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Abstract
Motivated by the demands of Digital Assyriology and the challenges of detecting cuneiform signs, we propose a new approach
using R-CNN architecture to classify and localize wedges. We utilize the 3D models of 1977 cuneiform tablets from the Frau
Professor Hilprecht Collection available as pen data. About 500 of these tablets have a transcription available in the Cuneiform
Digital Library Initiative (CDLI) database. We annotated 21.000 cuneiform signs as well as 4.700 wedges resulting in the new
open data Mainz Cuneiform Benchmark Dataset (MaiCuBeDa), including metadata, cropped signs, and partially wedges. The
latter is also a good basis for manual paleography. Our inputs are MSII renderings computed using the GigaMesh Software
Framework and photographs having the annotations automatically transferred from the renderings.
Our approach consists of a pipeline with two components: a sign detector and a wedge detector. The sign detector uses a
RepPoints model with a ResNet18 backbone to locate individual cuneiform characters in the tablet segment image. The signs
are then cropped based on the sign locations and fed into the wedge detector. The wedge detector is based on the idea of Point
RCNN approach. It uses a Feature Pyramid Network (FPN) and RoI Align to predict the positions and classes of the wedges.
The method is evaluated using different hyperparameters, and post-processing techniques such as Non-Maximum Suppression
(NMS) are applied for refinement. The proposed method shows promising results in cuneiform wedge detection. Our detector
was evaluated using the Gottstein system and with the PaleoCodage encoding.
Our results show that the sign detector performs better when trained on 3D renderings than photographs. We showed that
detectors trained on photographs are usually less accurate. The accuracy on photographs improves when trained, including
3D renderings. Overall, our pipeline achieves decent results, with some limitations due to the relatively small amount of data.
However, even small amounts of high-quality renderings of 3D datasets with expert annotations dramatically improved sign
detection.

CCS Concepts
• Computing methodologies → Object detection; Machine learning; • Applied computing → Archaeology;

1. Introduction

Accessing the earliest written texts has long been a challenging
task that has fascinated computer scientists since the dawn of com-
puting, including the era of Zuse’s computers.[BM22] Develop-
ing effective optical character recognition (OCR) approaches for
cuneiform tablets is both a formidable challenge and a source of
inspiration. Because cuneiform is a script that can only be deci-
phered in 3D with proper illumination, working with photographs
poses additional difficulties due to limitations such as distracting
colors and inadequate illumination caused by the curved shapes
of the tablets. However, recent advances in 3D capture techniques
have made it more accessible and affordable to obtain 3D models
of cuneiform tablets, although few of these models are currently
available as open data. By using high-quality curvature rendering
techniques based on Multi-Scale Integral Invariant (MSII) filtering

within, e.g., the open-source GigaMesh Software Framework†, re-
searchers can provide valuable support to the human experts in this
field. In this contribution to Digital Assyriology, we use a combi-
nation of raster image data, including both photographs and ren-
derings, and we have begun to explore the potential applications
of artificial intelligence systems. It should be noted that applying
these systems directly to the meshes of 3D datasets can be chal-
lenging, but they have shown promising results in areas such as
period classification of tablets.[BM20]

Detecting cuneiform signs from images is an essential first step
in an automated analysis of cuneiform texts in a natural language
processing setup as another important research topic of Digital As-
syriology. Correct recognition of cuneiform signs paves the way
for further computational analysis of cuneiform textual content,

† https://gigamesh.eu
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such as transliteration assignments, part of speech tagging classi-
fications, and automated machine translation tasks. The main chal-
lenge in this OCR task is the segmentation of cuneiform signs,
which has been examined in previous work [DKMO20], and in the
precise detection of cuneiform wedges that are visible on the clay
tablet itself. A missing or slightly differently positioned cuneiform
wedge could, depending on spatio-temporal considerations of the
circumstances of the cuneiform tablet or depending on the context,
be interpreted as a different sign variant [Hom21] and thus, yield a
different interpretation of the tablet’s content by a machine learning
algorithm. In addition, because expert image annotations are typi-
cally unavailable, virtually all previous approaches suffered from
a scarcity of expert-annotated training data. As [DKMO20] points
out, deep learning of cuneiform signs requires a substantially large
amount of training data in the form of bounding boxes, which ex-
perts should annotate at best. To our knowledge, the currently on-
going Cune-IIIF-orm project of the Ghent University in Belgium
is the only one collecting annotations using polygonal selections
from images of the Portable Light Dome [VVP*18], as inspired
by [HZBM22].

