
EUROGRAPHICS Workshop on Graphics and Cultural Heritage (2022)
R. Pintus and F. Ponchio (Editors)

Context-based Surface Pattern Completion of Ancient Pottery

Stefan Lengauer1 , Reinhold Preiner1 , Ivan Sipiran2 , Stephan Karl3 , Elisabeth Tinkl3 ,
Benjamin Bustos2 , and Tobias Schreck1

1Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization, Austria
2University of Chile, Department of Computer Science, Chile

3University of Graz, Institute of Classics, Austria

Abstract

Among various ancient cultures it was common practice to adorn pottery artifacts with lavish surface decoration. While the

applied painting styles, color schemes and displayed mythological content may vary greatly, the presence of simple patterns

which appear in a repetitive manner can be observed across civilizations and periods. Such pattern sequences generally are

arranged in a structured manner in ornament bands or columns that extend over the entire surface of the object. Due to the poor

conservation state of many cultural heritage objects, parts of the surface are oftentimes badly damaged or missing altogether.

Yet, if the majority of a pattern sequence is preserved, this information can be leveraged to approximate its missing parts. We

present an approach that allows the fully automatic determination of the generation rule inherent to a repetitive surface pattern.

Based on this generation rule and the preserved patterns from the same pattern class we propose a workflow for reconstruct

missing or damaged parts of the surface painting. We evaluate our approach by applying it to a selection of pottery from ancient

Peruvian and Greek cultures, showing that our automatic approach is able to handle a variety of problem cases.

CCS Concepts

• Applied computing → Arts and humanities; • Information systems → Information retrieval;

1. Introduction

The digital restoration of cultural heritage (CH) artifacts is a well
know research objective, as the physical restoration is usually not
possible due to various reasons, e.g., cost factors, the fragility of
objects, or different parts of one and the same object being cu-
rated by different museums. Yet, with the advancement of 3D scan-
ning hardware more and more objects become available as detailed
3D models, allowing the application of computer-based restoration
techniques. Papaioannou et al. [PSA∗17] differentiate thereby be-
tween reassembly, the identification of affiliations between frac-
tured artifact parts and their realignment, and object completion,
the approximation of objects parts which are missing due to ero-
sion or an incomplete set of object fragments. Our proposed ap-
proach belongs to the latter, but in contrast to the majority of tech-
niques which deal with the completion of an object’s geometry
[SGS14, GSP∗14, APM15, Sip17, Sip18, HS18, LBB19, SACO04,
HTG14a,HTG14b], we focus on the completion of its texture. This
is particularly relevant for the analysis of ancient pottery artifacts
which oftentimes exhibit lavish surface decorations. The painting
style, color scheme and illustrations vary greatly between differ-
ent cultures and periods, but an almost ubiquitous theme are se-
quences of repetitive patterns. Those are usually arranged in rows
or columns around the objects’ solid of revolution. Due to the var-
ious stages of degradation, characteristic for ancient pottery, ele-
ments of a sequence are oftentimes eroded beyond recognition or

missing altogether (see examples in Fig. 1). However, by exploit-
ing concepts of regularity and similarity, it is possible to reconstruct
missing or eroded parts.

Figure 1: A selection of pottery from the Josefina Ramos de Cox

museum, Lima, exhibiting various stages of erosion.

With our proposed approach we aim to complete missing pat-
terns in incomplete ornamentation sequences. Apart from handles
and other appendages, pottery objects are generally very regular
solids of revolution due to their method of production on a pot-
ter’s wheel. This allows us to deal with the completion problem
in 2D, as such 3D surfaces can be efficiently mapped into im-
age space [RMK13, PKBS18, KPP96, EGAND06, CRG∗13]. Start-
ing from the projected planar surface, our approach comprises two
main steps. First, the detection of sequence gaps for a given sur-
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Figure 2: The original surface with the border of the inpainting

mask in blue (left), and the patch-inpainted [CPT04] result (right).

face pattern (Sec. 4); and second, the filling of the gap with mean-
ingful texture (Sec. 5). While the completion of missing image
parts is a well known image processing task, known as inpaint-

ing [JBAA∗19, WWH∗21, AAS21, CPT04], such approaches are
generally agnostic w.r.t. global pattern arrangements and are not
aware of any missing patterns given an empty space on the surface
to fill. In Fig. 2 we provide an example of the outcome of a the
patch-inpainting approach by Criminisi et al. [CPT04], applied to
the surface of the pre-Columbian pot shown in Fig. 1, right. It can
be seen that, while the generated texture at the vicinity of the mask
borders appears to be indistinguishable from the original texture,
the result gradually worsens towards the center of the inpainted re-
gion where the generated texture is a mix of several unrelated im-
age regions. This is to be expected as general purpose inpainting
algorithms are not able to capture the essence of the sequence, but
merely reconstruct the target area based on the border gradients and
colors. We conclude that of-the-shelf inpainting algorithms are gen-
erally not able to faithfully reconstruct ornamentation sequences.

