
High-Performance Graphics (2019) Short Paper
T. Foley and M. Steinberger (Editors)

Patch Textures: Hardware Implementation of Mesh Colors

I. Mallett1 and L. Seiler2 and C. Yuksel1

1University of Utah
2Facebook Reality Labs

Abstract
Mesh colors provide an effective alternative to standard texture mapping. They significantly simplify the asset production
pipeline by removing the need for defining a mapping and eliminate rendering artifacts due to seams. This paper addresses
the problem that using mesh colors for real-time rendering has not been practical, due to the absence of hardware support.
We show that it is possible to provide full hardware texture filtering support for mesh colors with minimal changes to existing
GPUs by introducing a hardware-friendly representation for mesh colors that we call patch textures. We discuss the hardware
modifications needed for storing and filtering patch textures.

1. Introduction

Texture mapping is the standard method of adding data to a 3D
object at a resolution higher than the underlying geometric detail.
Unfortunately, texture mapping suffers from the problem that it re-
quires a mapping from object space to texture space. For most ob-
ject types, this mapping distorts the model’s geometry and has dis-
continuities where the surface has been “cut” into separate pieces
so-as to lie flat within texture space, introducing seams. Packing
these separate pieces into the texture space can also leave gaps of
wasted space. These facts pose a challenge to technical artists, who
must expend inordinate amounts of time mapping 3D objects. They
must also deal with the limitations of texture mapping. For exam-
ple, it is very difficult to increase texture resolution in a particular
spatial region of the model after the texture has been painted.

Furthermore, these problems can also cause rendering artifacts
along seams, where the filtering operations on either side of an
edge produce inconsistent results. Methods that “hide” the seams
by strategically placing them in texture space introduce additional
difficulties for content creation, and struggle with mipmapping and
anisotropic filtering. The task of resolving these rendering prob-
lems is therefore also left to the artist authoring the texture, and it
often leads to overpainting by introducing additional gaps in pack-
ing and thereby wasting more memory. More-importantly, such
manual fixes cannot completely eliminate filtering inconsistencies,
and artifacts still show up in higher mipmap levels and lead to
cracks on surfaces with displacement mapping.

One approach to resolving these issues has been to redefine the
texture data to live directly on the mesh geometry itself. This is the
approach taken by two alternatives to texture mapping: ptex [BL08]
and mesh colors [YKH10]. Although these methods have been ex-
tensively used in offline production rendering, neither technique
has been adequately adapted for real-time rendering. This is pri-

marily because there is no hardware support for these methods and
software texture filtering implementations can be an order of mag-
nitude slower. Recently, mesh color textures [Yuk17] were intro-
duced for utilizing the existing GPU hardware for partially han-
dling the filtering operations of mesh colors. This is achieved by
converting mesh color data into a standard 2D texture. Yet, this
conversion is not always exact and it may require solving a com-
plex optimization problem for generating coarser mipmap levels.
Mesh color textures also introduce a substantial amount of shader
complexity and they cannot handle anisotropic filtering.

In this paper, we show that providing full hardware support for
mesh colors can be achieved by relatively minor modifications to
existing texture storage and filtering operations of current GPUs.
We introduce patch textures, a hardware-friendly representation
of mesh colors, and describe the details of how patch textures
can be stored and used with various filtering operations, including
mipmapping and anisotropic filtering. We discuss the similarities
and differences of alternative hardware implementations of patch
textures, as-compared to standard 2D textures.

2. Background

The problems of texture mapping are infamous in the com-
puter graphics community. Defining a desirable mapping is time-
consuming and often involves manual effort in practice. The filter-
ing inconsistencies caused by seams reveal their locations on the
rendered images and cause cracks on surfaces with displacement
mapping. Changes to the model topology or geometry can have
global effects and require completely regenerating the mapping and
the corresponding textures. Therefore, texture mapping operations
not only take a substantial amount of artist time, which dominates
the cost of AAA video game production, but also limit the use of
advanced GPU features like tessellation [TLS15].