Most of the previous approaches have used photographs to
train machine-learning models [DKMO20; HFP*22; RFW*22;
SAP*23] A weak supervision approach by applying a large
dataset of transliterations in addition to the image annotations
for Cuneiform sign detection was introduced by [DKMO20].
[RFW*22] is the closest related work using 63 annotated images
of 13 Hittite Cuneiform tablet fragments. Also, using renderings
of 3D models, they have shown that illumination augmentation by
using 3D renderings has the potential to improve the results of
Cuneiform sign classification. However, they used only one 3D
rendering for data augmentation, while we used only 3D render-
ings for our training. To our knowledge, the wedges’ detection
has only been investigated for horizontal wedges.[HFP*22] Their
basic dataset contains photographs of eight tablets from different
languages, cropped into 823 labeled images with 7355 horizontal
wedge annotations, and achieved a precision of 0.745 and a recall
of 0.705. However, the article lacks clarity on whether the training,
validation, and test sets were entirely separated, which may lead
to unreliable model performance results. The merging of subsets
in [HFP*22] may occur if overlapping areas are inadvertently in-
cluded in different subsets, highlighting the need for careful atten-
tion to dataset construction. We extended this task to a horizontal,
vertical, and oblique wedge detection task. Furthermore, we discuss
the use of the Gottstein system [Got12] and the PaleoCodage en-
coding [Hom21]. None of the previous approaches have provided
a fully manually annotated dataset. In most cases, only a subset of
the training data has been annotated and made available. However,
it is important to note that these datasets served only as examples
and were not easily reusable. In addition, it is worth mentioning
that the open access material provided by [DKMO20] has unfortu-
nately disappeared from the web, further limiting the availability of
valuable resources. In this work, we focus on the following novel
approaches:

• We use and provide a large corpus of fully manually annotated
3D renderings as machine-learning training data.

• We apply an R-CNN architecture to classify wedges and predict
the location of irregular quadrilaterals.

• We discuss the impact of the Gottstein system and PaleoCodage
encoding on the wedge detector.

• We introduce a pipeline approach for detecting wedges on an
entire segment.

• Evaluation providing results for the sign localization, the global
performance of the wedge detection, and separated by classes,
and the quality of the pipeline results.

The following section describes our approach to cuneiform wedge
detection on the corpus described in Section 3. The described net-
works are trained from scratch, i.e., we only used our dataset and
did not work with any pre-trained backbones.

2. Method

First, we describe the setup of our pipeline consisting of a sign
detector described in Section 2.2, which feeds into a wedge detec-
tor Section 2.3.

2.1. Pipeline

Our approach to detecting and classifying wedges in an entire tablet
segment image is a pipeline with two components (see Figure 1).
First, the sign detector predicts the sign locations on the entire
tablet segment. Based on this information, each sign is cropped in
a single image.

Figure 1: Wedge Detection Pipeline

Due to our setup, the network could benefit from a more focused
training approach emphasizing wedge shapes. By utilizing a two-
stage pipeline, we can present the network with individual cutouts
based on sign localization, allowing it to focus on learning the spe-
cific characteristics of a wedge without the added complexity of
dealing with hundreds of wedges simultaneously.

The need for this pipeline arises from the fact that attempts to de-
tect wedges using the entire tablet segment as input resulted in infe-
rior results compared to our approach. This is primarily due to the
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loss of information caused by resizing the input image, as tablet im-
ages are typically rendered at high resolutions (e.g., 600DPI) with
side lengths well over 1000 pixels. Technical limitations prevent us
from using such large images directly as input for the CNNs.

In order to obtain the final detection result for the entire tablet,
the wedge detector takes the predicted wedge positions and classes
from the cutouts and calculates the global wedge positions based
on the sign locations and the relative wedge positions within the
cropped image.

By using this pipeline, we address the challenges posed by infor-
mation loss during resizing and technical limitations in image size,
ultimately achieving better results in wedge detection. Addition-
ally, the focused training on wedge shapes improves the network’s
ability to learn and recognize the distinctive features of individual
wedges.

