
EUROGRAPHICS Workshop on Graphics and Cultural Heritage (2018)
R. Sablatnig and M. Wimmer (Editors)

Towards the reconstruction of wide historical sites:
A local graph-based representation to resample gigantic acquisitions

Arnaud Bletterer1, Frédéric Payan1, Marc Antonini1 and Anis Meftah2

1Université Côte d’Azur, CNRS, I3S
2Cintoo3D

Abstract
Nowadays, LiDAR scanners are able to digitize very wide historical sites, leading to point clouds composed of billions of points.
These point clouds are able to describe very small objects or elements disseminated in these sites, but also exhibit numerous
defects in terms of sampling quality. Moreover, they sometimes contain too many samples to be processed as they are. In this
paper, we propose a local graph-based structure to deal with the set of LiDAR acquisitions of a digitization campaign. Each
acquisition is considered as a graph representing the local behavior of the captured surface. Those local graphs are then
connected together to obtain a single and global representation of the original scene. This structure is particularly suitable for
resampling gigantic points clouds. We show how we can reduce the number of points drastically while preserving the visual
quality of large and complex sites, whatever the number of acquisitions.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Range data I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and
systems

1. Introduction

Many initiatives are under way to store and share digitally cultural
heritage all over the world. Since two decades now, strong attention
has been given towards 3D scanning methods. There are many pur-
poses of such an application like digital archiving, physical repli-
cation, remote fruition, digital restoration, monitoring of cultural
heritage [PGA01]...

There exists a broad range of processes allowing to obtain 3D
digital representation of real-life objects such as laser scanning,
shape from X (structured light, silhouette, stereo, video, shading,
photometry, focus, shadow), or even contact systems [PKA∗07].
The use of one instead of another depends on a broad range of cri-
teria like area of the region to capture, precision of the measures,
duration of the acquisition campaign, and so on. Overall, one can
decompose the 3D digitization process into two main steps : acqui-
sition and aggregation.

The first step consists in the capture of the elements composing
the region of interest. For this, acquisition systems are moved to
different positions, in order to acquire information from different
points of view. Such data is then processed into the second step,
which assembles the different pieces acquired independently. This
step can be quite different between two distinct processes, as the
data which has to be merged might not be of the same type. In a
context of shape from X, the data acquired are classical 2D images,
and 3D points are extracted from such images during this merging

process. In a context of laser scanning, the acquired data are already
3D points, but defined in the local coordinate frame of the scanner.
Thus, the aggregation process consists in the registration of all the
points in a single world coordinate frame.

In the end, all of those methods provide a point cloud represent-
ing samples on the surface of the captured scene. However, such
a representation is rarely used as this. For example, for visualiza-
tion, visual perception can be better if the inherent surface is dis-
played instead of such a point cloud. Also, when replicating an ob-
ject, by stereolithography for instance, a polygonal model must be
constructed from the point cloud before its creation. Finally, those
usages though not being an exhaustive list of the possibilities al-
ways require the reconstruction of surfaces from the point clouds
generated.

2. Related work

The accuracy of LiDAR acquisition systems has considerably in-
creased over the years. Such a technological evolution make it pos-
sible to obtain extremely precise acquisitions, up to 1mm accuracy.
This means that nowadays such equipments can be used to obtain
an overall description of a cultural heritage site, but also to capture
very small details, despite the huge area of the region they cover.

Having such a precision while digitizing a whole site results in
point clouds which can contain several billions of points. More-
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over, those point clouds are the result of the merging of different
acquisitions taken at different locations. Thus, they exhibit numer-
ous defects in terms of sampling quality (highly non-uniform dis-
tributions, noise, etc.), and may contain too many samples to be
processed as they are. These drawbacks limit their usage and their
sharing, and make some processings very complex, or even impos-
sible (surface reconstruction for instance).

Resampling the data is one solution to tackle this problem, but
this is not straightforward for such particular data. There are mainly
two reasons. Firstly, point clouds are often unstructured, which
makes their management complex, in particular because the knowl-
edge of the underlying surface is a valuable information that is
missing. Secondly, massive point clouds may not fit in memory,
and discard many in-core algorithms from being used on standard
desktop machines.

