
High Resolution 2D-/3D-Scanning and Deep Learning Segmentation
for Digitization of Fragmented Wall Paintings

O. Kroeger1 , O. Krumpek1 , P. Koch1, M. Pape1 , J. Schneider3and Prof. Dr.-Ing. J. Krueger1,2

1Fraunhofer Institute for Production Systems and Design Technology IPK, Germany
2Technische Universität Berlin, Germany

3MFB MusterFabrik Berlin GmbH, Germany

Abstract
The preservation and study of mural wall paintings often involve the collection of numerous fragments with unknown context.
In this paper the authors present a case study involving a Roman wall painting discovered in 2013 at the European Cultural
Park Bliesbruck-Reinheim. The objective of this work was to develop a semi-automated assistance system for the digitization,
visualization, and digital repositioning of the Roman wall painting fragments. Therefore an easy-to-use scanner system was
developed, that captures high-resolution 2D images of the front and back surfaces of the fragments, along with a height map
of the backside. The contributing partners also developed a control and operating software for the scanner, as well as an au-
tomated software platform for visualization and repositioning of the digital fragments. The contributions of this paper include
the introduction of a ML-based algorithm for background subtraction and segmentation of the front surface of the fragments.
The technical realisation for fast and accurate image acquisition of the fragments, including sensor registration and high-
resolution capture, has been worked out. The system calibration process, hardware setup and data correction techniques are
described in detail. Additionally, the challenges of pixel-wise image segmentation for distinguishing between background, inner
contour (wall painting), and outer contour (fragment surface without painting) are discussed. Our proposed approach over-
comes the limitations of training ML algorithms on high-resolution images by employing patch-wise training and leveraging
small features instead of large-scale features. The digitization and segmentation process demonstrated promising results in
preserving and reconstructing the roman wall painting fragments. The findings of this study contribute to the field of cultural
heritage preservation and provide valuable insights as the developed equipment and methods are highly transferable to future
digitization projects.

CCS Concepts
• Applied computing → Fine arts; • Computing methodologies → Image segmentation; 3D imaging; Camera calibration;

1. Introduction

The study and preservation of scientific and cultural heritage usu-
ally begins with the collection of countless fragments of unknown
context. As more and more pieces are uncovered, research often
becomes a giant jigsaw puzzle whose unknown solution promises
interesting insights into a bygone era. Since fragments of lost art
objects can have the most diverse manifestations, the contributing
partners and authors of this paper, dealt with a puzzle of about
12.000 sandstone pieces (see figure 1). Each piece being part of
a Roman wall painting that was discovered during excavations at
the European Cultural Park Bliesbruck-Reinheim in the year 2013.

The cultural and archaeological park, located at the border be-
tween Germany and France, with its Roman villa of Reinheim and
the Roman small town (vicus) of Bliesbruck represents not only re-
gional history but also a part of Europe’s history. The fragments,
discovered in the area of the Roman villa are very well preserved.

However, reliable archaeological analyses, such as determining the
dating and origin of the fragments as well as understanding the
social-historical background, can only be conducted after the wall
paintings have been reconstructed. Archaeologists and restorers
face the challenge that any manual handling of the fragile frag-
ments, which consist of lime mortar, leads to additional damage to
the fragments themselves [Saa].

In 2019 a research community was formed to tackle the chal-
lenges of digital archiving. The research partnership consisted of
the Landesdenkmalamt Saarland, the MFB (MusterFabrik Berlin
GmbH), the Fraunhofer IPK, as well as the European Cultural Park
Bliesbruck-Reinheim. The team, leveraging the many years of ex-
perience of the IPK in the industrial application of optical inspec-
tion and the MusterFabrik Berlin’s expertise in algorithmic pro-
cessing of fragmented glass mosaics, aimed to create a digital twin
of the puzzle for further algorithmic and human-guided process-
ing. The joint project work, carried out under the name “DigiGlue”,
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comprised the development of an automated IT assistance system
for the digitization, visualization and digital repositioning of the
Roman wall painting fragments. The final system can be seen in
figure 2 at its destination, near the excavation site.