In contrast, we employ a workflow where we estimate the po-
sitions, orientations and scales of missing patterns based on the
sequence’s generation grammar, before we employ a statistical de-
noising of the respective areas based on the remaining elements of
the sequence. Note that our proposed approach focuses exclusively
on the reconstruction of textual information instead of geometric
information. The pipeline is discussed in depth in Sec. 3, before
the application of this workflow on a selection of real world CH
objects is presented in Sec. 6. As an additional validation we also
experiment with a synthetic surface abrasion for objects which do
not exhibit surface deficiencies. This has the advantage that we can
increase the number of valid reconstruction targets while also hav-
ing a ground truth for the completion process. In Sec. 7 we discuss
limitations and possible targets for future work before we conclude
the paper with a discussion of possible applications in the CH do-
main in Sec. 8.

2. Related Work

Restoration of defects in digital 3D cultural heritage objects has
several aspects, and requires solving different tasks. That is, it has
been an intensive research focus, especially over the last decade.
First attempts to tackle the problem of reproducing surface patterns
in CH objects were mainly focused in geometric methods with user
intervention. Kolomenkin et al. [KLST11] proposed a framework
to recreate surface relief patterns from line drawings entered by
a user. The method optimizes the 3D relief geometry for a given
drawing by imposing smoothness constraints characterized by the
Laplacian of the relief. These constraints enhance the smooth tran-

sitions between the reliefs and give a realistic appearance of the
reconstructions.

Andreadis et al. [APM15] propose a semi-automatic pipeline
for the geometric reassembly of fractured 3D objects. The pipeline
consists of several steps. First, a preprocessing step produces a seg-
mentation of the object surfaces, and classifies each segment as ei-
ther ‘intact’ or ‘fractured’. Second, the method matches the frag-
ments according to their fractured surfaces. Third, the method per-
forms a pairwise surface registration for fragments exhibiting sig-
nificant erosion or a missing part. Fourth, the object is reassembled
using a graph-based approach. Finally, a last step, symmetry-based
fragment registration is used to align any remaining disconnected
fragment. Each of these steps requires human interaction to ensure
a correct reassembly process, and to help the system aligning frag-
ments that are too eroded or have significant missing parts.

Lamb et al. [LBB19] propose an automatic method to recon-
struct missing geometry of a 3D object. To this end, the algorithm
requires a reference 3D object. In a first step the incomplete ob-
ject is aligned with this reference object. Using the information
from the alignment step, the exterior of the missing part is gen-
erated. Finally, the algorithm computes a smooth surface transition
along the outlines of the fracture. The generated fragment can be
3D printed for restoration of the broken object. Setty and Mude-
nagudi [SM18] propose a similar reconstruction method of missing
parts for 3D point clouds. The method relies on a set of ‘exemplar’
models, which are geometrically similar objects to the one that is
being repaired. The method selects the regions from the exemplar
objects that best fit the missing parts, and uses them for the recon-
struction of the object.

In contrast to these exemplar based methods [LBB19, SM18],
‘hole filling’ approaches [SACO04, HTG14a, HTG14b] try to re-
produce a missing part of an object’s geometry by patching it with
a context-based or coherent surface patch obtained from the input
object itself. Sharf et al. [SACO04] propose an automatic method
to fill holes or to complete point-sampled surface areas in 3D mod-
els. The main idea of this method is to fill the hole with a surface
patch considering its context, that is, the characteristics of the sur-
face surrounding the hole. The authors show some examples of the
results obtained with their method and compare it to patching the
hole with a smooth surface. They also show that their method is
robust to noise. A disadvantage of this method is that no overall
context is considered, but holes are just filled such that the patch is
merely ‘similar’ to its surroundings. Harary et al. [HTG14a] pro-
pose a method for the same problem, with the difference being that
it is not only context-based, but also ‘coherent’. The coherence re-
striction imposes that the local patch must be similar to some lo-
cal patch in the model. This helps avoiding some errors that can
be produced by context-based methods, where the patched surface
may be similar to its surroundings, but significantly different to a
corresponding local neighborhood in the surface (for example, a
symmetric counterpart of the patched surface). In addition, orthog-
onal, method by Harary et al. [HTG14b] follows a semi-automatic
concept, and requires the user to input four points that are used
to compute a curve. This curve defines ‘triangle strips’, which are
considered constraints of the problem and aid the reconstruction
process. That is, if the surface hole covers two different segments
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Figure 3: Pattern completion pipeline. The input model surface is unwrapped and subject to a self-similarity detection of individual pattern