The most common approach is to construct space partitioning
trees to structure and then to manage the point clouds. Several
methods already exist [PK05, SZW09, RH10, RGM∗12, LZZ13,
HWB∗13, EBN13]. Those methods have the advantage to process
unstructured point clouds without any a priori on their origin. But,
given the specificities of our data - wide sites with various small
details - those representations may be inappropriate, because the
domain of definition of the captured samples is a surface, and not
the 3D space. For example, without additional processing, using
normals for instance, these methods are unable to take into account
the behavior of the surface throughout the points.

An important point to note though, is that such methods aim
at providing solutions to interactively visualize or compress dense
sets of points, using different strategies to extract relevant infor-
mation from the constructed trees quickly. As a result, they never
explicitly extract a resampled version of a point cloud for further
processings.

Recently, [CTF∗18] proposed to use a graph to describe a point
cloud. This structure has the advantage to take into account the
topology of the captured surface, which is convenient to apply clas-
sical signal processings, such as resampling. Unfortunately, this
global structure is not really scalable, and finally is inappropriate
to deal with our gigantic acquisitions.

3. General overview

In this paper, we propose an alternative solution to the work of
[CTF∗18]. The idea is to construct a local graph for each LiDAR
acquisition, before merging all of them as a single point cloud. Our
main motivation relies on the fact that each acquisition provides a
depth map that is a structured representation of a part of the ac-
quired surface. We consider these graphs as local, because each of
them describes only a subset of the whole point cloud. Then, to
process the point clouds in a globally coherent manner, but also
to avoid redundant computations in the overlapping regions, we
also propose a solution to "connect" our local graphs. This enables,
when dealing with a specific graph, to transmit/fetch various infor-
mation to/from the other graphs representing the same regions. To
show the interest of such a structure in practice, we consider it to
resample gigantic point clouds merging multiple LiDAR acquisi-
tions, via a Poisson-disk sampling strategy.

Figure 1: The site Wat Phra Si Sanphet, Ayutthaya (Thailand), re-
sampled with our graph-based approach. The original data contain
more than 5 billion points, merging 156 different acquisitions. We
are able to represent it with only 2.8% of the original number of
points while preserving fine-scale details (such as bricks in a wall
over a 40.000m2 area).

Our local graph-based resampling has many advantages. First,
the memory required for any local processing is bounded by the
number of graphs involved, which enables to deal with gigantic
points clouds. Second, it provides some guarantees with respect to
the covering of the captured surface. Third, by modifying the metric
associated to each graph, fine details can be preserved even in large-
scale scenes. In this paper, we show how our method is particularly
relevant for resampling acquisitions of cultural heritage sites (see
Figure 1) that generally merge numerous scans, to reach more than
a billion of points. We also show how it enables the use of surface
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reconstruction algorithms to recover the underlying surface of those
gigantic acquisitions, and the level of detail that can be recovered.

The rest of the paper is organized as follows. Section 4 provides
a background on the notions of depth maps and Poisson disk sam-
pling. In Section 5, we introduce our local graph-based represen-
tation as a way to structure a set of acquisitions. In Section 6, we
present a surface-aware resampling strategy using the local graphs
proposed. In Section 7, several experimentations are shown on large
and complex cultural heritage sites, both in terms of timings and vi-
sual quality as well as reconstructions obtained from our samplings.

4. Background

For a good understanding of our motivations, we explain in this sec-
tion the characteristics of the native structure of the captured data,
namely depth maps, as well as a basic introduction to the sampling
process considered in this work, the Poisson-disk sampling.

4.1. Depth maps

A depth map D (also called range image) is a 2-dimensional im-
age whose intensities represent the distance between the points ac-
quired in the scene, and the position of the acquisition system. A
depth map is composed of valid pixels, i.e., acquired points, and
non-valid pixels, representing directions with no depth information
and identified by having a null intensity. Depth maps can be pro-
vided by different kinds of acquisition devices (capture of real-life
scenes), but also created synthetically from any 3D digital model
(similarly to the work of [PTSZ11]).

