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Abstract

Photometric multi-view 3D geometry reconstruction and material capture are important techniques for cultural heritage digi-
talization. Capturing images of artifacts with high resolution and high dynamic range and the possibility to store them losslessly
enables future proof application of this data. As the images tend to consume immense amounts of storage, compression is es-
sential for long time archiving. In this paper, we present a lossless image compression approach for multi-view and material
reconstruction datasets with a strong focus on data created from cultural heritage digitalization. Our approach achieves com-
pression rates of 2:1 compared against an uncompressed representation and 1.24:1 when compared against Gzip.
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1. Introduction

In the past, research on cultural heritage digitalization mostly fo-
cused on creating reconstructions instead of efficient storage of
datasets. Digital copies, commonly called datasets, of cultural her-
itage artifacts consist of a set of images captured from different
camera positions for multi-view geometry reconstructions and with
different lighting conditions for material capture. Moreover, they
contain the extrinsic and intrinsic parameters for each camera and
the light source positions. To achieve the goal of transferring ar-
tifacts across generations, it is important to store these datasets at
multiple secure locations. This is currently limited by the enormous
image file sizes that are caused by capturing the images with high
resolutions of up to 100 megapixels and dynamic ranges of up to
16 bit, making storage and transfer inefficient and expensive. In or-
der to reduce storage requirements and transfer times, compression
of multi-view and material capture datasets is mandatory. To keep
the original quality and avoid losing any information of the original
images, the datasets need to be compressed losslessly.

Initially, the individual images are archived either in the propri-
etary camera file format or an uncompressed representation with
generic compression (e.g. Gzip). Due to hardware limitations of
the cameras, these image file formats yield sub-optimal compres-
sion rates. Industry cameras usually transfer pixel data using a bus
system to a standard computer system in uncompressed form. The
images are commonly written out to uncompressed file formats
due to simplistic interfaces that do not offer features like com-
pression. Usually, Gzip or similar generic compression algorithms
are then used to compress the uncompressed image representations,
also leading to non-optimal compression rates. Other state-of-the-
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art image compression algorithms are either lossy or do not support
high dynamic range images.

2. Related Work

The lossy JPEG image compression algorithm of Wallace [Wal91]]
compresses quantized DCT coefficients of an image using Huffman
coding. The JPEG 2000 algorithm of Christopoulos et al. [CSE0O]
uses a discrete wavelet transformations instead that can also be ap-
plied losslessly. This algorithm is limited to encode the wavelet co-
efficients independently using an arithmetic coder. Shapiro [[Sha93||
showed that the individual subbands of a wavelet transformation
can be aligned in a tree structure. He used the fact that insignificant
coefficients remain insignificant in higher frequency subbands to
perform lossy compression. The PNG algorithm of Boutell [Bou97||
is able to compress images with bit depths of up to 16 bit losslessly.
For this, he uses local filter techniques whose responses are en-
coded using a Huffman coder that produces inferior results when
compared against other entropy coders.

The lossless approach of Martins and Forchhammer [MF9§],
usually denoted “LOCO-3D” as it is a 3D extension of the LOCO-I
algorithm by Weinberger et al. [WSS96], compresses video frames
using a set of different predictors that are sequentially evaluated
to optimally predict the neighboring, motion compensated pixels
from reference frames to exploit inter-view redundancies. As this
algorithm was designed for video compression, a pseudo video se-
quence must be created prior to the actual encoding. Brunello et
al. [BCMRO?2] extended this to a mathematically well-posed algo-
rithm, called “LOPT-3D”, that uses a weighed sum of previously
coded pixels by solving a linear equation system resulting in better

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0000-0002-0036-319X
https://orcid.org/0000-0001-5539-9096
https://orcid.org/0000-0001-9732-5677
https://orcid.org/0000-0001-7756-0901
https://doi.org/10.2312/gch.20191343

22 M. von Buelow, S. Guthe, M. Ritz, P. Santos & D. Fellner / Lossless Compression of Multi-View Cultural Heritage Image Data

compression rates than LOCO-3D. LOPT-3D uses a Golomb-Rice
coder as its coding backend. Carotti and De Martin [CDO5| used
multi-frame Block Motion Compensation to further enhance the
results of the LOPT-3D approach. Kamisetty and Jawahar [KJO3|
estimated three view relationships using a trilinear tensor to create
a prediction followed by a residual coding step. Perra [Per15] en-
codes multi-view images by minimizing the entropy of the 1D Dif-
ferential Pulse-Code Modulation (DPCM) and encoding the block-
DPCM data using the LZMA dictionary coder backend. A compar-
ison between DPCM, 3D Discrete Cosinus Transformations (DCT)
and Principle Component Analysis (PCA) predictions based on es-
timated disparity values was done by Shah and Dodgson [SDO1].
However, all these algorithms need inefficient prior disparity esti-
mation and perform sub-optimal on real-world datasets.