entities belonging to different classes. Individual sequences of repetitive entities within these sets are then detected and their generative

grammar estimated. These are input to a context-based reconstruction and substitution of missing or deteriorated pattern elements in gaps

detected in these sequences (green bracket). The reconstructed texture is finally mapped back onto the input geometry. Here, two ornament

sequences of snake patterns are completed (red bracket).

or parts of the 3D model (e.g., if it covers part of the hair and part
of an ear of a bust), and the user-defined strips separates these seg-
ments, the method can produce coherent and context-based patches
for each of these segments.

Papaioannou et al. [PSA∗17] propose a complete geometry
restoration workflow for diverse CH objects, comprised of reassem-
bly and completion steps. For the prior, they leverage both, frac-
ture surfaces as well as salient features. For the latter, they present
a procedure based on generalized symmetries and a complemen-
tary part extraction. They demonstrate their pipeline on a num-
ber of varied CH objects. The publication is part of the European
Union-funded PREdictive digitization, reStoration and degrada-
tIOn assessment of cultUral heritage objectS (PRESIOUS, http:
//www.presious.eu) project.

For wheel-made pottery, the largest group of CH objects, sym-
metry properties can be leveraged for completion efforts. Sipi-
ran [Sip17] describes a method that completes missing geometry by
replicating symmetric features. In particular, this method exploits
the global-local behavior of a heat-based function defined on the
3D surface. The function is formally proven to be invariant to ro-
tational symmetry and exhibits symmetric correspondences around
the generator axis of a given object. The method is able to detect the
symmetry axis of incomplete solids of revolution. This information
is then used to replicate missing parts. In a later publication Sipi-
ran [Sip18] explores the suitability of fast local feature detectors to
detect repeatable regions along the rim of rotationally symmetric
objects. Since these regions convey enough information about the
symmetric structure of an object, they can be used to replicate ex-
isting geometry for completion purposes. The author also demon-
strates the effectiveness of the method for CH objects.

One of the few approaches dealing with textual completion
within a CH context is given by Assael et al. [ASS∗22] who employ
a deep learning architecture based on transformers, with the aim
of restoring ancient Greek inscriptions. The proposed deep neu-
ral network, dubbed Ithaca, can predict missing characters in these
ancient texts. It can also predict the geographical origin of a text
among 84 different regions and its period of creation in a time span
from 800 BCE to 800 AD. To this end, the network was specifically
trained with data from texts in ancient Greek language.

It appears the majority of related work is focused with geometric
reconstruction while publications dealing with textual completion
of CH objects are rather sparse and seemingly limited to image-
based techniques. For this task of image-inpainting, an abundance
of approaches was proposed over the years [JKW∗21]. However,
there is to our knowledge no method capable of dealing with the
specifics of our repetitive pattern completion problem.

3. Overview of our Approach

Figure 3 illustrates our proposed reconstruction pipeline. The in-
put as well as the output are 3D models which differ only in their
texture. All processing in-between is conducted in image space.
As a first step all entities of a given pattern class, together with
their scale and orientation, are determined in a Self-Similarity De-

tection step. From this set of unordered pattern entities a sequence
is determined by leveraging simple heuristics, intrinsic to pottery
objects. Thereafter, the transformations between consecutive enti-
ties are computed and used to formulate the sequence’s generation
grammar. All these steps are described in depth in Sec. 4. If the es-
timated transformation between two neighbors differs greatly from
the expected approximated prototypic transformation, it is taken as
an indication for a gap in the sequence (Sec. 5.1). After determin-
ing the locations and transformations of reconstruction candidates,
a statistical model is applied to complete the remaining texture in an
optimal manner, based on the other patterns of this class (Sec. 5.2).