Combined with its parameterization function (a mapping from
3D to 2D), a depth map is geometrically equivalent to a point cloud.
A depth map also gives an information about the surface topol-
ogy, which has to be recovered when processing the resulting point
cloud only. Finally, depth maps naturally provide a suitable domain
to deal with the captured surface, e.g., for neighborhood requests,
subsampling, filtering, etc.

More formally, a depth map DM is a parameterization of a
point cloud PC acquired from a specific position and orienta-
tion. DM is obtained by using a parameterization function c, such
that DM = c(PC). This function is invertible, which means that
PC = c−1(DM). c is called the projection and c−1 the embedding.

In our context, the depth maps come from terrestrial LiDARs. In
this case, the position p = (m,n) ∈ N2 of a pixel represent respec-
tively the azimuthal angle θ and the polar angle ϕ, and its intensity
I(p) represents the radial distance r (all representing a spherical
coordinates system centered on the position of a LiDAR during the
acquisition). The function c can be expressed as a change of co-
ordinates. Let pw = (x,y,z) be a 3D point in the cartesian world
coordinate system. Its coordinates in a cartesian coordinate system
centered on the scanner during the ith acquisition are obtained by
using a rotation matrix Rsi and a translation vector Tsi :xsi

ysi

zsi

= psi = Rsi(pw−Tsi).

Then, the conversion to spherical coordinates can be done :

rsi =
√

x2
si + y2

si + z2
si ,

θsi = tan−1 (
ysi

xsi

),

ϕsi = cos−1 (
zsi

rsi

).

Finally, the coordinates in the depth map pi = (msi ,nsi) can be ob-
tained by quantizing θsi and ϕsi with respect to the resolution of the
depth map DM.

4.2. Poisson-disk sampling

Due to its blue noise characteristics, Poisson-disk sampling is a
common sampling strategy in Computer Graphics (see [Coo86]
and [Uli88] for more details). A Poisson-disk sampling generates
a random distribution of samples on a plane H, while imposing a
minimum distance between them. This minimum distance is con-
trolled by using disks of radius r, centered on each sample, such
that no disk overlaps any other one. Consequently, the disks ensure
a lower bound on the distances between samples :

∀si,s j ∈ S, i 6= j, ||si− s j||> 2r, (1)

where S⊂ H represents the set of samples.

A Poisson-disk sampling is said to be maximal if no sample can
be added anymore. In this case, the maximum distance between any
point in the plane and its closest sample is directly related to the ra-
dius r is strictly lower than 2r, as for any point located at a distance
2r of a sample a new sample with a disk of radius r could be added
without overlapping any other disk. Thus, a maximal Poisson-disk
sampling also ensures an upper bound of the distance between any
point x ∈ H and the closest sample:

∀x ∈ H,∃s ∈ S, ||x− s||< 2r. (2)

In our context, this gives guarantees about the covering of the do-
main.

Over the years, generalizations have been done, to sample n-
dimensional domains quite efficiently [Bri07]. Research has also
been oriented towards non-uniform domains, e.g., on surfaces
[BWWM10, CCS12, PPA15], and/or algorithms efficiency. For ex-
ample, [PPA15] has shown that a low complexity sampling could
be achieved by considering a discrete approach of the popular dart
throwing technique [Coo86] to sample surfaces.

5. A set of local graphs to describe the captured surface

The work of [CTF∗18] gives theoretical ideas that demonstrate the
interest of constructing graphs over point clouds, for applying sig-
nal processing tools afterward. By associating a topology to a point
cloud, graphs are particularly suitable to process its underlying sur-
face, instead of its ambient space. As pointed out by the authors, a
graph is a generalization of a polygonal mesh, but whose construc-
tion is easier, since connectivity restrictions existing in polygonal
meshes are relaxed.

Nevertheless, the construction of a single graph over the whole
point cloud is far too expensive to be done on massive data for now.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

69



A. Bletterer, F. Payan, M. Antonini & A. Meftah / A local graph-based representation to resample gigantic acquisitions

Instead, we propose to construct a set of local graphs, each graph
describing a part of the underlying surface of a point cloud.

5.1. Construction

At each acquisition, a terrestrial LiDAR scanner provides a depth
map. As a depth map can be seen as a structured representation
of the captured scene, we consider its connectivity to construct a
local graph representing the part of the surface captured by this
acquisition.