3. Preliminaries

Cultural heritage image data usually consists of a set of images
and their camera and light parameters. These images are two-
dimensional arrays of a color representation that depends on the
camera sensor. Colors are usually represented in the standard RGB
(sRGB) color space using three color values for preprocessed im-
ages or using a Bayer Pattern with vendor specific bit lengths for
unpreprocessed (raw) images. The Bayer Pattern can be seen as
a single pixel with four color channels: one red, two green chan-
nels and a blue one. The conversion of the Bayer Pattern to a four-
channel represenation is visualized in fig.[T}
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Figure 1: In the Bayer Pattern, each pixel contains only one of the
three color channels. Since the pattern repeats for every 2 X 2 pixel
group, it can be represented as a single, four-channel color image.
Due to the high resolution of the camera images, the offset between
channels is negligible.

The sets of images contain different redundancies that can po-
tentially be used for efficient lossless compression:

e Temporal/inter-view redundancies: Pixels from correlating re-
gions (i.e. pixel referring to the same point in an object) in two
images commonly tend to have similar values.

e Spatial/inter-pixel redundancies: Adjacent pixels usually have
similar values.

e Spectral redundancies: Adjacent frequency coefficients com-
monly tend to have similar values.

e Coding redundancies: Redundancies caused by inefficient cod-
ing of symbol representations.

Spatial and spectral redundancies are caused by the heavy tailed

image statistics of natural images [WSO00|]. Temporal redundancies
are caused by multiple images capturing the same object but with
different capturing conditions. Coding redundancies occur by al-
lowing trivial random access of the pixels, because files and mem-
ory can usually only be addressed in multiples of 8 bit.

To evaluate temporal redundancies, we captured an optimal
dataset consisting of 10 images with same camera and scene config-
uration, theoretically having the maximum temporal redundancies
possible in realistic conditions. Initial experiments on this dataset
showed that it is hard to compress temporal redundancies losslessly,
as they need previous expensive motion or light compensation steps
and the remaining residual cannot be compressed efficiently. As
each image of this dataset consist of the ground truth data with un-
correlated and correlated mean-free noise, the difference between
two images has roughly twice the amount of noise. As long as a
compressor is better at encoding the ground truth signal than the
noise, a prediction based on a single noisy input is going to be
worse [Buel9|.

4. Lossless Image Compression

Our method compresses the spectral redundancies for each view
independently as follows:

Let L and H be the low and high frequency components of a 1D
signal determined by a lossless CDF 5/7 discrete wavelet transfor-
mation [CDF92]]. Given an input image, our method computes L
and H row- and column-wise successively resulting in LLgy, LHy,
HLy and HHy. This process repeats n times on LL; _,_ to create
lower frequency subbands of the image.

This recursive structure of the wavelet transformation allows a
topological alignment of each subband, which is defined as follows
(see also fig. 24). Pixels of the subband with the coarsest resolution
LL, are defined to be the root of the tree structure. Pixels at the
corresponding position in the remaining three subbands of the same
resolution HL,, LH,, and HH, are the children of the root node. Due
to the self similarity of the signal, high frequency wavelet subbands
HL; tend to be bound by the lower resolution values HL; . Thus,
the four pixels LH;_ are the children of LH;. The same applies for
H L,’ and HH, i

Given this tree structure, we use a context-adaptive arithmetic
coding scheme to encode all wavelet coefficients. The approach
performs a context selection based on the parent of each wavelet
coefficient. For this, the parent coefficient is divided into two parts
with equal amounts of bits. The most significant bits (MSB) are
used as the bin for the context selection switching between m = 2"
models, where 7y, is the amount of MSB. We use this model to en-
code only the n, MSB of the actual coefficient as the remaining
least significant bits (LSB) have too much variation, slowing down
the adaptation of the model and encode the LSB in an second en-
coding step. For this, the actual coefficient’s n, MSB are addition-
ally used to perform a second context selection of further m models
for each previous bin resulting in a total number of m” 4+ m mod-
els. Afterwards, the selected model is used to encode the remain-
ing LSB of the actual coefficient. Assuming a bit depth of 8 bit, the
number of models to be allocated is 16> + 16 = 272. For a bit depth
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(a) Tree dependencies of the wavelet (b) Traversal order of the wavelet
tree [Sha93). tree [Sha93).

Figure 2: Topological relations between the different subbands.
Each coarse subband has four children in the finer subband, ex-
cept of the coarsest subband. The traversal order is defined to tra-
verse coarse subbands first and then successively each finer sub-
band. This ensures that parents are coded prior to children.

of 16 bit 256% 4256 = 65792 models need to be allocated. All mod-
els are based on dynamic frequency tables and the amount of bits
for the context selection is limited to 8. However, we expect that
on average only m of the m? models are used for the second con-
text selection, since coefficients vary only slightly between wavelet
levels.