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

DOI: 10.2312/hpg.20191194 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-2505-3649
https://orcid.org/0000-0002-1642-1016
https://orcid.org/0000-0002-0122-4159
https://doi.org/10.2312/hpg.20191194


I. Mallett & L. Seiler & C. Yuksel / Patch Textures: Hardware Implementation of Mesh Colors

Researchers have developed various methods that either im-
prove the mapping process or provide an alternative to texture
mapping [YLT19]. Methods that try to hide the seams [RNLL10,
LFJG17, PCK04] complicate the texture-authoring process even
further and do not provide a solution to anisotropic filtering. Sparse
volumetric representations [BD02, CB04, LD07, LH06] help the
texture authoring process, but they introduce restrictions on the
model geometry, suffer from additional performance cost, and can-
not handle anisotropic filtering. Volume-based parameterizations
[THCM04, Tar16] can improve the process of defining a mapping,
but do not provide solutions for other problems of texture mapping.

Mesh colors [YKH10] and ptex [BL08] provide alternative rep-
resentations for defining textures by relying on the model topology
to define an implicit mapping from the model space to the texture
data. Thus, they significantly improve the texture-authoring process
by eliminating the issues caused by having an explicit mapping.
Operations like model editing after defining the texture data and
local resolution readjustment are trivially supported by these meth-
ods. They also solve the problem of filtering inconsistencies by ei-
ther directly filtering across edges during rendering (as in ptex) or
storing texture data directly along edges (as in mesh colors). There-
fore, it is no surprise that these methods have increasing popular-
ity for offline rendering. Mesh colors and ptex are closely related,
since they can be considered as topological duals of each other in-
terms of the locations of texture samples implicitly placed on the
model surface. However, the minor theoretical difference between
them leads to important practical distinctions. Ptex must store the
model topology information for filtering across edges. As a result,
hiding the seams along edges can be challenging if the faces on ei-
ther side of an edge have different resolutions. Mesh colors avoid
these problems by storing colors directly along the edges (i.e. edge
colors) and at the vertices (i.e. vertex colors), in addition to storing
colors on faces (i.e. face colors). The common drawback of mesh
colors and ptex is that they cannot take advantage of the available
texture filtering hardware on the GPU. Therefore, texture filtering
must be implemented in software, which can be up to an order of
magnitude slower than hardware-accelerated texture filtering.

Recently, mesh color textures [Yuk17] were introduced for par-
tially using the existing texture-filtering hardware to handle bilin-
ear filtering operations of mesh colors. This is achieved by con-
verting the mesh color data into a 2D texture. Unfortunately, this
conversion is not lossless, especially when the texture values are
clamped (e.g. between 0 and 255 with 8-bit color channels), and
it involves solving an optimization problem for generating higher
mipmap levels. Moreover, because of the non-power-of-two resolu-
tion progression of the mipmap chain, the individual mipmap levels
must be stored as separate textures. Consequently, more textures are
used, which decreases locality and requires more switching in the
shader or API. Texture coordinates on different mipmap levels are
computed from a compact 4D coordinate representation and trilin-
ear filtering, now crossing between textures, must be implemented
in software-emulation paths, both of which substantially increase
the shader complexity. Anisotropic filtering is essentially impossi-
ble to emulate without seam artifacts: the GPU-computed sample
locations can be completely nonsensical, since they are computed
under the presumption that the texture is an ordinary 2D texture.
Though the same problems with anisotropic filtering also exist with

standard 2D textures along seams, they appear along every edge
with mesh color textures. Nonetheless, mesh color textures offer the
texture-authoring advantages of mesh colors with minimal perfor-
mance overhead for real-time rendering, as compared to standard
2D textures. The remaining problems regarding shader complexity,
hardware-accelerated trilinear filtering, and anisotropic filtering re-
quire changes to the GPU hardware. The patch texture representa-
tion we introduce is designed to address these remaining problems.