Figure 1: Original fragments of the Roman wall paintings discov-
ered in the European Cultural Park Bliesbruck-Reinheim © Lan-
desdenkmalamt Saarland. The image clearly shows that the size of
the fragments varies greatly. The sandy and friable structure of the
material is also visible.

Figure 2: Photograph of the final digitization equipment (Scanner),
set up in the rooms of the Bliesbruck-Reinheim site. The screen on
the left shows the result of a single fragment acquisition. The frag-
ment is placed on the glass plate of the scanning area with the flat
side down.

Within the project, the Fraunhofer IPK was responsible for the
development of the core technologies for an easy-to-use scanner
system that simultaneously captures the front and back sides of the
mural fragments, segment the outer- and inner- contour on the front
surface (see figure 3) as well as a height map of the backside and the
implementation of a pixel-wise data fusion of the 2D front surface
to the height map of the back surface. The objective of Muster-
Fabrik Berlin (MFB) was the development of a software platform
including UI and several tools for persistent data storage (including
meta data) as well as handling and positioning of the digitised frag-
ments based on a semi-automatic 2D reconstruction approach. The
MFB was also responsible for parts of the technical specifications
and the assembly of electrical and mechanical components in the
later deployed system.

The algorithm used for the automatic reconstruction approach
was mainly based on the extraction of 2D features within the flat
area on the front side where the image is visible. However, the 3D
topography of the backside was captured to validate the position-
ing results. As validation parameters, we assumed continuity in the
prints of significant architectural features, traces of straw, wooden
beams and other structural support elements. It should be noted that
the positioning algorithm is not part of the methods and develop-
ments presented here. It should also be noted that the selection of
the camera systems used was based on specific requirements for
image quality and resolution, as set out, for example, in the Ger-
man Research Foundation’s guidelines for digitisation. [ABB∗23]
In particular, high quality lenses with low distortion and sensors
that allow a resolution of at least 400 ppi (pixels per inch) were
chosen. At the same time, the project partners expected the size of
the recording area dimensions to be at least 30×30 cm in width and
height to allow the simultaneous recording of multiple fragments or
single, large sized fragments.

In the project context we described above, we made the follow-
ing contributions to the digitization of cultural heritage:

• Introducing new technologies for easy and fast 2D image ac-
quisition of the front and 3D acquisition of the back of mural
fragments in a fast one shot process. The 2D images of the two
sides are colour calibrated and have very high-resolution. The
captured data is also stored in a memory-efficient way, as 3D
data points are only captured from the relevant perspective. The
fragments only need to be placed in the scanner once. Depend-
ing on the size and texture of the fragments, the entire image
acquisition takes approximately 60 seconds for each fragment.

• The entire scanner system is mobile and can be set up near an
excavation site and operated there by non-experts. The hardware
is relatively inexpensive, even at the very high resolution.

• An ML-based algorithm for background subtraction and seg-
mentation of the inner and outer contour of the front surface of
the fragments capable of efficiently handling the very high image
resolutions.

• Our unique scanning process and ML-based segmentation allows
multiple objects to be placed and digitised simultaneously within
the large scanning area of our scan.

• A special laser line helps the user to label the motif side of the
fragment, contributing to fast learning of the segmentation.
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Figure 3: Example of a digitized fragment. The flat/planar front
surface of the wall painting (left) has an inner contour with the
actual painting (here coloured in transparent green) and an outer
contour (here coloured in transparent red). The back surface (right)
has only an outer contour (also coloured in transparent red).

2. Related Work

Brown B. J. et al. [BTFN∗08] present an acquisition system for the
digitization of excavated fragments at Akrotiri, Santorini (Thera).
The fragments pass sequentially, but manually, through an acquisi-
tion workflow using flatbed scanners and two 3D scanners to cap-
ture the front and back surfaces. The software and a processing
pipeline then ensure that the fragments are automatically merged
from the single images. This results in a complete 3D model of
the fragments. The entire system can easily be operated by non-
experts, which was the goal of the project. The throughput is about
10 fragments per hour or 6 min per fragment.