Figure [3] shows the flow chart of the whole process. Again, the
four MSB of the current coefficient are encoded with an arithmetic
coder that uses a model selected from a list of parent models de-
pending on the four MSB of the parent coefficient. Then, the re-
maining four LSB of the current coefficient are encoded using an-
other model selected from a list of current models depending on
each four MSB of the parent coefficient as well as the current coef-
ficient.

As the root of the wavelet tree, i.e. the coarsest subband, has no
parent coefficient, it is encoded using a context-free model. The
limit of eight bits for the bin index is used to prevent excessive
memory requirements that are caused by the increasing number
of models. We use the implementation of Moffat et al. [MNWO§||
for arithmetic coding and the implementation of Fenwick [Fen94;
Fen96] for dynamic frequency tables.

To preserve the reversibility of the compression scheme, all data
that was available for compression must be available for decom-
pression as well. Specifically, each parent must be coded prior to
its children. Thus, the encoder starts with the root node and ascents
from there to the higher frequency subbands as visualized in fig.[2b]
The bin index used for the second model selection is available to the
decompression algorithm by directly decoding it from the stream.

5. Results

In this section, we evaluate our compression approach on dif-
ferent cultural heritage datasets. The Angel dataset is a multi-
view material capture dataset acquired with the CultArc3D scan-
ner of the Competence Center Cultural Heritage Digitization
of the Fraunhofer Institute for Computer Graphics Research
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Figure 3: Flow chart of context-adaptive coding of the wavelet co-
efficients exploiting the correlations to the topological parent co-
efficient. Bits used for model selection are marked using a dashed
arrow and then connected to the arithmetic coder using a solid line.
Bits that are encoded are marked using a solid arrow.

(a) Shoe.

(b) Head. (c) Angel.
Figure 4: Example pictures of the individual datasets we used to
perform our evaluations. The picture of the Angel dataset is the
maximum image of all possible lighting directions.

[SRT*14; SREF17]. As image sensor, 18 industry cameras of type
IC11000CU from NET GmbH with a resolution of 3840 x 2748
pixels and a bit depth of 12bit are used. The CultArc3D scanner
consist of two rotating arcs of which one is equipped with 9 cam-
eras and the other one with 9 lights at equiangular spacing. Both
arcs can move independently of each other and can reach positions
at an angular resolution of 1/100°. For a material capture dataset,
9 individual angular positions are used for each arc in combination,
resulting in 9 X 9 camera and 9 x 9 light source positions, in total
o4 images. The Shoe dataset containing 597 images was captured
with the CultArm3D scanner [SRT*14] which is using a robotic
arm to position an attached NIKON D610 camera at a resolution
of 6080 x 4028 pixels and a bit depth of 14 bit, controlled by an
intelligent next-best view planning algorithm to determine the best
poses for 3D reconstruction. The Head dataset, consisting of 252
images, was also captured with the CultArm3D scanner, but using a
Phase One A/S iXG 100MP with a resolution of 11608 x 8708 pix-
els and 16 bit per pixel as imaging sensor. Example pictures from
the datasets can be seen in fig. [

The original file format of NIKON, Canon and PhaseOne cam-
eras are NEF, CR2 and IIQ respectively. These formats are loss-
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Approach Shoe Head Angel
Uncompressed 14 16 12
Gzip 9.272 9.411 7.987
PNG 10.434 11.676 7.267
Raw 9.356 9.477 —
Ours 7.659 9.033 5.462

Table 1: Results of our compression approach compared to state-
of-the-art lossless image compression algorithms. All values are in
bits per pixel.

lessly compressed with proprietary algorithms. The images of the
NET camera must be read using an API that directly communi-
cates with the camera, producing uncompressed 16 bit TIFF files
that contain scaled 14 bit samples. All these cameras encode color
information using a Bayer Pattern.

Table[T]shows the results in bits per pixel. It can be observed that
our approach has compression rates of approximately 2:1 compared
to an uncompressed representation. Results of Gzip and the propri-
etary raw format are similar, indicating that the camera manufac-
turers possibly use similar compression techniques. Gzip archives
compression rates of about 1.5:1 and the rates of PNG range from
1.37:1 to 1.65:1.

6. Conclusion and Future Work

In this paper, we presented a lossless compression approach for
cultural heritage datasets that takes advantage of spectral redun-
dancies. Initial experiments showed that temporal redundancies can
not be exploited efficiently, having the side-effect that random ac-
cess within the dataset can be implemented easily. Our approach
achieves compression rates of 2:1 against an uncompressed repre-
sentation and 1.24:1 against Gzip. In the future, we would like to
further analyze camera sensor noise and evaluate if it is possible to
remove it in a preprocessing step, creating a lossless representation
in an optical sense. This would allow for an even more efficient
temporal redundancy reduction.
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