3. Patch Textures

Our patch texture representation is trivial to generate from mesh
colors. Our representation stores all texture data associated with
each face separately. This simplifies the implementation of hard-
ware texture-filtering operations and minimizes the changes to cur-
rent GPU hardware needed to support patch textures. Thus, edge
colors are stored twice (i.e. one for each face that meets at an edge)
and all vertex colors are stored as many times as the number of
faces using them. This data duplication has a relatively small im-
pact, since the primary memory consumption for high-resolution
mesh colors is due to the face colors, which are not duplicated.

It is typical to define mesh colors on a relatively low-resolution
mesh, referred to as the canvas mesh. Arbitrary tessellations of this
canvas mesh, such as ones generated via typical subdivision opera-
tions, can directly use the mesh color data of the canvas mesh. The
GPU rendering pipeline facilitates this approach through the use of
tessellation shaders. Thus, following the terminology of tessellation
shaders, we refer to the canvas mesh faces as patches.

As with mesh colors, patch textures require that the model con-
sist of only quadrilaterals and triangles. We handle these two types
of primitives using two different texture types: quad patch textures
and triangle patch textures, which involve different storage meth-
ods and filtering operations. A given set of patch textures is associ-
ated with a particular model and its topology, so it can only be used
by this model or its arbitrary tessellations (whether precomputed or
generated on the GPU at render time via tessellation shaders).

Mesh colors allow specifying the resolution of each patch in-
dependently. Yet, it is important for filtering consistency to match
texture sample locations along an edge used by two patches, even
when they have different resolutions. A simple way to achieve this
is to require that all patch resolutions be powers of two. Then, the
texels of a lower-resolution patch texture fall exactly onto texel
positions of the higher-resolution patch texture. The texture sam-
ples shared by the two patches can be specified independently, and
the additional texture samples used by the higher-resolution patch
are set as linear interpolations of the shared ones. This way, both
patches agree on the texture values along the shared edge. There-
fore, we assume this power-of-two restriction in our discussion of
patch textures, though arbitrary resolutions can be easily supported,
similar to standard 2D textures.

Our patch texture representation is designed to be hardware-
friendly. Nevertheless, we expect the exact hardware implementa-
tion of patch textures would be vendor-specific and may vary in dif-
ferent generations of future hardware. Therefore, in the following
subsections, we discuss different alternatives for storage options
and filtering operations.

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

40



I. Mallett & L. Seiler & C. Yuksel / Patch Textures: Hardware Implementation of Mesh Colors

0 1 2 3 4
0

1

2

3

4
0 1/4 2/4 3/4 1

0

1/4

2/4

3/4

1

(a) Standard 2D Texture

0 1 2 3 4
0

1

2

3

4
0 1/4 2/4 3/4 1

0

1/4

2/4

3/4

1

(b) Quad Patch Texture

Figure 1: Placement of texels in (u,v) and (s, t) coordinates for a
4×4 texture with (a) standard 2D textures and (b) patch textures.

3.1. Quad Patch Texture Storage

A standard 2D texture uses an array of discrete texel values to rep-
resent a continuous function on a space defined using normalized
coordinates 〈s, t〉 such that s, t ∈ [0,1). These are multiplied by a
width w and height h, the texture image resolution, to produce co-
ordinates 〈u,v〉, where u ∈ [0,w) and v ∈ [0,h). In uv-space, texels
are placed at half-integer coordinate positions. That is, texel 〈i, j〉
within the array is at position 〈i+0.5, j+0.5〉 in uv-space, as illus-
trated in Figure 1a. Bilinear texture filtering uses the four nearest
texels to a sample position 〈u,v〉 (see Section 3.4). When u is within
half a texel of 0 or w, or v is within half a texel of 0 or h, this requires
accessing texel locations that are outside the w× h array of texels.
Graphics APIs handle this by defining wrap modes that extend the
texel array, e.g. by using a constant texel value outside the array,
extending the edge texel values, or by replicating or mirroring the
texel array. None of these are satisfactory for mapping textures onto
an arbitrary model.