In the field of cultural preservation, both classical computer vi-
sion approaches and machine learning-based approaches are suc-
cessfully employed. Projects like the Fraunhofer CultArm3D use
robot based digitization with high-resolution cameras like the
PhaseOne up to 100 MP [HvWLW20]. The system was already ap-
plied for the 3D mass digitization in the year 2017 [SRFF17]. Addi-
tionally, the combination of robotics and artificial intelligence has
shown promising results for the reconstruction of cultural heritage,
as demonstrated by the EU-funded project RePAIR. This project
focuses on the reconstruction of ancient artworks in the destroyed
city of Pompeii, using shape, 3D information and decoration to find
relationships between individual pieces, and later employing soft
robotics for actual manipulation [Rsi21]. In contrast to our pro-
posed work, the RePAIR project also focuses on the heavily labo-
rious task of physical reconstruction. Furthermore, especially for
full 3D reconstruction of archaeological finds or museum archives,
imaging systems based on changing light conditions, such as the
multi-light reflectance approach, are used for digitisation. Often
based on photometric stereo or reflectance transformation imaging,
systems including physical dome light setups [HH23] or portable,
robot-guided systems such as the LightBot [LCC∗22] can be used
directly at the excavation site.

In contrast to the aforementioned systems and many of the cor-
responding use cases, the concept of the presented system does not
include a complete 3D reconstruction, since the goal of the im-
age reconstruction can essentially be described by the interpretation
and processing of the 2D information of the flat object surface.

Data driven ML heuristics have dominated SOTA segmentation-
benchmarks [GLU12,ZZP∗17,LMB∗14,COR∗16,SRT∗16] within
pixel-wise image segmentation in recent years. However, train-
ing neural networks on high-resolution images remains challeng-
ing due to the substantial hardware resource requirements (GPU-
Memory). This is particularly evident for powerful transformer
based NN architectures, or big CNNs. Lin T. et al. [LHL∗21] have
addressed this issue by scaling Transformer-based image process-
ing towards high-resolution images of 15362 pixel. However, the
image resolution used in this project, 9568× 6376 pixels, still ex-
ceeds that (3.87%) by a significant margin. With respect to convolu-
tions models, method such as deformable convolution [DQX∗17],
stride, dialation can be used to increase the convolutions receptive
field (kernel size), without increasing the number of model param-
eters. This allows for a reduction in the input space while extract-
ing long-range features. Likewise, pooling layers are often used
to decrease the latent space drastically. However, this contradicts
the reason for high-resolution images. Early work on ML-based
pixel-wise segmentation of medical images [RFB15] uses a patch
wise training, where small and trackable image patches are sampled
from the high-resolution input space. During inference, the trained
model could be executed on the original image size on a single
GPU without running out of memory, thanks to the missing gra-
dient tracking for backpropagation and the scale invariant feature
extraction of CNNs. Recent work has uses a two-stage approach
where a first stage selects (attends to) high-resolution patches based
on a low-resolution input [KF19]. Thus, only a fraction of the high-
resolution data is processed. While this approach can crop out back-
ground information, it comes at the cost of an increased processing
time due to sequential computation.

3. Methods

In the following we present our methods. We introduce the meth-
ods used for calibration and go into detail about the hardware
of our system. Afterwards we present our methods for data post-
processing, and pixel wise image segmentation. Figure 4 gives a
general overview of the process flow with our scanner.