2.2. Sign Localization

The Sign Localization is a single-class object detection task,
where each character location is represented by a bounding box
(xmin,ymin,xmax,ymax). Due to the reusability of our Wedge Detec-
tor model (see Section 2.3), we decided to use RepPoints [YLH*19]
as detection model with ResNet18[HZRS16] as a backbone net-
work, where we used the layer c4 which results to a resolution of
64× 64 of the feature map f . The use of a Feature Pyramid Net-
work (FPN) [LDG*17] in the Sign Detector led to a worse result
in our experiments. RepPoints is a one-stage anchor-free object de-
tector that, for each object, predicts a set of k representation points
and confidence values for c+ 1 classes, where c is the number of
classes, and one is added for the background. The prediction is
based on each position (x f ,y f ) of the feature map returned by the
backbone. With the application of two non-shared subnets, the lo-
calization consists of two point sets P1(x f ,y f ) and P2(x f ,y f ), and
the classification is performed. The set P1(x f ,y f ) is a result of k
offsets ∆x f and ∆y f for each feature map point (cf. Equation (1))

P1(x f ,y f ) = {(x f +∆x fi ,y f +∆y fi)}
k
i=1 (1)

These offsets are also used as input offsets of the deformable
convolution layer in the classification and localization subnets. To
refine the point positions, the localization subnet predicts the set
P2(x f ,y f ) by k offsets ∆x′f and ∆y′f , based on the points in P1 (cf.
Equation (2)).

P2(x f ,y f ) ={(xp1i +∆x′fi ,yp1i +∆y′fi)}
k
i=1,

(xp1i,yp1i) ∈ P1(x f ,y f )
(2)

For each experiment, k = 9 is used, following [YLH*19]. To train
the network, these k points of the point set Pj for each feature
map position (x f ,y f ) must be converted to a pseudo bounding box,
where the min-max function is used for both dimensions, as shown

in Equation (3).

x̂min = min
xp∈Pj(x f ,y f )

(xp)

ŷmin = min
yp∈Pj(x f ,y f )

(yp)

x̂max = max
xp∈Pj(x f ,y f )

(xp)

ŷmax = max
yp∈Pj(x f ,y f )

(yp)

(3)

The localization loss is calculated by the smooth l1 distance be-
tween the four bounding boxes describing values xmin,ymin,xmax
and ymax of the ground truth (GT) bounding boxes and the pre-
dicted pseudo bounding boxes. As a classification loss function,
the Focal Loss [LGG*17] is used. As described in [YLH*19], the
center of the GT bounding boxes are projected to the feature map
position, and only for these feature map points the location loss
of pseudo bounding boxes (x̂min, ŷmin, x̂max, ŷmax) by the min-max
function based on P1 is calculated. The second location loss, based
on the P2, is only calculated for those feature map points where the
pseudo bounding box of P1 has an intersection-over-union (IoU)
value with the GT bounding box above the threshold θT P. Simi-
larly, the classification loss is determined by the thresholds θT P and
θFP, where all predicted boxes with an IoU value above θFP but
below θT P belong to the GT ’background’, and if the IoU value is
above θT P the GT class corresponding to the bounding box is used
for the classification loss calculation. Different from [YLH*19], we
used θFP = 0.6 and θT P = 0.7 because the signs and wedges are
densely placed. The original values θFP = 0.4 and θT P = 0.5 led
to worse results for our task. Another difference is that our archi-
tecture contains dropout [SHK*14] with an extinction probability
of 0.2 for the input and the first convolution of the backbone and
dropout with a probability of 0.5 for each further convolution layer
in the backbone and for the first-three convolution layers in the Rep-
Points architecture. As post-processing, we applied Non-Maximum
Suppression (NMS) with a threshold of 0.1 IoU to keep boxes. Af-
ter the hyperparameter optimization of the Stochastic Gradient De-
scent (SGD) optimizer, we set 0.001 as the learning rate, 0.9 as
momentum, and no weight decay.

2.3. Wedge Detection

The Wedge Detection is defined as a multi-class object detection
task, where the wedges are represented as irregular quadrilaterals
specified by four corner points (x1,y1, . . . ,x4,y4), hereafter called
polygons, and an assigned class. Our method is oriented to Point
RCNN [ZY22], a Region-based Convolutional Neural Network
(R-CNN) approach to predicting rotated bounding boxes without
the use of an angle parameter. As you can see in Figure 2, the
wedge detector is divided into two stages, the Region Proposal Net-
work (RPN), which provides a set of object proposals, and, further,
the classification and position refinement stage.