Patch textures solve this problem by placing texels at integer po-
sitions on the 〈u,v〉 coordinate grid. This is illustrated in Figure 1b,
which shows a patch texture with w = 4 and h = 4 in uv-space that
is specified using (w+ 1)× (h+ 1) texels. As a result, sampling
within the texture st-space never requires using texel values that are
outside the grid. Wrap modes for patch textures may be defined to
allow accesses outside st-space, but this is not required for any area
within the patch texture. Figure 2 compares mirroring for a stan-
dard 2D texture and a quad patch texture. Notice that quad patch
textures solve the texel repetition problem of standard 2D textures
with the mirror wrap mode.

Quad patch textures are stored in the same way as standard
2D textures. Since we restrict texture resolutions to powers of
two, a quad patch texture may have resolution w = 2i and h = 2 j ,
where i and j are non-negative integers, requiring a storage of
(2i +1)× (2 j +1) texels. All modern GPUs fully support textures
with non-power-of-two sizes, so all texture formats and compres-
sion modes used with standard textures may be used with patch
textures. Render-to-texture would render the overlapping edge tex-
els in both of the patch textures that meet at an edge.

3.2. Triangle Patch Texture Storage

In a simplistic implementation, triangle patch textures can be stored
in a rectangular array with roughly half the texture area unused.
Quad-dominant meshes are common (especially with tessellation),
so the overall storage overhead can be negligible in practice.

(a) Texels

(b) Standard 2D Texture (c) Quad Patch Texture

Figure 2: Reflection wrap mode applied to (a) a set of texels, show-
ing that (b) texels along the borders appear on both sides of the
reflection lines with standard 2D textures, and (c) patch textures
avoid this problem, such that the border texels appear once.

slice

(a) (b)

slice

(c) (d)
Figure 3: Alternative storage options for triangles: (a) any triangu-
lar patch texture can be stored in a quadrilateral array with roughly
half of the texels wasted, or (b) it can be sliced and repacked to
avoid wasted storage. This is possible even when the triangular
patch texture has unequal resolutions along its sides (c,d). The open
circles represent texels that are outside the triangle but that must
be defined for barycentric interpolation.

Alternately, any triangular patch texture can be sliced and the top
piece rotated around to fit into the wasted space, as shown in Fig-
ure 3. Consider a triangular mesh texture with both major edges 8
units long (9 texels). When packed simplistically, the data occupies
the same space as a 9×9 standard texture (Figure 3a). However, the
top four rows of this triangle can instead be cut off and rotated to be
stored beside the bottom five rows (Figure 3b). The result is that the
triangular patch texture can be stored in a 9× 5 rectangle with no
wasted space. Filtering across the slice may be accomplished in a
manner similar to how filtering is performed across opposite edges
of a wrapped texture. Triangular mesh textures need not have the
same size for the two major edges. Consider a triangular patch tex-
ture with a horizontal edge length of only 4 units (5 texels), as in
Figure 3c. In this case, a 5×9 texel array compacts to a 6×5 array
(Figure 3d). Note that the cut must be made through the longer of
the two main edges so that the extra texels outside the triangle do
not overlap when the upper and lower halves are packed.

3.3. Mipmap Storage

A mipmap chain stores successively smaller versions of the base
texture map to allow filtering at varying resolutions. Given a stan-
dard 2D texture with width w0 and height h0, the resolution w`×h`
of mipmap level ` is computed by a power-of-two reduction from
the base level (i.e. `= 0), using

w` = max(bw`−1/2c,1) (1)

h` = max(bh`−1/2c,1) (2)

` ∈ {1,2, · · · ,dlog2(max(w0,h0))e} .

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

41



I. Mallett & L. Seiler & C. Yuksel / Patch Textures: Hardware Implementation of Mesh Colors

64×64

32×32

16×16
...

(a) Standard 2D texture

65×65

33×33

17×17

...

(b) Patch texture

Figure 4: A pictorial comparison of mipchains for a 64× 64-unit
texture size. Padding is required to align data to GPU texture tiles.

For a standard 2D texture, the size of the texel array at mipmap
level ` is w`× h`. Patch textures use the same mip sizes, but the
texel array size is one larger than the width and height, so the size
of a patch texel array at mipmap level ` is (w`+1)× (h`+1).