3.1. System Calibration and Sensor Registration

The complete system used for digitizing the stone fragments con-
sisted of a heterogeneous multi-camera setup as shown in figure 6.
The setup contained two 61 MP RGB cameras (Sony α7R IV 35
mm full-frame camera (ILCE-7RM4)) and an active stereo system.
The RGB cameras were placed at the top and bottom of the system,
aiming for centred views with collinear optical axes, orthogonal
to a centered glass plate and the flat surface of the fragment, re-
spectively. The stereo system was positioned close to the top RGB
camera. To achieve the most useful visualization of the recorded
data (equally sized and symmetrically positioned representations
see figure 3 and the left side of figure 5), a pixel-wise registration
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Figure 4: Workflow of a single acquisition process. The left side of
the diagram describes the user interaction, while the right side of
the diagram describes the automated process steps. The complete
process for a single capture is completed in less than 60 s.

for all three sensors was performed by accounting the differences
in perspective, resolution and scale. The full procedure can be de-
scribed as two main parts. Firstly, the image data of the top RGB
camera and the 3D data from the stereo system needed to be reg-
istered, resulting in a pixel-wise overlay of 3D information on the
image plane of the RGB camera. Secondly, the RGB image of the
camera in the bottom had to be transformed to fit the target and im-
age position (see figure 5). For both RGB cameras, we also used a
calibration target to calibrate the white balance of all processed im-
ages. Another, two sided color calibration target was persistently
placed in the visible area of both cameras to allow possible post-
processing correction steps.

Figure 5: Illustration of the calibration pipeline used for image and
sensor registration. The left side of the figure shows the pixel-wise
registered results of a single fragment, as used in the program’s
user interface. The user is able to switch between the plots without
changing the size or outline of the visualisation.

3.2. Hardware Setup

Figure 6: Illustration of the scanner setup with cameras, illumina-
tion, laser and glass plate with object volume in the centre. The il-
lustration also includes visual information about the installed laser
system, used to highlight the relevant area of the scene, including
deflection mirrors at the four corners of the glass plate.

Initially, the calibration of the top RGB camera was performed
using a standard calibration routine to estimate the intrinsic param-
eters [Zha00]. The relative orientation of the stereo system and the
calibrated camera was determined by exploiting the fact that pixel-
wise correspondences between the rectified image of the left stereo
camera and the projected 3D points were available due to the sen-
sor principle. ChAruco markers were detected to achieve a set of
2D correspondences C that could be found in the set of detected
markers A and B of both cameras.

For each given corresponding image point pair in C, the 2D-
3D correspondence of the stereo system could be used to form a
Perspective-n-Point (PnP) problem, resulting in the simple relation
sprgb = [R|T ]K pst between the 3D points of the stereo system, the
corresponding RGB image points, the estimated intrinsic parame-
ters and the desired orientation. With the data from the upper sen-
sors aligned, the registration of the merged data and the second
RGB camera was easily achieved by compensating for the differ-
ences in scale, rotation and shift caused by the geometry of the
setup and the inaccuracy of the mechanical calibration step (see
figure 6). As a first step a Hough circle detector was used to esti-
mate the scale factor between the projected level of the glass plate
in both images. The scale factor was given by the ratio of the aver-
age diameter of detected circles on a calibration pattern, placed on
the glass surface. Shift and rotation were also estimated using an-
other calibration pattern, permanently glued to the glass plate and
visible to both RGB cameras (see figure 6).

3.3. Data Correction and Post-Processing

After transforming the point cloud into the coordinate system of
the RGB camera, the 3D points were projected onto the image
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plane, with the pixel value representing the z-component of the pro-
jected point. Due to the difference resolution between the sensors
(9568× 6376 to 1280× 1024) and the absence of 3D information,
the coverage of the resulting depth map was less than 2% of the
available pixels. This resulted in an uneven distribution of the pro-
jected points in the image. An example is shown in figure 7, where
the area around the available depth information has been extended
for better visibility.

Figure 7: Illustration of the unevenly distributed sparse depth in-
formation after projection to the image frame of the top RGB cam-
era. The illustration describes the reason for the upsampling of the
depth information.

To upsample the depth information, a 3D reconstruction algo-
rithm was used to create a surface model of the sensor’s raw point
map, again using the given neighbourhood information for the 3D
data [HB13]. Additionally a random point sampling was performed
to generate the missing depth information [Vit84].