To predict the potential locations of wedges, also called the re-
gions of interest (RoI), the RepPoints object detector described
in Section 2.2 is used. However, to deal with different sizes and
overlapping wedges, a FPN is applied to the ResNet18 [HZRS16]
backbone. Different from [ZY22], the RPN is trained using bound-
ing boxes calculated by the min-max function for each point of the
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Figure 2: Wedge Detection architecture

polygon. To assign the GT bounding box i for the first location loss
and the classification loss to a feature map level l, we apply

li =

⌊
log2

(√wi ·hi

s

)⌋
(4)

where wi is the width, hi is the height, and s is a hyperparameter set
to six for each of our experiments.

Based on the result of the RPN after a NMS with a threshold
of 0.5, a RoI Align [HGDG17] is performed to extract a part of
the feature map that is the input of the classification and position
refinement stage. Due to the memory limitation and the training
performance during the first epochs, only the best 500, but at least
with a confidence of 0.5, proposals are used. Figure 2 shows the
refinement stage of one FPN level, where the yellow-green boxes
represent the RoIs. First, to reduce the extracted 14×14×256 fea-
tures to 14× 14× 1 features, a 3× 3 convolution with one-pixel
padding is applied, followed by two fully connected layers. Then,
the net is split into the classification output layer that returns the
class probability of the c classes and the background, and the posi-
tion output layer that returns eight offset values {∆xi,∆yi}4

i=1 of the
four corresponding proposed bounding box corner points B. There-
fore, the resulting polygon corner points

R ={(xbi +∆yi,ybi +∆yi)}4
i=1,

(xbi ,ybi) ∈ B
. (5)

Those points adapt to the wedge shape, e.g., the head of the wedge,
and to the rotation. The polygon annotations are sorted clockwise
to learn these offsets, starting with the point in the upper left corner
so that the dataset has a consistent point order.

In addition to the RepPoints loss functions, a classification loss
and a location loss are added. These two losses are calculated if
the IoU value between the GT bounding box and the proposal is

above θT P. While the RPN classification loss is only relevant for
foreground and background, the refinement classification loss is a
Focal Loss for all the c classes. The refined position is penalized
by the smooth l1-distance between the GT polygon points and the
predicted points. As a post-processing, we applied NMS with the
same threshold as in the Sign Detector but on polygons and sepa-
rated by class. To calculate the IoU between polygons to process
NMS and evaluate the model, we used the Python library shapely
[GvdWV*23]. The hyperparameter optimization resulted in a 10−4

learning rate, 0.9 momentum, and 10−7 weight decay.

3. Data

We use training data from the Frau Professor Hilprecht Collection
of Babylonian antiquities at the University of Jena. This collection
was captured in 3D with the assistance of the Max-Planck-Institut
für Wissenschaftsgeschichte (MPIWG) in Berlin and provided us-
ing a CC-BY license. The cleaned, orientated, cleaned, and filtered
3D data together with high-resolution renderings were published as
Heidelberg Cuneiform Benchmark Dataset (HeiCuBeDa) [Mar19]
for machine learning tasks with a CC-BY-SA license.

3.1. Data preparation

This dataset provides 3D models of 1977 cuneiform tablets in Jena
spanning a significant amount of time periods of cuneiform sign
history. At the time of writing, about 500 texts had a translitera-
tion available at the Cuneiform Digital Library Initiative (CDLI)
[Eng16] available. The CDLI is one central online resource in Dig-
ital Ancient Near Eastern Studies (DANES) and has been used in
related digital cuneiform projects such as [BCE*].

We used these transliterated cuneiform texts as the basis to con-
duct the annotation on 3D renderings of the different written sur-
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faces (front, back, left, right, top, bottom) of the cuneiform tablets
in the Cuneiform Annotator application‡ also known as Cuneur
shown in Figure 3.

Figure 3: Sign annotations as created in the Cuneiform Annotator
for the corpus used in this publication, as exemplified on tablet
HS 1001. The PaleoCode on the picture is shown for illustration
purposes and has not been annotated for every cuneiform sign.

Each annotation comprises an index
(TabletID_surface_column_line_charindex) that
uniquely identifies every annotated cuneiform sign and even
cuneiform wedge on the tablet and refers it to its position in the
respective transliteration. In addition, the reading of the cuneiform
sign is annotated. A reading of a cuneiform sign identifies the
cuneiform sign uniquely, as it can be mapped to its sign name and
its Unicode representation. We use the Nuolenna sign list§ of about
11.000 sign readings to map the image annotation to Unicode code
point and dismiss signs which cannot be determined this way from
any classifications.