In-general, GPUs store texels in n×m tiles (where n and m are
small powers of two) in-order to reduce memory bandwidth for 2D
accesses. For example, if n = m = 4 and the texel size is 32 bits,
then a single tile stores 64 bytes, which is a typical cache line size.
As a result, textures are aligned and padded to store a multiple of
the tile width and height. For a standard 2D texture with a power-
of-two resolution, each mipmap level except for the few smallest
has a width and height that are multiples of the tile size.

When the size of the texel array does not evenly divide the GPU
tile size, the affected data must be padded out until it does. This
increases the texture storage requirements, with larger textures ex-
periencing proportionally less wastage. Figure 4 illustrates parts of
the mipmap chain for a 64×64 standard 2D texture and the corre-
sponding patch texture, which pads out each mipmap level to a tile
boundary in u and v. Note that the percentage of wasted space due
to tiling reduces with increasing resolution.

The lowest-resolution patch textures are 1× 1 in size but store
2×2 texels, each of which corresponds to the color at a patch ver-
tex. With mesh colors, it is possible to generate additional mipmap
levels using larger precomputed filter sizes that take adjacent ge-
ometry into account, in-order to further-reduce aliasing. Thus, the
mipmap chain of a patch texture can have multiple 2× 2 texel
mipmap levels at the end of the chain, each of which filters a larger,
multi-patch, region of the model.

3.4. Bilinear and Barycentric Filtering

Quad patch textures use bilinear filtering similar to that of stan-
dard 2D textures. Given a sample position 〈u,v〉, assuming that
〈u,v〉 is not close to the borders of the texture, bilinear filtering
on standard 2D textures uses the 2× 2 texel region with array in-
dices 〈i, j〉, 〈i+1, j〉, 〈i, j+1〉, and 〈i+1, j+1〉, where the integer
indices are defined as i = bu−0.5c and j = bv−0.5c. The bilinear
filter weights are determined using fractional coordinates 〈u f ,v f 〉,
where u f = u−0.5− i and v f = v−0.5− j.

For patch textures, the texels are on integral 〈u,v〉 positions,
rather than half-integral positions as they are for standard tex-
tures. As a result, the four texels accessed are selected using in-
teger indices defined as i = buc and j = bvc. The bilinear filter
weights are determined using fractional coordinates 〈u f ,v f 〉, such
that u f = u− i and v f = v− j.

(1−u f )(1−v f )
u f (1−v f )

(1−u f )v f u f v f

c0 c1

c2 c3

c

(a) Weighted sum of four values

1−u f u f

1−u f u f

1−v f

v f

c0 c1

c2 c3

c

c4

c5

(b) Three linear interpolations

Figure 5: Bilinear filtering alternatives used in current GPUs.

1−u f −v f

u f

v f 0

c0 c1

c2 c3

c

0 1−v f

1−u f u f +v f −1

c0 c1

c2 c3

c

Figure 6: Barycentric filtering using weighted sum of texels.

However the texels and weights are determined, bilinear filter-
ing can be computed using either a weighted sum of four texel
values (Figure 5a) or three linear interpolations (Figure 5b). The
first method allows more parallelism and is simpler when filtering
floating-point texel values. The second method uses one fewer mul-
tiplier by rewriting the u f c1 +(1−u f )c0 linear filtering equation
as c0 +u f (c1− c0). However, floating-point texel values would re-
quire normalizing in each linear interpolation stage.

For triangular patches, the mesh colors method uses barycentric
filtering on the three closest texels. Nonetheless, bilinear filtering
can be used to approximate a barycentric lookup. Indeed, mesh
color textures [Yuk17] use bilinear filtering for triangles, which
requires storing additional texels near diagonally placed triangle
edges, and ensuring seamless filtering along such edges may re-
quire modifying the given mesh color values when the texel values
are clamped. However, it can be used as a fallback option for back-
wards compatibility in a patch textures implementation.

