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Abstract
Deciphering the Maya writing is an ongoing process that has already started in the early 19th century. Among the reasons
why Maya hieroglyphic script and language are still undeciphered are inexpertly-created drawings of Maya writing systems
resulting in a large number of misinterpretations concerning the contents of these glyphs. As a consequence, the decipherment
of Maya writing systems has experienced several setbacks. Modern research in the domain of cultural heritage requires a
maximum amount of precision in capturing and analyzing artifacts so that scholars can work on - preferably - unmodified data
as much as possible. This work presents an approach to visualize similar Maya glyphs and parts thereof and enable discovering
novel connections between glyphs based on a machine learning pipeline. The algorithm is demonstrated on 3D scans from
sculptured monuments, which have been filtered using a Multiscale Integral Invariant Filter (MSII) and then projected as a 2D
image. Maya glyphs are segmented from 2D images using projection profiles to generate a grid of columns and rows. Then,
the glyphs themselves are segmented using the random walker approach, where background and foreground is separated based
on the surface curvature of the original 3D surface. The retrieved subglyphs are first clustered by their sizes into a set of
common sizes. For each glyph a feature vector based on Histogram of Gradients (HOG) is computed and used for a subsequent
hierarchical clustering. The resultant clusters of glyph parts are used to discover and visualize connections between glyphs
using a force directed network layout.

CCS Concepts
•Human-centered computing → Graph drawings; Information visualization; •Computing methodologies → Object iden-
tification; Cluster analysis; •Applied computing → Optical character recognition;
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Figure 1: Panel 1 from the Maya site of La Corona. Acquired
(with kind permission by Instituto de Antropolog a e Historia de
Guatemala) using a structured light 3D scanner. Surface curvature
computed using MSII, and visualization and rendering performed
in GigaMesh (gigamesh.eu). This is one of the raster images of
Maya panels used in our extraction and analysis pipeline.

1. Introduction

Creating tools to simplify the analysis and the encoding of ancient
historical materials such as the writing system of the Maya culture,
or in any other domain of digital humanities, e.g. the retrieving of
cuneiform characters [MK13] is vital for the recognition and dis-
covery of patterns.

The interpretation and understanding of ancient Maya inscrip-
tions requires the identification of the basic individual glyphs of
their writing system. Currently this identification process is per-
formed manually, using the printed catalogue by Thompson and
Stuart [TS62], which contains all known deciphered and undeci-
phered glyphs.

This work develops a machine learning pipeline for an auto-
mated Maya glyph segmentation from the projected 3D scans and a
subsequent clustering of the segmented glyps and their subglyphs.
As a feature descriptor we use Histogram of Oriented Gradients
(HoG). The main idea of the descriptor is that the appearance and
the shape of an object in an image can be represented by the local
changes in intensity and edges. With this information we perform
a hierarchical clustering to visualize similar glyphs and subglyphs
on the images.

Retrieving Maya glyphs using Shape Descriptors has been
addressed by researchers from the Idiap (Institut Dalle Molle
d’intelligence artificielle perceptive) Research Institute in Switzer-
land. In [RRPOGP09] Maya glyphs have been retrieved with the
Shape Context method by Belongie [BMP02]. The authors used bi-
narized images that were drawings, human interpretations of the
original glyph inscriptions. Each point of the glyph’s shape is rep-
resented in an histogram characterized by its angle and distance
from the root. By comparing the similarity of the histograms simi-
lar glyphs have been retrieved. Furthermore in [RRPOGP11] a new
descriptor has been introduced Histogram of Oriented Shape Con-
text (HOOSC), which extends the Shape Context descriptor by Be-

Figure 2: The date symbol KAN, T506, with its annotated subg-
lyphs. Due to their varying sizes, the subglyphs will be assigned
to different clusters of similar image size. Subsequent visual clus-
tering of the subglyphs is then performed independently for each
cluster of image sizes.

longie with the distribution of the orientation of the Shape Context
descriptor similar to HOG [DT05].

In [RRMM17] Rangel et al. present an approach to estimate a
dimensionality reduction technique and visualize a corpus of Maya
glyphs in 2D space using a pre-trained VGGnet [SZ15], a convolu-
tional neural network architecture. By using the result of the dimen-
sionality reduction as their ground-truth, the authors avoid deal-
ing with the inherent challenges of data-sparsity in the analysis of
Maya script. Further, the resulting visualization focuses on a high-
level abstract overview, where each glyph is represented as a point.
In our work, a-priori learning of the dataset is not necessary, allow-
ing us to analyze a small corpus of glyphs where correspondences
and shared similarities between glyphs are directly presented and
highlighted.