Furthermore, in addition to the sign annotations for 45 tablet seg-
ments of 27 Sumerian tablets and one Akkadian tablet, we provide
the annotations of the associated wedges (cf. Figure 4), indexed as
(TabletID_surface_column_line_charindex_wedgeindex). For this
purpose, we marked the position as polygons, more precisely as
irregular quadrilaterals, and we labeled the class using the Paleo-
Codage [Hom21] encoding.

Annotations are saved using the W3C Web Annotation Data
Model [YSC17] in JSON-LD [CLK20], and besides cropped im-
ages of the 3D renderings comprise the dataset.

3.2. Dataset description

Using the aforementioned annotated data, we present the machine-
learning dataset for this publication: The Mainz Cuneiform Bench-
mark Dataset (MaiCuBeDa)¶, which consists of the following im-
age components:

‡ Cuneur – Cuneiform Annotator Showcasehttps://fcgl.gitlab.
io/annotator-showcase/
§ https://github.com/tosaja/Nuolenna
¶ MaiCuBeDa: https://doi.org/10.11588/data/QSNIQ2

Figure 4: Wedge annotations as created in the Cuneiform Annota-
tor for the corpus used in this publication, as exemplified on tablet
HS 1001. The annotated PaleoCode signifies a vertical cuneiform
wedge and can be reused as a Gottstein code in classifications as
well

• 27696 Cuneiform sign images and 5947 wedge images as PNG
in two versions:

– Polygon cropping: The exact polygon of the annotation is
cropped, remaining parts become transparent

– Image cropping: The bounding box around the annotation is
cropped

• Line croppings: Lines in which the cuneiform signs appear
• Word croppings: Words in which the cuneiform signs appear

All aforementioned annotations have been generated for three dif-
ferent 3D rendering types of the HilprechtCollection tablets, the
VirtualLight rendering, the MSII Filter rendering, and a mixture of
both rendering types.

In addition, we provide metadata about the respective signs de-
rived from tablet metadata descriptions by the Cuneiform Digi-
tal Library Initiative, CDLI. Together with the aforementioned an-
notations in JSON-LD, the metadata and image references create
a linked open data graph, which we publish in the TTL format
[Bec08].

For this wedge and character detection task, we use only the mix-
ture 3D renderings of the front and back segments of the tablets, the
annotated sign and wedge positions, and the corresponding labeled
wedge classes in PaleoCodage. Fortunately, the labels can be eas-
ily converted to the Gottstein system by mapping: e → c, f → d,
and w → c. Although the seal wedges (x and y) are not part of
the Gottstein system, we also add them to our dataset as Gottstein
classes. The chart in Figure 5 provides the wedge class distribu-
tion of the complete dataset in PaleoCodage and also visualizes the
shape and the alignment of the wedges per class. So our annotations
do not have any instances of y.

At this point in our research, the sign labels were irrelevant, so
we ignored them. As described in Section 3.1, the sign annotations
refer directly to the transliteration of the segment. Unfortunately,
this results in some visible signs in the image not being annotated
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because they are not part of the transliteration. To reduce the an-
notation error within the dataset for sign detection, we manually
sorted out the instances with many missed signs by subjective deci-
sion. However, there are still many segments containing not an-
notated signs because we did not want to minimize the dataset
extremely. Due to the indispensability of the sign annotations for
cutting the signs to train our model described in Section 2.3, each
tablet is fully annotated with sign annotations.

annotations # tablets
Sign 490

Sign + Wedge 28

(a) Number of tablets with annota-
tions

annotations # segments
Sign 873

Sign + Wedge 45

(b) Number of segments with anno-
tations

Total annotations
Signs 21228

Wedges 5556
Cropped images by sign annotations 864

(c) Total number of used annotations

Table 1: Our Dataset in numbers

Figure 5: Our class distribution in the PaleoCodage

Table 1 provides an overview of the applied data, which is based
on Sumerian tablets, apart from one Akkadian tablet, to train the
neural networks described in Section 2. In addition to the anno-
tated images of the 3D renderings, we extended our image data
with the corresponding photographs published at the CDLI, which
we mapped with the Cuneur Transformer∥ in such a way that we
can re-use the annotations, created on the 3D renderings, to train
our machine learning models.