However, simply transposing a depth map as a graph may be
inefficient. First, acquisitions are generally noisy, because of the
external conditions during the acquisition (ambient light, surface
shininess, dust and moisture in the atmosphere, ...). Secondly, for a
given depth map, neighboring pixels are not necessarily associated
to points geodesically close on the underlying surface, because of
occlusions but also obtuse scanning angles that can appear, depend-
ing on the position of the LiDAR.

Dealing with noisy acquisitions In order to lower the impact of
the noise during the computations, without degrading the accuracy
of an acquisition, we first apply a bilateral filtering [AW95, SB97,
TM98] on the depth map. Following notations of [PKTD07], we re-
call that a bilateral filter is a non linear filter that smoothes a signal
while preserving strong edges:

D̂(p) =
1

Wp
∑

q∈Ωp

IqGσs(||p−q||)Gσr (|I(p)−I(q)|), (3)

where D̂ is the denoised depth map, Gσs is a gaussian function tak-
ing into account the spatial closeness, and Gσr is a gaussian func-
tion taking into account the intensity difference. Wp corresponds to
the normalization factor :

Wp = ∑
q∈Ωp

Gσs(||p−q||)Gσr (|I(p)−I(q)|).

This filtering reduces the noise present in a depth map - and in
the point cloud, by invariance of the association - without merging
different regions with strong depth variations (see Figure 2). In the
rest of the section, we will refer to D as being the filtered depth map
D̂.

Dealing with the occlusions As typical scenes are composed of
various elements, many different objects may appear close once
projected into a depth map, even if they are not next to each other on
the surface. Figure 3 illustrates the problem in a nutshell: because
of the occlusions, some neighboring pixels do not correspond to
neighboring points on the corresponding surface.

Most of the time, when two neighboring pixels in a given depth
map belong to two distinct elements in the scene, their depths
strongly vary. Therefore high depth variations are detected to iden-
tify vertices which should not be linked together in the graph. Tech-
nically, we compute morphological gradients g(D) [RSB93] on the
depth map D :

g(D) = D⊕b−D	b,

where b is a structuring element, and ⊕ and 	 are the dilation and
erosion operations, respectively. Then, we tag as non-valid the pix-
els with high gradients, by considering an adaptive thresholding on

Figure 2: Impact of the bilateral filtering on a given depth map, on
the quality of the point cloud (top: before filtering ; bottom : after
filtering). Close-up view of St Trophime.
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Figure 3: Typical case of connectivity in the parameterization do-
main provided by the depth map that is not faithful to the topology
of the acquired surface: two objects in the acquired scene are pro-
jected onto neighboring pixels, but the red edge must not exist in
the graph.

g(D), to take into account the intensity variation with respect to
the distance between a point and the acquisition system. Finally, an
undirected graph G = (V,E) is constructed, where the vertices V
correspond to the valid pixels, and the edges E connect neighbor-
ing valid pixels.

5.2. Connections between the local graphs

In the context of surface parameterization, when an atlas of charts
is constructed, some parts of a manifold can be covered by differ-
ent charts. In that case, some parts of the parameterization domain
of a given chart are mapped to the parameterization domains of the
other charts, and vice-versa [GZ06]. This is done with a transition
functions τi j that transforms points of the parameterization domain
Gi to the parameterization domain G j according to the parameteri-
zation functions c:

τi j = c j ◦ c−1
i .

In our context, we consider the acquisition process as the creation
of an atlas of charts, where:
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• the manifold is the acquired surface,
• a chart corresponds to an acquisition,
• the parameterization domain associated to a chart corresponds to

the depth map generated by this acquisition.

Those transition functions could be used to construct a global
seamless parameterization, as in [PTSZ11]. But this approach, al-
though being an elegant and implicit solution, is computationally
expensive, and thus inappropriate for gigantic acquisitions.

As an alternative solution, we propose to link the vertices of the
different graphs that correspond to nearby points on the surface.
Hence, each vertex v ∈ Vi of a given graph Gi(Vi,Ei) ∈ G is as-
sociated with Cv, its set of m corresponding vertices in the other
graphs, using the transition functions between each pair of graphs
(when such vertices exist): Cv = {v0,v1,v2...,vm−1}.