4. Generation Rule Detection

Given an object with repetitive surface patterns, the appearance of
a specific pattern entity within a sequence can be generally esti-
mated using a generation rule. That is, we assume a Markovian pro-
cess [Gag17], meaning that the location, orientation and size of a
pattern entity can be fully described as a transformation applied on
its predecessor. Within a sequence these transformations between
consecutive patterns are quite similar, unless there is a gap. Hence,
the first objective is to find the prototypic transformation which de-
scribes the transformations between the uninterrupted parts of the
sequence in an optimal manner. To this end, we use a four-stage
process involving: (i) the detection of the individual occurrences of
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a pattern, (ii) the detection of their inherent sequence (if present),
(iii) the determination of the transformations between neighbors,
and (iv) the estimation of the prototypic transformation. Prior to
the first stage, we project the input, a textured 3D model, to a 2D
plane. This greatly simplifies all processing steps and is possible
for most rotationally symmetric shapes without introducing much
distortion. At the end of the pipeline the inverse projection is used
to remap the reconstructed texture back onto the 3D model. Sev-
eral methods for the unwrapping of 3D surfaces have been pub-
lished. Specifically, for the CH domain, approaches using proxy
geometries [RMK13] or mass-spring systems [PKBS18] have been
proposed. In our experiments we use a variation of the cylindrical
unwrapping by Karras et al. [KPP96].

The detection of the individual entities of a given surface pat-
tern can be formulated as a self-similarity detection problem, a
very well researched topic in computer vision [BSI08,CPZ09,SI07,
VGVZ09, LKK∗20]. Note that this part of our pipeline can be per-
formed by any of these methods providing areas and orientations
of target entities, and is thus not within the scope of this paper. In
our experiments, we rely on an already annotated pottery bench-
mark dataset (Sec. 6). That is, we assume as input a set of un-
ordered pattern entities {Si}i∈I , with the index set I. Each entity
has to convey (at least) the attributes orientation and scale (w.r.t. a
reference/pivot entity) as well as location. Yet, scale and location
properties can also derived if the entities are given as areas (sets of
pixels or surface parts). Based on this input we determine the pres-
ence of structured arrangements. More specifically, in the case of
ancient pottery, repetitive patterns are commonly arranged in rows,
or ± in rare cases ± also in columns. Patterns which are scattered in
random fashion all over the object’s surface are beyond the scope
of our approach. We estimate the locations of rows K at offsets
Y = {y}k∈K ⊂ R+ and columns L at offsets X = {x}l∈L ⊂ R+,
based on the pattern entities’ centroid locations CCC = {Ci}i∈I ⊂ R

2.
To this end, a Gaussian Mixture Model (GMM) is fitted to their re-
spective x and y-coordinates. The most likely number of mixtures,
reflecting the number of rows or columns, is determined using the
Bayesian Information Criterion (BIC) [Sch78] by comparing the
quality of the fits with n ∈ [1..nmax] components. The maximum
number of rows or columns nmax is limited to |I|/3 as we require
each row or column to feature at least 3 pattern entities. Ik and Il

denote the index sets of pattern entities belonging to the k-th row
(sorted by their x-coordinate) and the l-th column (sorted by their
y-coordinate) respectively.

The relation between the pattern Si and its predecessor Si−1 can
be formulated as Si = M̂i−1,iSi−1, with the most likely transfor-
mation M̂i−1,i = argmaxM∈M sim(Si,MSi−1) and an arbitary sim-
ilarity function sim. The task of finding M̂i−1,i in the set of possi-
ble transformations M is an image registration problem [Bro92].
For our application we assume that M̂i−1,i can be sufficiently well
described with an affine transformation. With this class of geomet-
ric transformations a combination of a linear transformation and a
translation can be modelled. In the 2D domain this transformation
is usually represented with a 2×3 matrix

M =

[

cx cos(φ) −sx sin(φ) tx
sy sin(φ) cy cos(φ) ty

]

, (1)

with cx and cy as the scaling, sx and sy as the shear, φ as the ro-

tation and tx and ty as the translation. For our application we as-
sume a uniform scaling c = cx = cy and the absence of any shear
sx = sy = 0. We denote the transformation from pattern i − 1 to
pattern i with four parameters as θθθi = ⟨ci,φi, txi , tyi⟩

T . To deter-
mine the prototypic transformation between any consecutive pat-
terns, with parameters µµµ = ⟨c̃, φ̃, t̃x, t̃y⟩

T , we fit a multivariate Stu-

dents t-distribution [Stu08] St(ΘΘΘ|µµµ,λλλ,ννν) to the set of transforma-
tions ΘΘΘ = {θθθi}i∈I , with ννν as the degrees for freedom and λλλ as the
inverse precision scaling. We selected this distribution model as it
is robust w.r.t. outliers for a small sample size.

5. Content-based Reconstruction

The content-based pattern recognition is a two-stage process. First,
gaps in the pattern sequence are detected (Sec. 5.1), before the num-
ber of missing patterns, their locations, orientations and visual ap-
pearance is approximated in a gap filling step (Sec. 5.2).

