3005387
https://doi.org/10.1111/cgf.13780
https://doi.org/https://doi.org/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142648
https://doi.org/10.1145/3550454.3555524
https://doi.org/10.1145/3550454.3555524
https://doi.org/10.1145/3550454.3555524
https://doi.org/10.2312/egsh.20161018
https://doi.org/10.2312/egsh.20161018
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/2159616.2159640
https://doi.org/10.1145/2159616.2159640
https://doi.org/10.1145/2159616.2159640
https://doi.org/10.1145/2159616.2159640
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://doi.org/10.1145/1281500.1281671
https://doi.org/10.1145/1281500.1281671
https://doi.org/10.1145/1281500.1281671
https://casual-effects.com/research/McGuire2012SAO/index.html
https://casual-effects.com/research/McGuire2012SAO/index.html
https://doi.org/10.1145/3446790
https://doi.org/10.1145/3446790
https://doi.org/10.1145/3446790
https://doi.org/10.1145/3272127.3275087
https://doi.org/https://doi.org/10.1111/cgf.13225
https://doi.org/https://doi.org/10.1111/cgf.13225
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13225
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13225
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13225
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13225
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13225
https://doi.org/https://doi.org/10.1111/cgf.14474
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14474
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14474
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14474
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14474
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14474
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1111/cgf.14874
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14874
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14874
https://doi.org/10.1111/cgf.14875
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14875
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14875
https://doi.org/10.1111/cgf.14876
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14876
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14876
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14876
https://doi.org/10.1145/54852.378490
https://doi.org/10.1145/54852.378490
https://doi.org/10.1145/54852.378490
https://openreview.net/forum?id=b-3cQ_h4kqz
https://openreview.net/forum?id=b-3cQ_h4kqz
https://doi.org/https://doi.org/10.1111/cgf.14018
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14018
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14018
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14018
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14018


Neff et al. / PSAO: Point-Based Split Rendering for Ambient Occlusion

[Yuk15] YUKSEL, CEM. “Sample Elimination for Generating Poisson Disk
Sample Sets”. Computer Graphics Forum (Proceedings of EUROGRAPH-
ICS 2015) 34.2 (2015), 25–32. ISSN: 0167-7055. DOI: 10.1111/cgf.
12538. URL: http://dx.doi.org/10.1111/cgf.12538 4.

[ZIE*18] ZHANG, RICHARD, ISOLA, PHILLIP, EFROS, ALEXEI A, et
al. “The Unreasonable Effectiveness of Deep Features as a Perceptual
Metric”. CVPR. 2018 7.

[ZIK98] ZHUKOV, SERGEY, IONES, ANDREI, and KRONIN, GRIGORIJ.
“An Ambient Light Illumination Model”. Rendering Techniques. 1998 2.

[ZXL*20] ZHANG, DONGJIU, XIAN, CHUHUA, LUO, GUOLIANG, et al.
“DeepAO: Efficient Screen Space Ambient Occlusion Generation via
Deep Network”. IEEE Access 8 (2020), 64434–64441 3.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

11

https://doi.org/10.1111/cgf.12538
https://doi.org/10.1111/cgf.12538
http://dx.doi.org/10.1111/cgf.12538