A better solution, at minimal hardware cost, is to use the bilinear
filter logic to blend three texel values using the triangle barycentric
coordinates. We present three alternatives for using bilinear filter-
ing logic to perform barycentric filtering. In each, the first step is
to determine whether barycentric filtering uses the lower-left three
texels of the 2×2 texel region or uses the upper-right three texels.
This is determined from 〈u f ,v f 〉. If u f + v f < 1, we use the lower-
left texels c0, c1, and c2. If u f + v f > 1, we use the upper-right
texels c1, c2, c3. If u f +v f = 1, either set of texels may be used and
the equations linearly interpolate c1 and c2.

Figure 6 illustrates the weighted-sum technique for barycentric
interpolation. Note that the weights are different from the quad
patch case. The selection of weights depends on which triangle
the sample position falls into. Figure 7 illustrates two ways to use
three linear interpolations to perform barycentric interpolation. A
few multiplexors are used to change the weights and texture values
input to the linear interpolation stages, but the multiply/add logic
in each linear interpolator remains the same.

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

42



I. Mallett & L. Seiler & C. Yuksel / Patch Textures: Hardware Implementation of Mesh Colors

1−u f u f

1−v f

v f

c5=c2+u f (c1−c0)

c0 c1

c2 c3

c

c4

c5
u f 1−u f

1−v f

v f

c4=c1+(1−u f )(c2−c3)

c0 c1

c2 c3

c

c4

c5

1−u f u f

c 5
=

0+
v f
(c

2−
c 0
)

c=c5+1(c4−0)

c0 c1

c2 c3

c

c4

c5

1−u f u f

c 5
=

0+
(1
−

v f
)(

c 1
−

c 3
)

c=c5+1(c4−0)

c0 c1

c2 c3

c

c4

c5

Figure 7: Barycentric filtering using three linear interpolations us-
ing (top) a similar construction to bilinear filtering and (bottom) an
alternative that eliminates the need for the third multiplication.

For 2D textures, trilinear filtering is implemented by linearly in-
terpolating the results of filtering two faces in the mipmap chain,
regardless of what kind of filtering is performed on those individual
faces. Therefore, trilinear filtering requires no hardware changes in
order to be used with patch textures.

3.5. Anisotropic Filtering

One of the advantages of our patch texture representation is that it
makes it relatively easy to support anisotropic filtering. Anisotropic
filtering is typically implemented by using a weighted sum of mul-
tiple bilinear filtering operations along a line in texture space from
an appropriate mipmap level. This approach can be used for han-
dling patch textures as well. However, care must be taken about
sampling the texture coordinates outside of the patch.

One approach is to simply not take a sample if its location is
outside the patch. In-effect, this clips the part of the anisotropic
filter kernel that falls outside the patch. Note that, if the filter ker-
nel is clipped by one patch edge, since its center is guaranteed to
be inside the patch, the larger portion of the kernel remains. This
clipping obviously changes the filter kernel shape, but this is un-
likely to introduce visible visual artifacts: the net effect is simply to
limit the level of anisotropy, and the final result is computed using
valid texture samples. The part of the kernel that is clipped is re-
sponsible for approximating the texture values on the neighboring
patch. However, the screen-space derivatives used for computing
the kernel can be different for this other patch. Therefore this clip-
ping ensures that only the part of the kernel that is guaranteed to be
properly computed is considered. Indeed, this is the solution imple-
mented by mesh colors with software filtering [YKH10].

If the application desires to include the clipped part of the filter
kernel, this can be achieved by multi-sample anti-aliasing (MSAA)
with centroid sampling. In this case, each patch that covers at least

one of the multi-sample locations in a pixel is responsible for com-
puting its part of the pixel footprint in texture space. The combined
result forms the approximation of the filtered texture value.

The hardware implementation of anisotropic filter kernel clip-
ping can be handled in two ways. The first detects and discards
samples that are outside of the patch and assigns weights only to the
samples that are inside the patch. This requires testing the sample
locations prior to bilinear/barycentric filtering. The second method
assigns weights as if all samples were valid, then steps through the
samples, ignoring the ones that are outside the patch. This must be
followed by normalizing the result by the accumulated weights of
the samples that are inside the patch.