5.1. Gap Detection

For the identification of gaps we leverage the prototypic trans-
formation parameters µµµ. We define gap candidates as the patterns
whose transformation w.r.t. their predecessor, given by θθθi, differs
significantly from µµµ. That is, the index set of gap candidates G is
formally given by

G = {i ∈ I : max |θθθi −µµµ|> tgσσσ}, (2)

with σσσ =
√

|I|−1 ∑i∈I(θθθi −µµµ)2 as the standard deviations of the
transformation parameters and tg as a cut-off threshold. For practi-
cal applications tg = 2 showed to provide satisfying results. Note,
that erroneous gap candidates, resulting from a too low threshold,
are usually no concern as it will be recognized in the gap filling
step that no pattern will fit in-between.

5.2. Gap Filling

For each of the gap candidates g ∈ G (Eqn. (2)) we add ng =
max{θθθggg⊘µµµ}−1 (⊘ denotes the element-wise Hadamard-division)
patterns to fill the void. We determine their respective transfor-
mations such that the space between the last pattern before the
gap and the next preserved pattern is optimally bridged. I.e., we
expect the bounding box bbox j of the j-th new pattern to be at
bbox(Sg−1)M(θθθg ⊘ j+1), with M(θθθ) as the affine transformation
matrix (Eqn. (1)) for parameters θθθ.

In order to estimate the original texture at bbox j we per-
form a Bayesian image denoising [KY19], which allows us to
optimally infer the noise-free version yyy of a noisy input xxx =
[x0,x1, . . . ,xD−1]

T , with D = w · h and w, h as the image’s width
and height. With yyy∗ = [y∗0 ,y

∗
1 , . . . ,y

∗
D−1]

T denoting the correspond-
ing noise free image, we formulate the relation between xxx and yyy∗ as
(xxx)i = (yyy∗)iξ, i ∈ [0..D−1], with ξ being sampled from a Gamma
distribution, as we assume the noise in yyy to be multiplicative and
independent. As yyy∗ is unknown, the goal is to find the best fitting
ŷyy, given the observed xxx. Such can be achieved with the Mininum

Mean Squared Error function

ŷyyMMSE(xxx) =
∑yyy′∈YYY yyy′p(xxx|yyy′)

∑yyy′∈YYY p(xxx|yyy′)
,

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

110



S. Lengauer et al. / Surface Pattern Completion

with YYY as the remaining noise-free entities of the pattern class and

p(xxx|yyy′)=
1

ηkDΓ(k)D
exp

(

−
λ

η
111T (xxx⊘ yyy

′)+λ(k−1)111T log(xxx⊘ yyy
′)

)

as likelihood of the multiplicative Gamma noise. k is the shape pa-
rameter and η the scale parameter of the Gamma distribution and
λ ∈ [0,1] is a governing parameter for the ‘peakyness’ of the likeli-
hood. λ = 1 results in xxx being equivalent to exactly one element of
YYY , while λ < 1 results in a blend from multiple of the best matching
noise free images. λ = 10e−2 was used in all experiments.

In our case the noisy input yyy is the texture observed at bbox j and
the noise free references YYY are the textures at {bbox(Si)}i∈I . In or-
der to employ the statistical model all inputs must be brought into
a normalized representation, meaning that all images must have the
same dimensions and display the pattern entities in the same man-
ner. To this end, we, first of all, transform all elements to match
the appearance of the pivot element. I.e., for the pattern Si we ap-
ply the inverted transformation of all its prior sequence elements
∏

i−1
k=1 M̂−1

k−1,k. Note that the transformations have to be applied in
reverse order since affine transformations are not commutative.
This aligns the bounding boxes of all patterns with the bounding
box of the pivot element. Additionally, they must be resized to a
uniform size of w×h pixels with w = |I|−1

∑i∈I width(bbox(Si)),
h = |I|−1

∑i∈I height(bbox(Si)) as the patterns’ mean width and
height respectively. Lastly, we match the patterns’ histograms with
a sort matching approach [RVBA00]. This algorithm allows to
match the histogram of a source image to the histogram of a target
image by sorting the pixels in both images by intensity. The source
image is then assigned the pixel intensities of the target image ac-
cording to the sorted sequence. We adapt this algorithm, originally
intended for gray images, for colored inputs by performing the sort-
ing and assignment for each channel separately in the CIE L*a*b*

color space [C∗04]. As we do not wish however to match images
pairwise but bring a set of images into a normalized representation,
we match each of them to the mean histogram computed over all
images. The normalized reference images a staircase pattern on a
pre-Columbian pot (Fig. 7) are featured in Fig. 4. The same nor-
malization steps are also applied to the target texture at bbox j. Af-
ter obtaining the denoised version of the j-th new pattern, ŷyy j, we
retransform it back to the predicted location and merge it with the
original texture using a multiresolution spline technique [BA83].