2. Data Sets & Pre-processing

The data set consists of two 3D scans of Maya monuments, taken
by Christian Prager during the exhibition “Maya. Das Rätsel der
Königsstätte” in Speyer, Germany [SG16] (Project Text Database
and Dictionary of Classic Mayan, University of Bonn). The glyphs
in this data set were carved into stone. Consequently fewer people
worked on the glyphs and there are less differences in the shapes
of glyphs. Contrary to manually created tracings the glyphs are an
exact depiction of the original inscriptions.

The La Corona panel dating 692 A.D. (Figure 1) is in its original
size 55.5cm × 42.0cm in its dimensions. The panel assembles 65
glyph blocks, which have an average of 3.8cm × 4.3cm. The cre-
ated 3D scan has been exported as an 2D image with a resolution
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Figure 3: Processing pipeline of our segmentation, clustering and visualization approach.

of 6555×4966 pixles. Next, Cancuen, Panel 1 (767 A.D.), which
is with 141.7cm × 95.1cm larger than the Corona panels and situ-
ates 160 glyph blocks with an average size of 5.8cm × 4.1cm. The
image data has a resolution of 4000×2027 pixels.

Both data sets benefit from a clear structured ordering of the
Maya glyphs on the panels, where the glyph blocks are arranged
in a matrix like representation. Typically, Maya glpyh-blocks are
composed of several signs, which are assembled around a larger
sign, usually called main sign. In Figure 2 the glyph main glyph
KAN(red) is surrounded by the numbering symbol to the left
(green) and a date symbol on the lower side (yellow). In this work
we were interested in segmenting the glyph blocks from the panels
and subsequently its signs.

After 3D acquisition, we compute surface features using
the Multi-Scale Integral Invariant method [MKJB10] using the
GigaMesh framework. For each vertex on the surface of the mesh,
the MSII approach computes the ratio of bounded volumes below
and above a set of virtual spheres of increasing size. The resulting
feature vector describes the surface curvature in terms of convexity
and concaveness. Each element of the feature vector represents one
of the multiple scales of the spheres used to intersect the surface.
This allows us to robustly identify and label grooves and plateaus
on the surface of Maya panels. Since glyphs and, to a lesser degree,
subglyphs can be modeled as plateaus surrounded and separated by
grooves, we rely on segmentation within the MSII feature space.

3. Data Processing Pipeline

In this work we distinguish between glyph blocks and signs. Glyphs
blocks in Maya hieroglyphic script are usually rectangular, often
quadratic, well separated symbols used to signify concepts. Signs

are distinct and recognizable patterns and depictions inside these
glyphs blocks, some of which are repeated in similar form across
very different glyphs blocks. However, in this work, due to the auto-
mated approach of segmentation the extracted pattern do not always
represent proper signs. We therefore refer to these extracted pat-
terns as subglyphs as they originate from an original glyph block.
Thus, the main two concepts used in this work are glyph blocks,
shortened to glyphs, and patterns extracted from these, the subg-
lyphs.

Our contributions in this work are as follows: (i) exploiting the
surface curvature of Maya panels by pre-procssing with MSII for
subsequent image processing (ii) automatically identifying, seg-
menting, and clustering repeating subglyphs in a small corpus of
Maya panels, and (iii) visualizing the hereby created network of
glyphs sharing visually similar subglyphs.

We develop a multiple staged segmentation and clustering
pipeline to approach the challenge of identifying and segmenting
subglyphs and visualize the resulting glyph network using a force
directed graph layout. Our pipeline is composed of the six follow-
ing stages: (1) The segmentation of glyphs from Maya panels, (2)
the segmentation of subglyphs from the glyphs, (3) the clustering
of subglyph shapes, (4) the feature transform of the subglyphs, (5)
subsequent hierarchical clustering thereof, and (6) the graph com-
putation and layout. This process is illustrated in Figure 3.

4. Glyph Segmentation

We segment glyphs from Maya panels by employing a projection
profile approach to detect horizontal and vertical lines, as shown
by Santos et al. in [DCRC09] for Latin script. The pixel intensi-
ties of the raster image of the 2D projection of the MSII filtered
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panel are summed along its vertical and horizontal axis. Then, a
minimum filter is applied on this signal to detect extremal points.
Extremal points are located where the minimum filter and the sig-
nal are equal. These are columns or rows with the most whitespace
on the panel, they contain the lowest pixel intensities and identify
the absence of glyphs.

We compute a grid given the horizontal and vertical extremal
points that is overlaid on the panel and from which glyphs are ex-
tracted. Figure 4 depicts the extracted grid lines and the projec-
tion profiles of a Maya panel. Glyphs extracted from the grid are
rescaled to an uniform size to allow comparisons across different
panels.

5. Subglyph Segmentation

While glyph segmentation proceeds by detecting vertical and hori-
zontal whitespace on panels to extract a regular grid, subglyph seg-
mentation requires a more flexible approach, the arrangement and
shapes of subglyphs in a glyph are varied.