Furthermore, we created a subset with cropped images by using
the sign bounding boxes, and for each cropped image, an additional

∥ https://gitlab.com/fcgl/cuneur-transformer

annotation file containing the location and class of the wedges in
that cropped image. As shown in Figure 5, the wedge classes have
imbalanced distributions. Therefore during the training, the cutouts
containing wedges of the minority class x in both systems were
repeated by the factor 5. Since the 3D renderings are grayscale im-
ages, we converted the photographs to grayscale. As further pre-
processing, we perform a normalization of the grayscale values and
resize the images to 512×512 for the use of the Sign Detector and
to 224×224 for the use of the Wedge Detector.

4. Results

This section introduces our evaluation methods and presents the re-
sults of sign localization and wedge detection that we achieved. We
compare the training using 3D renderings as well as photographs
and elaborate on the differences between these two media.

4.1. Evaluation

For our evaluation, we split our dataset by segments into training,
validation, and test sets with a ratio of 2 : 1 : 1, while we ensured
that the wedge minority class of Gottstein and PaleoCodage x also
satisfies this ratio. The crops for the wedge detection training were
created based on the same dataset split, therefore the segments
are separated as entire images and as cropped images. For char-
acter localization evaluation, we consider a prediction to be a true
positive, if the intersection-over-union (IoU) between the predicted
bounding box and GT bounding box is at least 0.5. True positives
in wedge detection are predictions that reach at least an IoU be-
tween polygons of 0.4 and match the label of the ground truth. As
the measurement to compare models during the optimization of the
sign localization is the mean F1 −Score(mF1), which is defined as
the mean of the F1 − Score F1i for each image i of the set with the
size n:

mF1 =
1
n

n

∑
i=1

F1i

In the evaluation of the sign localization, the measurements
precision and recall are also mean values. For each image, the
measurement is calculated separately, and the mean is formed. The
wedge detection is evaluated by the precision P of each class and
by the mean of all precision values (mP) for the performance of the
entire wedge detector.

4.2. Sign Detector

The evaluation results of the sign detector per dataset combination
are shown in Table 2. As described in Section 3.1, the partial an-
notation of signs is a challenge of this dataset. This also leads to
a difficult comparison with results from a fully annotated dataset,
as correct predictions may be evaluated as false due to a missing
ground truth annotation. Therefore, the actual results are better than
the numbers. The model trained only on 3D renderings leads to the
best results for 3D renderings in sign localization and predicts with
a mean recall of 0.66 and a mean precision of 0.60.

A visual analysis of the results has revealed some instances of
false classifications made by the detector. These errors can be at-
tributed to various factors. First, the presence of damaged surface
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parts and seals on the tablet often leads to incorrect detections. We
can see that the detector performs better on smaller signs and is
slightly worse on wider signs. Another notable observation, partic-
ularly prevalent in photographs, is that lateral signs are more poorly
detected compared to signs located at the center of the fragment.
This discrepancy could be due to variations in lighting conditions
or the angle at which the photograph was taken. In addition, it has
been noted in the evaluation of photographs that the written iden-
tification number of the tablet is sometimes mistakenly detected as
a sign. Overall, it has been observed that the detector’s predictions
tend to be more accurate for smaller tablets, regardless of whether
they are in the form of renderings or photographs. This suggests
that the detector performs better when dealing with tablets that have
a smaller size, likely due to the reduced complexity and clearer vis-
ibility of signs on such tablets. Although the sign detector has some
weaknesses in the objective evaluation, the model shows applicable
results in the visual examination and could be used in our pipeline
to cut out signs from a complete segment as input of the wedge
detector.

Figure 6 shows an example of the sign localization for a photo.
This instance represents most of the false classifications. First, in
lines two and three of the segment, you can see that a sign is de-
tected as a false positive evaluated even though there is a sign. This
is based on only partially annotated signs and also makes the eval-
uation more difficult. There is also a wide sign in line four, where
the detector only predicted the first part of the sign. Furthermore,
you can see two undetected lateral signs at the bottom of the image,
which are not fully visible, and the obvious false positive detection
on the fractured surface at the top of the segment. But overall, we
were able to correctly detect most of the signs, including the two
which are correct but are considered as false in this example.