6. Results

The following results section is tripartite. In the first part (Sec. 6.1)
we visually assess the results obtained with our pattern completion
approach on actual eroded real-world artifacts. In the second part
(Sec. 6.3) we look at artificially degenerated surface paintings and
compare the results of our pipeline to the original surface. To this
end, we employ a custom made synthetic surface abrasion process
(Sec. 6.2), which aims to mimic the traits of actual wear. Finally,
we also provide quantitative results (Sec. 6.4) by generating a large
quantity of said synthetic abrasions and evaluate the performance
of our method in the face of different degrees of degeneration by
means of a quality measure.

Figure 4: A selection of reference samples of a staircase pattern on

a pre-Columbian pot after alignment and histogram matching.

6.1. Qualitative Assessment

For the qualitative assessment of our method we look at two
real-world objects, exhibiting characteristic weather-worn de-
ficiencies in their surface paintings. First, a pre-Columbian
pot (Fig. 5, top) from the Josefina Ramos de Cox mu-
seum in Lima, Perú. The annotation of its surface patterns is
publicly available (https://datasets.cgv.tugraz.at/
pattern-benchmark/) from a previous annotation effort
[LSP∗21]. This vessel features polychromatic surface paintings
with two distinct pattern classes ± a series of black triangular stair-
case patterns with alternating orientation at the top and the bottom;
as well as a snake-shaped pattern appearing in three parallel rows
with black and white colorization. The pattern sequence in the mid-
dle row comprises four severely damaged pattern entities. From the
results of the automatic completion (Fig. 5, top right) it can be seen
that the newly generated texture blends in seamlessly and is almost
indistinguishable from the original surface.

The second exhibit ± an Attic black-figured amphora
from the Kunsthistorisches Museum in Vienna, Austria
(https://odeeg.acdh.oeaw.ac.at/vases/object/
detail/127) ± stems from ancient Greek culture. Its surface
patterns are annotated in a similar fashion to the pre-Columbian
patterns, with the annotation given in the supplementary material.
This vessel exhibits extensive surface paintings comprising several
human and animal figures together with a variety of abstract
background fillings. Noteworthy w.r.t. pattern completion is the
sequence of linked bud and flower shapes on the lower body of
the amphora, which is damaged in two areas (Fig. 5, bottom left).
Yet, compared to the previous example, those are better preserved
and in some cases there is just a fraction of the pattern missing.
Fig. 5, bottom right, shows the results of the completion effort
which is used to reconstruct two pattern entities in first gap and
four in the second one. This example shows the benefits of the
Bayesian denoising, since the reconstruction is very faithful to the
orientation and overall appearance of the incomplete patterns.
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Figure 5: Eroded originals (left) and our reconstruction (right) of a

snake shape on a pre-Columbian pot (top, Josefina Ramos de Cox

museum, Lima) and a bud/flower shape on the lower body of an

Attic black-figured amphora (bottom, Kunsthistorisches Museum,

Vienna).

6.2. Synthetic Surface Abrasion

The examples in Section 6.1 are comprised of objects with real sur-
face deficiencies, showing the applicability of our method for real-
world data. On the downside, however, these do not allow to objec-
tively evaluate the quality of the completion, since the original ap-
pearance of the surface pattern is unknown. As a consequence, we
generate additional realistic examples by synthetically introducing
plausible chippings to the object surfaces. The unchanged originals
serve as the ground truth for the missing surface parts.

The synthetic holes are generated in a completely randomized
manner on the unrolled surface, but with constraints which ensure
that they resemble realistic chippings. That is, we model an arbi-
trary abrasion mask by starting with a circle with random radius
r ∈ [rmin,rmax] (rmin = 0.01ds and rmax = 0.05ds, with ds as the
diameter of the unrolled surface), which we place at a random lo-
cation on the surface. To mimic the irregular shape and jaggedness
of real holes we superimpose a random noise ε to the radius of
the circle, amounting to ε(θ) = ∑e∈[0..E] ae/esin(2eθ+φe) at polar
angle θ, with E as the number of error functions, determining the
frequency of the border noise, and {ae} and {φe} as random ampli-
tudes and offsets. The number and irregularity of holes is governed

k h
=

22
k h

=
23

k h
=

24
k h

=
25

E = 21 E = 22 E = 23 E = 24

Figure 6: 300 × 300 pixel erosion masks, visualizing the impact

of the expected rate of hole occurrence kh and number of error

functions E on the synthetic abrasion process.

by nh ∼ Γ(kh) and E respectively. The influence of those parame-
ters can be seem from Fig. 6. kh = 5 and E = 15 have been selected
for our experiments.