3.4. Pixel Wise Image Segmentation

A training data set plays a crucial role in the development and
training of any heuristic ML-based image segmentation algorithm.
Here related work commonly drives on large scale annotated image
data sets ( [COR∗16] 5k high quality pixel-wise annotated frames).
However, due to the nature of our segmentation problem, we do not
require large scale feature extraction (cars, trees) but rather small
features (edges and texture), which helps to distinguish between A)
Background, B) inner contour (wall painting), and C) outer contour
(fragment surface without wall painting) (see figure 3). Here, large
scale features (e.g. a given wall painting) enables the heurisitic al-
gorithm to overfit on its training data rather then learning to gen-
eralize the problem. Likewise to cancer cell segmentation, our seg-
mentation problem is based on high-resolution images with rela-
tively small features. Therefore patch wise training is conducted
in related work on medical imaging [RFB15], which helps address
the hardware requirements of high-resolution images and prevents
overfitting caused by excessive extraction of large-scale features.

Taking this into consideration, the fragments are digitized (see
figure 6) following the outlined procedure in section 3.1. Hereby
we gain three in pose varying sets of high-resolution images from
79 fragments front- and back surface (front surface has wall paint-
ing, see figure 3). With a complementary set without any fragment
present in the images, we can use background subtraction in or-
der to find the outer contour of each fragment (in figure 8 we out-
line the background subtraction algorithm). Thereby, we generate

Figure 8: Outline of the background subtraction algorithm. We use
connected component analysis to find objects > 200k pixels and
select the component with the largest mean absolute difference.

a segmentation mask for each fragment. However, this segmenta-
tion mask alone can not distinguish between a wall painting and a
pure fragment texture that does not contain any information about
the wall painting. We use an open source annotation tool to mask
the wall paintings in each front surface fragment image by hand.
In order to cope with the large images, we crop the images via the
mask generated by our background subtraction. This cropping en-
ables us to isolate the fragment surface outer contour (without wall
painting, see figure 3) by subtracting the fragment mask generated
by the background subtraction. A major annotation problem arises
when the boundary between the mural and the fragment is blurred,
making it difficult to draw a clear annotation. Likewise the wall
painting masking accuracy is crucial for the training as high recall
is important. In doubt fragments are rather annotated as wall paint-
ing to ensure a high recall over precision (see figure 9).

Figure 9: Visualisation of the inner contour (wall painting) anno-
tation. Black line is a precise annotation for high precision train-
ing. The green line is more conservative annotation which yields a
high recall but comes with a cost of lower precision. High precision
annotation is often not possible due to gradual shifts between the
painting and fragment or leaps between two patches of wall paint-
ing where any annotation becomes ambiguous.

With the annotated high-resolution training data, we can
now conduct patch-wise training. State-of-the-art methods for
pixel-wise segmentation models employ transformer architec-
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tures [XWY∗21] or deformable CNNs [WDC∗23] for complex fea-
ture extraction and segmentation. However, our problem at hand
neither requires big nor complex features. In addition, a fast run-
time of a few seconds is required for smooth operation. There-
fore, we decide to use a simple UNet [RFB15] with a ResNet 32
[HZRS15] backbone pretrained on ImageNet [DDS∗09] for pixel-
wise image segmentation (see figure 10).