Note that the problem of sampling invalid texture locations is
not specific to our patch textures. Standard 2D texture mapping
also suffers from similar issues along seams, with the additional
problem of needing to bilinearly filter against samples outside the
patch. Indeed, this is arguably a more-serious problem along the
seams of standard 2D textures, because the texture samples that fall
outside of a patch can read arbitrary data from the texture, depend-
ing on how the mapping is defined. A similar solution that clips
the filter kernel has been applied for standard texture mapping as
well [Tot13], but it only works for certain mappings and must be
handled in software. The separation of patch textures provides a
convenient way to handle filter kernel clipping in hardware, since
filters are always clipped only at patch edges.

An alternative solution to clipping for anisotropic filtering is to
use the hardware-supported edge-clamp mode to in-effect move
samples outside of the patch to the closest position along the
edges of the patch. This alternative would approximate the result
of anisotropic filtering by using the closest-available texture data
from the patch. While the result can deviate from the intended
anisotropic filtering computation, this is unlikely to produce visi-
ble artifacts, since all samples are taken from a nearby valid loca-
tion. The advantage of this approach is that it requires no hardware
change and has no performance impact.

3.6. Accessing Patch Textures in Shaders

Patch textures could be implemented as a collection of bindless
textures. Following the existing graphics API for bindless textures,
first, bindless texture handles must be generated for each patch tex-
ture. These handles can be flexible-enough to include all necessary
information for accessing the texture data in shaders without any
additional indirection cost. Thus, all that is needed for accessing
a patch texture is its bindless texture handle, along with the patch
coordinates to sample. Treating a mesh texture as a collection of
bindless textures eliminates the need for any hardware modifica-
tion or software API changes for accessing them.

From the software programmer’s perspective, the only additional
complexity of using a set of bindless textures, as-opposed to using
a single standard 2D texture, is sending their handles to the shader.
When using a small number of bindless textures, their handles can
be specified as uniform shader variables. Under the typical use-case
of patch textures, however, a large number of bindless textures may
need to be created. These handles can be sent by either using shader
storage buffer objects or per-vertex attributes.

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

43



I. Mallett & L. Seiler & C. Yuksel / Patch Textures: Hardware Implementation of Mesh Colors

LIZARD
(1751 patches)

NYRA
(15124
patches)

ALIEN
(5488 patches) HEAD

(9094 patches)

Figure 8: Patch textures rendered with GPU software emulation.

Table 1: Texel footprint with mipmap levels.
Mesh Patch Textures

Model Colors 1×1 Tiles 2×2 Tiles 4×4 Tiles
Texels Texels (%) Texels (%) Texels (%)

LIZARD 8.46 M 8.68 M (103%) 8.91 M (105%) 9.37 M (111%)
NYRA 31.13 M 32.27 M (104%) 33.44 M (107%) 35.88 M (115%)
ALIEN 11.64 M 11.88 M (102%) 12.12 M (104%) 12.60 M (108%)
HEAD 34.08 M 35.23 M (103%) 36.40 M (107%) 38.79 M (114%)

4. Experiments and Evaluation

We evaluate the additional memory footprint of our patch texture
representation using four example models shown in Figure 8, ren-
dered with our GPU software emulation of patch textures. The re-
sults are presented in Table 1 in comparison to the size of the orig-
inal mesh color data. Using 1× 1 tiles, the only additional storage
cost comes from duplicated edge and vertex colors, which is be-
tween 2% and 4% for these examples. This is mainly due to the fact
that these are relatively low-resolution models with high-resolution
mesh colors. Using 2× 2 and 4× 4 tiles increases this overhead
up to 8% to 15% for these models. Considering that standard 2D
textures also incur a similar or even more storage overhead due to
packing and padding around seams, we consider the extra storage
cost acceptable. Moreover, models optimized for mesh colors (with
lower-resolution canvas meshes) can further reduce the overhead.