By flood-filling the generated holes, which can of course over-
lap, we obtain a mask M which we use to selectively delete sur-
face texture. Instead of leaving the holes as colourless void we fill
them with a salient green hue which makes them easy to recog-
nize and also allows us to investigate the influence of the texture
in these areas on the reconstruction. Applying the mask as it is
to the surface would result in unnaturally sharp edges at the bor-
ders of the holes. Instead we use an alpha blending in the vicinity
of those edges to smoothen the transitions. To this end, we em-
ploy an alpha mask Mα = 1− exp(−M2

dist/2σ2
α), with σα = 8

governing the smoothness. Mdist is the mask M after a distance
transform [Bor86], which gives at each pixel the distance to the
closest zero pixel. The surface image with the synthetic abrasion
Iabr = ⌊I · (1−Mα) +M·Mα⌋ is obtained by combining the
original surface I with the generated mask M.

6.3. Qualitative Synthetic Experiments

To qualitatively assess the pattern completion after applying a syn-
thetic abrasion, we select three distinct objects with diverse charac-
teristics, and thus posing different challenges. They are displayed
in Fig. 7, left column. The first one is a pre-Columbian bowl shape,
exhibiting three rows of ‘N’-shaped patterns with white and red-
dish hue. The second object is a pot with two different pattern
types ± a very simple circular pattern as well as triangular stair-
case pattern, appearing with alternating orientations. The third ob-
ject, an Attic Geometric high-rimmed bowl (https://odeeg.
acdh.oeaw.ac.at/vases/object/detail/100) is the
most complex input. Although, it’s surface painting is monochro-
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Figure 7: Three exemplaric pottery objects with their original 3D model (first column), their model after applying the synthetic surface

abrasion (second column), after the pattern completion with out method (third column) and the color-coded difference between original and

reconstruction (fourth column). The artificial chip-offs are filled with uniform green color.

matic (black), it features three distinct pattern classes which appear
in a repetitive manner: an organic bird shape, a cross-hatched tri-
angle and a stack of inverted ‘V’s. All of them appear a total of 26
times around the solid of revolution. The second column in Figure 7
illustrates the inputs after they are subjected to the synthetic sur-
face abrasion. Note, that the generated artificial chipings (in green
color) vary greatly in shape and size. The third column shows the
models from the previous column after applying the automatic pat-
tern completion while the fourth column constitutes a quality map
revealing the differences between the Ground Truth and the Recon-
struction. These maps are obtained by computing the pixel-wise L2
norm of the respective RGB color channels. For the first object, the
pre-Columbian bowl, it can be observed that the reconstructed pat-
terns in the top and bottom row are visually indistinguishable from
the existing ones. A slight inaccuracy can be observed with the red
patterns in the middle row, but they also appear plausible at large.
Note that some of the green color, marking the surface abrasion,
is still visible below the bottom row. This can be attributed to the
fact that this region is outside the bounding boxes of the patterns
and is thus not part of the reconstruction process. Thin outlines of
the depicted patterns are perceptible in the quality map, indicating
that reconstructed patterns’ shapes marginally differ from the origi-
nals’. The pre-Columbian pot in the second row features a gap with
seven missing patterns of alternating orientation. The completion
is able to correctly predict their orientations. However, some ghost-
ing artifacts can be observed. For the Geometric bowl, four of the
bird patterns are reconstructed but no errors could be spotted from
neither the visual inspection nor the quality map.

6.4. Quantitative Synthetic Experiments

Besides the qualitative assessment in Sec. 6.3, which shows just
one specific surface abrasion use case, we also conduct a quan-
titative evaluation based on an objective metric. We leverage the
quality maps (also shown in Fig. 7, right) to compute a single qual-
ity measure per experiment. To this end, we integrate over this map
and divide the result by the number of pixels which are to be recon-
structed and the maximum value of color intensities. This gives a
value between 0 and 1, where 0 describes a perfect match and 1 in-
dicates the complementary colorization. The same measure is also
determined for the synthetically damaged texture, prior to the com-
pletion. We compute these pairs of measures for 100 different syn-
thetic abrasion experiments for each of the three objects in Fig. 7.
The resulting measurements, plotted over the relative removed sur-
face is shown in Fig. 8. The error of the reconstruction is mostly
within the range of 0.05 and 0.15 and does not seem to change with
increasing amount of reconstructed surface area. The error between
the ground truth and the damaged surface, however, describes a fast
ascend before seemingly converges towards about 0.3. This is to be
expected, as the green hue is not the ultimate complementary to the
original texture.