4.3. Wedge Detector

The evaluation of the wedge detection task is divided into the ap-
plication of the Wedge Detector (see Section 2.3) directly with
cropped images by the annotations as described in Section 3.2 and
in the utilization of the pipeline (see Section 2.1). In Table 3, the
different precision per class for the best, determined by mP, Paleo-
Codage detector, and the Gottstein system detector, are shown. We
can see that the wedge detector struggles, especially with the less
common wedge classes, e.g., e and x, while it detects more com-
mon wedges like a and b better. The wedge detector results in Ta-
ble 2, therefore, seem worse than they are, as the mean precision
for the classes is not weighted according to the occurrence of the
classes. Both systems were trained on mapped photographs and 3D
renderings. It is noticeable that the class a has much higher preci-
sion than the other classes in both systems. For the other classes,
which are part of both systems, the models have shown different be-
haviors. The prediction of c wedges is more accurate when trained
and evaluated in the Gottstein system than in the PaleoCodage en-
coding. Furthermore, the minority class x is noticeable because the
detector can only detect some instances within the test set when
PaleoCodage is applied. It is important to note that the visual in-
vestigation of the results has shown that in most cases for the same
wedge, an a or b is also predicted. In some cases, it is a challenge
to detect only one class for a wedge. Especially in the PaleoCodage

Figure 6: Result of sign localization for a mapped photograph. This
is an example of the false classifications with lateral signs, frag-
ments, not annotated signs, and wide signs. Yellow: true positive,
Blue: false positive, Red: not found signs (GT), Black: GT of cor-
rect detected Signs

output, the mirrored class pair d and f are confounded. The other
wedge classes that exist only in PaleoCodage are not predicted.

A weakness of the wedge detector is the low recall. The best Pa-
leoCodage model achieves a recall = 0.19, and the best Gottstein
model achieves a recall = 0.15. This also affects the pipeline re-
sults (see Figure 7). As seen in Table 4, the mP differs only slightly
from the evaluation on cropped images, though the recall fell to
0.005. It is important to note that the mP measurement also disad-
vantages the precision of classes with a high occurrence. The visual
analysis has shown that the detected wedges are distributed over the
entire segment. This confirms that the sign localization within the
pipeline provides cutouts that are usable input for the wedge detec-
tor.

4.4. Discussion of results

All of our detection models, even those trained only with pho-
tographs, perform better or equally well on 3D renderings (see Ta-
ble 2). One reason for the performance gap between photographs
and 3D renderings is based on the mapping between them. The
transformation to process the mapping by the Cuneur Transformer
can lead to small deviations in the annotated location, and a few lat-
eral signs are generally not visible in the photographs. Especially
for wedge annotations, these deviations could lead to inaccuracies.
Due to the size and dense location of the wedges, a small transfor-
mation error led to incorrect location annotations. The gap could
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Train
set

Test
set

Sign
Lo-
cal-
iza-
tion
mF1

Wedge
Detector
(Gottstein)
mP

Wedge
De-
tector
(Pale-
oCodage)
mP

Incl.
photos

Photos 0.45 0.39 0.33

3D
ren-
der-
ings

0.59 0.52 0.43

Only
3D ren-
derings

Photos 0.10 0.28 0.25

3D
ren-
der-
ings

0.61 0.51 0.37

Only
photos

Photos 0.41 0.21 0.18

3D
ren-
der-
ings

0.44 0.28 0.19

Table 2: Training impact of the different dataset compositions. The
training set inclusive photos means that the 3D renderings train-
ing set is expanded by the mapped photographs. The results of
the wedge detector are obtained by evaluating the detector directly
with cropped images.

Wedge class PaleoCodage P Gottstein system P
a 0.76 0.76
b 0.59 0.61
c 0.52 0.45
d 0.61 0.8
e 0.0 —
f 0.75 —
w 0.0 —
x 0.22 0.0

Table 3: Precision of the wedge detector for the Gottstein system
and the PaleoCodage encoding by class. These results are based on
applying the cropped images of the renderings by the sign annota-
tions.

also be explained by the much higher contrast, increased by the
MSII filtering [Mar19], between the pressed wedges and the clay
in 3D renderings than in photographs. It is also consistent with hu-
man perception of cuneiform tablets, as 3D renderings after MSII
filtering are much more legible than photographs.

There are two most likely reasons for the weak prediction of
lateral signs. First, the loss of information content due to the distor-
tion of the sign by the curved writing surface. Second, most of the

Test set PaleoCodage mP Gottstein mP
Photographs 0.12 0.22
3D renderings 0.34 0.36

Table 4: Results Pipeline. Both components of the pipeline, the sign
detector and wedge detector are trained on mapped photographs
and 3D renderings.

Figure 7: Result of the Wedge Detection Pipeline in Gottstein
system. Yellow: true positive, Blue: false positive, Red: not found
wedges

missed signs in the annotations are lateral signs, so the model may
have learned not to predict signs on the side of the segment.