We also simulate anisotropic filtering modes with our implemen-
tation using only current GPUs’ hardware in Figure 9. Against a
ground truth computed with supersampling, we show the effect of
two different ways to handle edges: clamping sample coordinates
to remain within the center sample’s patch and clipping the filter to
avoid sample values outside the patch. As can be seen in this fig-
ure, all approaches produce good (and indeed, almost indistinguish-
able) results. Multisampling can be added on top of each strategy,
as-well. The main beneficiary of multisampling is filter clipping,
since the sub-pixel samples “fill in” the clipped filter value along
border pixels [YKH10, Tot13].

5. Conclusion

We have introduced patch textures, a hardware-friendly representa-
tion of mesh colors. Patch textures allow mesh colors to be imple-
mented with only minimal changes to existing GPUs, and thereby
resolve the main difficulty of using mesh colors in interactive and
real-time rendering applications.

(a) Ground Truth

(b) Edges

(c) Clamped

(d) Clamped MSAA

(e) Clipped

(f) Clipped MSAA

Figure 9: Anisotropic filtering alternatives for the LIZARD model.
Out-of-patch samples can be (c) clamped to patch edges, or (e) the
filter itself can be clipped. (d, f) Multisampling improves results.

Acknowledgments

We thank Christer Sveen for the alien character, Murat Afşar for the
lizard model, Lee Perry-Smith for the head model, and Paul Tosca
for the Nyra model.

References
[BD02] BENSON D., DAVIS J.: Octree textures. ACM Transactions on

Graphics 21, 3 (2002), 785–790. 2

[BL08] BURLEY B., LACEWELL D.: Ptex: Per-face texture mapping for
production rendering. CG Forum 27, 4 (2008), 1155–1164. 1, 2

[CB04] CHRISTENSEN P. H., BATALI D.: An irradiance atlas for global
illumination in complex production scenes. In Proc. of Rendering Tech-
niques (2004), EGSR’04, pp. 133–141. 2

[LD07] LEFEBVRE S., DACHSBACHER C.: Tiletrees. In Proc. of the
Symposium on Interactive 3D Graphics and Games (2007), pp. 25–31. 2

[LFJG17] LIU S., FERGUSON Z., JACOBSON A., GINGOLD Y.: Seam-
less: Seam erasure and seam-aware decoupling of shape from mesh res-
olution. ACM Trans. Graph. 36, 6 (2017), 216:1–216:15. 2

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. In ACM Trans
on Graphics (2006), vol. 25, pp. 579–588. 2

[PCK04] PURNOMO B., COHEN J. D., KUMAR S.: Seamless texture
atlases. In Proc. of Symp. on Geometry Processing (2004), pp. 65–74. 2

[RNLL10] RAY N., NIVOLIERS V., LEFEBVRE S., LEVY B.: Invisible
Seams. Computer Graphics Forum (2010). 2

[Tar16] TARINI M.: Volume-encoded uv-maps. ACM Transactions on
Graphics 35, 4 (2016), 107:1–107:13. 2

[THCM04] TARINI M., HORMANN K., CIGNONI P., MONTANI C.:
Polycube-maps. ACM Trans. Graph. 23 (2004), 853–860. 2

[TLS15] TATARCHUK N., LEFOHN A., SLOAN P.-P.: Frontiers in real
time rendering. In ACM SIGGRAPH 2015 Courses (2015). 1

[Tot13] TOTH R.: Avoiding texture seams by discarding filter taps. Jour-
nal of Comp. Graphics Techniques (JCGT) 2, 2 (2013), 91–104. 5, 6

[YKH10] YUKSEL C., KEYSER J., HOUSE D. H.: Mesh colors. ACM
Transactions on Graphics 29, 2 (2010), 15:1–15:11. 1, 2, 5, 6

[YLT19] YUKSEL C., LEFEBVRE S., TARINI M.: Rethinking texture
mapping. Computer Graphics Forum (Proceedings of Eurographics
2019) 38, 2 (2019). 2

[Yuk17] YUKSEL C.: Mesh color textures. In High-Performance Graph-
ics (HPG 2017) (2017). 1, 2, 4

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

44