We employ the random walker segmentation approach by Grady
in [Gra06]. The random walker segmentation algorithm models a
raster image as a graph with pixels as nodes and edges connecting
to the 8-neighborhood of pixels, where the edge weights are given
by the pixel similarity of two pixels. Then, from a set of labeled
points random walks are computed. The label of an arbitrary pixel
is given by the first random walk reaching it from the initial set of
labeled pixels.

The initial set of labels can be either given a-priori or, as in our
case, computed from the image itself. On MSII filtered Maya pan-
els the pixel values correspond to the surface curvature of the panel.
Therefore, we segment subglyphs by thresholding the pixel values,
that is, selecting and separating regions based on surface curvature.
Concave regions, i.e. gaps separating subglyphs, have low pixels
values. We define those to be the background. Subglyph faces are
often convex and have high pixel values, we define those as the
foreground.

To mark those regions for the random walker segmentation, we
apply two thresholds on the extracted glyph images, a background
threshold and a foreground threshold. The values of the MSII fea-
ture vectors have been averaged and rescaled to a range of [0,1].
We experimented with different threshold values and determined
t1 < 0.5 for the background and t2 > 0.7 for the foreground to
give the best segmentation results. The process of the thresholding,
marking and segmentation is shown in Figure 5.

6. Subglyph Clustering

As the segmented regions of subglyphs have various extents, we
normalize the extracted raster images to uniform size. However,
the extents of the segmented subglyphs are semantically relevant.
Comparing a very wide subglyph to a very narrow subglyph makes
no sense, both images would have to be significantly distorted to
extract feature vector of the same length.

Therefore, we discretize the subglyph extents into a limited dis-
crete set of clusters. We encode the extents as a space of two-
dimensional vectors and perform vector quantization of this space.

Figure 4: Grid lines (black) resulting from vertical and horizontal
profile projections (blue) and minimum filter response (orange) of
a MSII filtered and rendered panel raster image.

Quantization is performed with k-Means [Mac67] where we set
k = 10. A lower count of clusters led to some strongly distorted
subglyphs in our dataset. A higher count of clusters precludes the
discovery of similar subglyphs since subglyphs are only compared
with other candidates in the same cluster.

We then proceed with feature extraction for each rescaled subg-
lyph in its respective shape cluster. We compute the Histogram-of-
oriented-Gradients (HoG) descriptor with 8×8 histogram cells and
3× 3 block normalization cells. Smaller cells led the descriptor to
pick up on irrelevant noise while larger cells missed semantically
meaningful detail like small point-like inscriptions. The resulting
feature vectors are of the same size within shape clusters but of
different size between shape clusters.

To extract clusters of visually similar subglyphs we perform an-
other clustering of feature vectors of each shape cluster. Here, we
require clusters to be highly visually similar, that is, all subglyphs
to be below an visual dissimilarity threshold. Agglomerative clus-
tering with a complete linkage criterion, as first shown by Defays
in [Def77], achieves this goal of grouping subglyphs given a dis-
similarity threshold.

The same visual dissimilarity threshold is different for each
shape cluster as the distance computation is dependent on the fea-
ture vector length. We normalize these thresholds by normalizing
the distance matrices of each shape cluster to [0,1]. Then, we com-
pute the hierarchical clustering of the feature vectors for each shape
cluster and uniformly cut the resulting clustering trees, which are
due to the normalization all of height 1, at a height of 0.1. From
the resulting clusters, we discard any clusters that contain only one
subglyph. These do not provide any information for our subsequent
network visualization of glyph connections.
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(a) (b)

(c) (d)

Figure 5: Stages of subglyph segmentation. (a) Glyph segmented
from a Maya panel using projection profiles. (b) Foreground (yel-
low) and background (teal) markers, set by thresholding MSII (sur-
face curvature) values. (c) Independant regions (yellow) detected
by random walker segmentation. (d) Disconnected components an-
notated by distinct labels.

7. Glyph Network Visualization

From the clusters of visually similar subglyphs we construct a
graph of glyphs that are related by sharing a subglyph. To explore
the relations and semantic concepts expressed in such a graph, we
employ a network visualization of the glyphs, where related glyphs
are moved close together and unrelated glyphs farther apart.

We perform an iterative relaxation procedure, a force directed
graph layout such as first shown by Eades in [Ead84], given three
forces acting upon the nodes of the relatedness graph: (1) Nodes are
pulled closer together along edges that connect them, (2) nodes are
pulled closer together to all other nodes, (3) nodes are pushed apart
if they are too close. Force (1) is used to keep related nodes close
together, force (2) is much weaker than force (3) and ensures com-
pactness of the layout, i.e. no unnecessary whitespace is present,
and force (3) moves very close nodes apart to leave space for ren-
dering glyph images.