As described in Section 4.3, the wedge detector has a variance
between the class precision and different behavior depending on the
wedge classification system. Although the class a is not the most
represented in the data set (see Figure 5), it is the best-predicted
wedge type. One explanation may be that vertical wedges are dis-
tinguished from the others due to frequently defined prominent
heads, and to locate these wedges, the polygons must not be ro-
tated. On the other hand, class b also has this rotation advantage
and is more represented in the dataset, but the precision is worse
than the precision of a. This could be due to the type of occurrences
on the tablets. Most occurrences are tiny; sometimes, they are not
even more than a short stroke (see Figure 7). Therefore, annotat-
ing them accurately without overlap is difficult and even harder to
detect them precisely. A similar problem exists with the Winkel-
haken (w). They are also often tiny and extremely densely placed,
so the detector failed to detect them. The mass of Winkelhaken
was added to the class c in the Gottstein system, and this might
be the reason for the less precise performance of this class of the
Gottstein wedge detector. Moreover, because of the higher similar-
ity within the classes, the fusion of classes d and f results in higher
precision in the Gottstein system. The oblique wedge e is the mi-
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nority in PaleoCodage, and the detector cannot predict them. To
keep the experiments between Gottstein and PaleoCodage compa-
rable, the cutout with e, which always contains also other wedges,
was not repeated. In summary, there is a high precision, especially
for the Gottstein system, for the wedges with a high occurrence in
the dataset. A larger dataset can also improve the precision also for
the other classes. A high precision of wedge predictions is indis-
pensable for a sign recognition based on detected wedges in future
work. Our approach provides a wedge detector with high precision,
however, it is a challenging task to improve the recall.

The result of the pipeline confirmed that the general idea of di-
viding between sign localization and wedge detection seems to be
a potential approach to detect wedges on an entire tablet. Although
the sign detector is theoretically the bottleneck of the pipeline, be-
cause it is not possible to detect wedges without detected signs, it
did not result in the hardest challenge. However, as discussed be-
fore, the wedge detector is improvable and turns out to be the main
bottleneck in our pipeline.

As can be observed in Table 2, the training with 3D renderings
and mapped photographs improves the quality for both types of test
sets. An explanation for this behavior could be that the different in-
formation in the renderings and photographs supports the model to
generalize. The improvement by this fusion of datasets provides an
indication that 3D data and photographs in combination are nec-
essary to achieve good results in Cuneiform OCR. Additionally,
the results have shown that the detectors trained on photographs
and 3D renderings are applicable for both kinds of media without a
performance loss of one of them.

5. Conclusion and Outlook

We introduced a pipeline approach to localize and detect wedges on
an entire Cuneiform tablet and evaluated besides the pipeline both,
the sign localization and wedge detection, components separately.
The applied dataset has been annotated by us and is available at
https://doi.org/10.11588/data/QSNIQ2. Our inves-
tigations on sign localization have shown that the dataset might not
be suitable for sign detection tasks, but the signs can be cut out and
could be a good base for a classification task without localization.
Despite the challenge of incomplete annotations, the results of the
sign detector are reasonably good and even better than the results
using only photographs.

With smaller images the quality of the results for both the sign
and the coupled wedge detector increases, so one approach to im-
prove the results can be to split the images of an entire tablet into
smaller squares, similar to [HFP*22].

The classification and localization of wedges is another challeng-
ing task in Cuneiform sign recognition. To improve the quality of
the model in future work, the architecture could be more oriented
towards the method for rotated objects in [ZY22]. The original ap-
proach in [ZY22] introduced the usage of the convex-hull of the
predicted points by RepPoints, instead of pseudo bounding boxes to
calculate the location loss, and the usage of Rotated Position Sen-
sitive RoI Align (RRoI) [DXL*19] to extract the feature map of a
rotated object. Furthermore, in our approach, only one backbone
was applied, so a different number of ResNet [HZRS16] layers or

a different backbone architecture could be tested. We have shown
that the extension of the 3D renderings dataset with mapped pho-
tographs increases the quality of both models.

A further approach might be to omit the wedge localization. For
example, to train a model that detects only the number of the oc-
curring wedges within a sign, but not their positions. In the future,
the detected wedges could help to classify Cuneiform signs. Us-
ing the introduced pipeline, the detected wedges are assigned to
a sign. Based on this information, it might be possible, especially
with a more accurate wedge detector, to identify the sign with the
Gottstein system or PaleoCodage encoding.
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