Due to the scale-invariant feature extraction withing the ResNet
CNN architecture, patch-wise training can be performed while pro-
cessing the complete high-resolution image in a single step during
inference. This allows fast computation within the given 6 GB GPU
RAM hardware limitation of the target system. At training time we
draw 512×512 pixel patches from the high-resolution images (see
figure 12). Here we focus to evenly draw samples centered on pix-
els belonging to label B and C (wall painting and fragment). 10%
of the samples are selected at random, including background only
samples. This ensures that the model can handle the complete in-
put, including background, during inference. Due to this ability we
can disable e.g. the background subtraction pre-processing step for
RoI (Region of Interest) crops, which during longtime deployment
is unstable. Also a single forward pass is relatively fast within the
GPU. We use a subset of 80% of our data for training, while the re-
maining 20% is used to validate the model performance after train-
ing (the validation data consists equally of unseen images of known
fragments, and unseen images of unknown fragments). The model
is trained using the Jaccard loss and Adam optimization 200 epochs
with a learning rate of 10−3 and batch size 64. During each epoch
we draw 20 samples from each fragment included in the training
data (2k samples per fragment in total).

Figure 11: Visualisation of the laser line on top of the RGB camera.
The right image shows the raw RGB data, the left image shows the
result of the laser line detection on the edge of the inner contour.
The data can be used as additional guidance for the annotation
step or/and for the segmentation algorithm.

We report the mean intersection over union (mIoU) and training
results in the following section.

The laser line image included in our digitisation process for the
front side of the fragment holds additional information about the
fragment’s inner rim. Within the red channel of this RGB image,
a laser light is reflected where the fragment is elevated above the

glass plate. These elevated areas, highlighted in the red color chan-
nel, do not belong to the wall painting. We experiment to con-
catenate this red channel as a 4th input channel to the usual front
side RGB image where the complete wall painting information is
present. This additional information is intended to further guide the
segmentation process. However, reflecting nature is imprecise and
unstable and cannot be used alone. A visualisation of the laser line
as green overlay on top of the RGB image can be seen in figure 11.
We experimented with the use of the laser line for annotation and/or
for the segmentation process.

Figure 12: Draw train patches the original high-resolution image
(top left) and the pixel wise annotation (top right) and resize to
512×512 pixel.

4. Results

One of the results of the “DigiGlue” project is an automated scan-
ner capable of simultaneously capturing the front and back of
wall fragments while creating an elevation map. This scanner is
part of a novel system designed for the digital recovery of ap-
prox. 12.000 Roman wall painting fragments found in the Eu-
ropean Cultural Park Bliesbruck-Reinheim. Another part of the
system consists of an automated repositioning software platform
which is based on technologies developed by MusterFabrik Berlin
for material-preserving, non-contact scientific and restoration pro-
cessing of highly sensitive cultural assets. This platform includes
several tools for the visualization and repositioning of the fragment
images captured by the scanner. For this purpose, the scanned frag-
ments and other meta-information are stored in a database. The dig-
ital fragments can then be processed on digital workstations as part
of the software platform according to various motifs and contour
characteristics. These functions include grouping, aligning, mea-
suring, labelling, sorting and - if the pieces fit - digitally gluing the
fragments together.

The novel “DigiGlue” system was set up by the project partners
in the fall of 2021 in an exhibition building, a replica of a Roman
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Figure 10: Pipeline to train the U-Net Architecture with a ResNet32 encoder backbone (blue tiles) with patches drawn from the original high
resolution training samples. The segmentation head (purple tile) projects generated segmentation maps to the 3 output classes. The green
tiles indicate the decoder path of the U-Net architecture. The input (H, W, C) denotes the input patch Height, Width, and number of channels.

tavern, of the European Cultural Park Bliesbruck-Reinheim (EKP).
Since then the system has been operated under non-lab conditions
and independently by the EKP staff on selected days in the sum-
mer months (the park is usually closed in winter). At present, the
EKP is focusing on digitizing the fragile Roman wall fragments in
a manner that ensures material preservation.