Formally, let i, j denote the indices of the glyphs segmented from
our dataset of Maya panels and let k, l denote the indices of subg-
lyphs subsequently sliced from the aforementioned glyphs. Then,
let ↓ i = {k, l, . . .} denote the operation by which we get the subg-
lyph indices {k, l, . . .} of a glyph i.

We denote the graph of relatedness between glyphs by an adja-
cency matrix ai j ∈ A where each ai j indicates the presence ai j = 1
or absence ai j = 0 of a connection between glyphs i and j. The
adjacency is computed by connecting glyphs sharing the same sub-

glyphs as computed by the hierarchical clustering. Let ck denote the
cluster index of a subglyph k, then the elements of A are computed
as follows:

ai j =

{
1, if c↓i∩ c↓ j 6= ∅
0, otherwise

(1)

For laying out the graph let vt
i ∈ R2 denote a position of a node

associated with glyph i at time step t. We define the three aforemen-
tioned forces acting upon nodes associated with glyph i, force (1)
~f a

i for keeping related nodes close, force (2) ~f b
i for keeping the

layout compact, and force (3) ~f c
i for avoiding overlapping nodes.

The vector ~ni j denotes the normal pointing from node vt
j to vt

i .

~ni j =
(vt

i−vt
j)

‖(vt
i−vt

j)‖
(2)

~f a
i = ∑ j 0.1∗ ~ni j ∗‖(vt

i− vt
j)‖∗ai j (3)

~f b
i = ∑ j 0.01∗ ~ni j ∗‖(vt

i− vt
j)‖ (4)

~f c
i = ∑ j 0.01∗ (−~ni j)∗ 1

‖(vt
i−vt

j)‖
(5)

Then, the layout is computed by first initializing the node po-
sitions v0

i at the beginning randomly and iterating the following
equation.

~vt+1
i = ~vt

i +
~f a

i +
~f b

i + ~f c
i (6)

The final positions of the nodes vt
i denote the layout of the graph.

We found that 1000 iterations provide enough time for the layout
to settle.

8. Results

The resulting visualization, shown in Figure 6, of the glyph network
provides an intuitive view into the groups of glyphs and their rela-
tions formed by sharing similar subglyphs. This method of anal-
ysis allows us to explore and discover interesting commonalities
between glyphs without the need of a-priori query statements, such
as those necessary in typical database systems. For example, since
we analyze more than one panel at once, we can easily discover
glyphs which are unique to a panel or common in the processed
dataset. While specific glyphs may be unique for a panel, subg-
lyphs of unique glyphs can be common in a set of panels.

The main limitations of our work are: (i) the glyph segmenta-
tion and thus line detection not being flexible enough. One of the
panels in our dataset is warped leading to non-parallel line separa-
tors. Employing Hough transform [DH72] or line detection with
seam carving [AS14] alleviates such issues. (ii) Feature extrac-
tion is not powerful enough. Either employ an siamese neural net-
work to compare image patches [ZK15] or use texture classifica-
tion methods such as local binary features [LFG∗17] and SIFT-like
methods [CMK∗14]. (iii) The visualization does not scale with sig-
nificantly larger datasets. In this case showing a higher-order view
of panels as nodes, instead of glyphs, connected by edges of similar
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glyphs and sub-glyphs increases the capacity of the visualization to
display large datasets.

9. Summary & Future Work

In this work we presented an approach for Maya glyph and subg-
lyph segmentation and clustering to enable the extraction and net-
work visualization of connections of glyphs by means of their sub-
glyphs.

First, applying a vertical and horizontal projection profile, we
extract and segment glyph images from panels. Then, a random
walker segmentation extracts subglyphs from the glyph images
based on the surface convexity of original 3D scan. We cluster the
space of image extents and normalize subglyphs to common sizes.
Then, subglyphs in their respective size cluster are clustered hier-
archically based on their HoG features. From these the adjacency
of glyphs is computed and laid out in two dimensions using a force
directed layout.

For future work a significantly larger dataset would allow for
more salient discoveries of glyph connections and common subg-
lyphs across a corpus of Maya panels. Additionally, a large corpus
allows for identifying unique and isolated glyphs, that is, glyphs
sharing no subglyphs with others, with significantly higher confi-
dence.
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Figure 6: Glyph connection visualization. Based on the adjacency matrix computed from shared visually similar subglpyhs, a force directed
layout is computed. The respective shared subglyphs are highlighted by red bounding boxes and red lines between glyphs. Tight clusters
and many red connections indicate a high degree of interrelatedness, i.e. many shared subglyphs between glyphs, and a high degree of
composability, i.e. glyphs are composed of common subglpyhs instead of containing original subglyphs.
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