7. Discussion, Limitations and Future Work

Apparently, at least some of the green color, marking the synthetic
abrasions, is still visible after the completion process (Fig. 7). This
is due to the fact that our reconstruction is limited to the areas, pop-
ulated by patterns. For most practical examples this is sufficient
(Fig. 5) as the clay at the chipped or worn off regions generally has
a similar color than the rest of the vessel. Yet, in some cases other
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Figure 8: Reconstruction error (‘x’) and difference between syn-

thetically damaged surface and ground truth (‘o’), over the relative

removed surface area for three different input objects.

surface decoration, e.g., straight lines around the solid of revolu-
tion, which are without the scope of the proposed method, are also
incomplete. For such cases a processing step combining a chipping
detection [DGP∗19] with an context-based inpainting [CRG∗13],
prior to the pattern completion, would be a viable addition to our
workflow.

In some cases ghosting artifacts can be observed oc-
casionally (see inset) at the boundaries between orig-
inal and reconstructed patterns. This is especially the
case if the original sequence has varying distances in-
between patterns, since we assume a uniform distribution.
This assumption of regularity is
sometimes problematic, especially
in the vicinity of an ornament
band’s seam, because here the an-
cient painter had to adjust the pat-
terns’ widths to the still available
space, making them either narrower
or broader. There are three ways to
address this issue. First, the stitch-
ing algorithm [BA83] used to fuse
the reconstructed patterns with the rest of the surface is not optimal
for our workflow as it is intended for the stitching of panoramic
photographs. For our application the inserted texture patches are
oftentimes too small and the overlap with the rest of the surface
too insignificant to generate reasonable results. However, ± same
as with the other parts of our pipeline ± this building block can be
readily replaced with an algorithm more suited for this task. Other
viable remedies include a fine alignment of the patch before it is
stitched or an incorporation of the user into the completion process.

Another important question is how many preserved patterns
are necessary to reasonably reconstruct a sequence. Generally, the
number of preserved patterns needs to be significantly higher than
the number of missing ones. Our experiments indicate that a com-
pletion is feasible with up 30% of a sequence missing. With even
higher fractions the generation rule detection (Sec. 4) and gap de-
tection (Sec. 5.1) are no longer reliable.

8. Applications

The proposed approach contributes to two significant aspects of
archaeological pottery research. First, for the attribution of pot-
tery objects (so-called vases) to painters/workshops and to man-
ufacturing techniques, and second, for educational and communi-
cational purposes regarding these CH objects. Within the field of
research on ancient vase painting the determination of a pattern
sequence’s generation grammar can be used for recognising char-
acteristic properties of painters’ hands or pottery workshops. For
instance, friezes with rows of birds are very common in Geometric
pottery. From the automatically determined generation grammar it
is possible to analyse their similarity to other occurrences on dif-
ferent pottery objects and to cluster them accordingly. From a cer-
amologist’s view, the estimation of the number of missing patterns
is generally useful as it helps to grasp the painter’s overall plan. An-
other important aspect of this reconstruction approach is the predic-
tion of expected patterns, especially in cases where such repetitive
patterns are only partly preserved. As a proxy, similar to the domain
knowledge applied by an archaeologist processing pottery, this can
strongly support computer-assisted pattern recognition or retrieval
tasks. Regarding the educational field, the reconstruction of miss-
ing parts is relevant for presenting CH objects ± physically as well
as virtually; e.g., for teaching activities or for replicas.

9. Conclusion

We present an automatic approach for the completion of pattern
sequences on ancient pottery. To this end, we determine the se-
quence’s grammar by inferring a prototypic transformation be-
tween consecutive patterns. This generation grammar allows us to
detect gaps in the sequence which will fill with a statistical denois-
ing approach, using the sequence’s preserved patterns. The employ-
ment of this workflow for real world examples, as well as syntheti-
cally generated use cases, proves the applicability of our approach
for the problem at hand. Hence, the contribution of our paper is the
proposed workflow with some self-created and some preexisting
building blocks. We want to stress that those could be exchanged
and adopted independently to improve certain aspects or address
additional challenges.
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