For digitization, the fragments are placed with the motif side
down on a scratch-resistant glass plate mounted in the scanner (as
already shown in figures 2). Acquisition is initiated by the scanner’s
control software. In an automatic process (see also the flow chart
in figure 4), three images are captured in succession: a 2D colour
image of the front and back of the fragment, and a 3D scan of the
back of the fragment. After image acquisition, the three scans are
automatically converted into a single digital representation by the
control software. To do this, the 2D raw scans are first rectified and
the fragments are extracted from the raw scans according to their
smallest surrounding rectangle. Then the fragment and motif areas
are segmented pixel wise to generate a mask image. In parallel, a
height map is calculated from the 3D scan of the backside, which is
finally scaled to the native resolution of the 2D scans of nearly 400
ppi. The entire acquisition process for one fragment takes just un-
der one minute, including post-processing and image storage. The
fragments do not have to be moved during the scanning process.
In addition to the pure image acquisition, meta-information about
the found objects can also be recorded and stored in the database
of the assistance system. This can include information about the
location or situation of the find, as well as information about the
classification or content description of the objects to be digitised.

Currently, just over 2.900 fragments have been digitized (as of

April 2023). Since this is only about a quarter of the expected total,
no targeted repositioning or reconstruction work is currently taking
place. However, despite the incompleteness of the digitized frag-
ments, various partial reconstructions have already been identified
and digitally glued together. The scanner is designed to be mobile
so that the "DigiGlue" system can also be used at other excavation
sites in the future. After dismounting the cameras and other hard-
ware components, the scanner can be disassembled into two parts,
transported and reassembled with reasonable effort.

Figure 13: Final results for the inner and outer contour segmenta-
tion of the front surface (left), the segmentation of the back surface
(middle), and the 3D information of the back surface (right).

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

17



O. Kroeger, O. Krumpek, P. Koch, M. Pape, J. Schneider & Prof. Dr.-Ing. J. Krueger / DigiGlue

Figure 14: Exemplar pixel wise segmentation validation results.
The inner contour (wall painting) is highlighted in green, while the
outer contour (raw fragment) is highlighted in red. The fragments
are cropped after segmentation for better visualisation.

Figure 15: Pixel wise segmentation validation results. The raw
pixel wise segmentation results are overlayed on top of the input
images and presented on black background.

4.1. Pixel Wise Segmentation Results

In figure 16 we present the training loss of the Pixel Wise Segmen-
tation. Here we report both the training performance on the ran-
domly sampled 512× 512 pixel patches (see section 3.4), as well
as validation performance on full resolution images. The validation
data is 20% of the available data and consists equally of unseen
images of known (trained) fragments and unseen images of un-
known fragments. Respectively we achieve a maximum train and
validation average IoU of 0,970 and 0,975. When directly com-
paring the train and validation performance, one can see that the
model is capable to generalize the pixel wise segmentation prob-
lem from small patches towards the full resolution input. Note that
the IoU metric balances between classes, so the large amount of
background during validation does not affect the score as it would

with an accuracy or precision metric. Moreover, 50% of the valida-
tion data are images of unknown (trained) fragments. This allows
the model to generalise to other fragments rather than remembering
the training patch structures presented. In figure 15 and figure 14
we visualize some validation exemplars for qualitative measure. In
figure 15 it is also noticeable that the model is not confused by
the large area of background, while maintaining high accuracy as
shown in figure 14. In figure 13 we show a test instance of our com-
plete pipeline, including the segmentation on the left. Here one can
see that the segmentation model is even capable to process multiple
fragments at once.

5. Conclusion and Outlook

In this contribution we presented our system for the easy and fast
digitisation of wall paintings. The fragments are acquired from both
sides at the same time and in highest image quality. The back sides
of the fragments are also scanned in 3D and fused with the 2D im-
ages. All sensors are registered to each other and the system can
be used by non-experts. After the image acquisition, the relevant
image information is automatically segmented. The outer contour
of the front and back sides and the inner contour of the front side
of the fragments are segmented. This will greatly assist the sub-
sequent process of digitally and physically reconstructing the wall
paintings. The segmentation is done by our high-performance ML
pipeline, which is able to process image data in a high-resolution in
a very short time. To further support the training of our ML pipeline
with relatively few examples, we also used a laser line, which high-
lights the inner contour particularly well.

Once the fragments have been digitised by the system described
here, a specially developed software tool is used to assemble the
virtual mural puzzle.
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