From there, a unique graph similar to the one constructed by
[CTF∗18], could be obtained by merging corresponding vertices,
and then, could be used to apply various signal processing algo-
rithms [SNF∗13]. Unfortunately, in our context of gigantic data,
this global graph suffers from its space complexity (O(|V |+ |E|)),
that makes its management impractical.

Indeed, a cultural heritage site contains multiple points of inter-
est, such as statues at different locations of the site. Thus, a single
acquisition is not enough to describe precisely all the different ele-
ments belonging to such a scene. As a consequence, a digitization
campaign generally consists of several acquisitions done at differ-
ent positions, which can quickly rise to dozens or even more than a
hundred for large-scale scenes.

Therefore, instead of merging the corresponding vertices to con-
sider the links between graphs as implicit, we choose to keep the
graphs distinct, and to store the corresponding vertices Cv associ-
ated to each vertex explicitly. Hence, when computing a local pro-
cessing, only the vertices and the associated edges concerned by
this processing are loaded in memory.

5.3. Managing the overlapping regions

In overlapping regions, the number of vertices belonging to each
graph depends on the position and the resolution of the acquisition
device. The density of the graph can have a strong influence on the
accuracy of the computations. For example, when estimating dis-
tances on the graphs, a denser graph would lead to a more precise
estimation of distances. To simplify computations, while getting
the most accurate results, we propose to identify the graph with the
highest density in each overlapping region. For a specific region, all
the operations will be performed from this graph. Then, to ensure
coherency between different graphs, once calculations have been
done for the vertices of this region, results are transmitted to all
their corresponding vertices in the other graphs.

Identification of the highest density graphs To identify in which
local graph a given calculation has to be done, and from which
graph a result can be fetched from another graph, we must deter-
mine the sampling density around each vertex, according to its ac-
quisition. For a given vertex vi, this can be done by computing its
average squared distance to all the vertices v j ∈Nk(vi),Nk(vi) be-
ing the k-hop neighborhood of vi. The k-hop neighborhood of vi

contains the vertices connected to vi by at most k "edge hops". The
density w(vi) is estimated as being the inverse of this distance :

1
w(vi)

=
1

|Nk(vi)| ∑
v j∈Nk(vi)

||v j− vi||2.

Then, for each vertex vi ∈ Vi of each graph Gi, we compare its
density w(vi) with the density w(v′i) of its corresponding vertices
v′i ∈ Cvi . At the end of this process, each set of vertices Vi of each
graph Gi is decomposed into two sets :

• V+
i ⊆ Vi, the set of vertices having the highest density with re-

spect to all their corresponding vertices
• V−i =Vi \V+

i , the remainders.

6. Resampling gigantic point clouds using local graphs

In this section, we present how our local-graph based structure can
be used to resample point clouds. First, we present our implemen-
tation of the popular Dart throwing algorithm [Coo86] that enables
the maximal Poisson-disk sampling of a single LiDAR acquisition.
Then, we show it can be extended to a set of overlapping acquisi-
tions to deal with gigantic points clouds.

6.1. Graph based dart throwing for a single LiDAR
acquisition

The principle of dart throwing is simple. Considering the minimum
distance 2r required between two samples, it consists in i) picking
out randomly a candidate sample on the domain, ii) constructing
a disk of radius r centered on this sample, and iii) verifying if this
disk intersects another disk. If not, this candidate belongs to the
distribution. Otherwise, this candidate is discarded. To get a max-
imal Poisson-disk sampling, this process is repeated until no more
sample can be "thrown" on the domain without violating the "no
disk intersection" constraint.

Algorithm 1 summarizes the procedure.

Data: V : the list of candidate samples
Result: Sr : the set of final samples
while V is not empty do

v = V .getRandomElement();
Dv = constructPoissonDisk(v, r);
if Dv intersects an existing disk then

V .removeElement(v);
else

Sr.addElement(v);
for vi ∈ Dv do

V .removeElement(vi);
end

end
end

Algorithm 1: Discrete dart throwing algorithm.

The vertices of the graph are the initial list of candidate samples,
and the idea is to test the validity of each candidate by constructing
its disk over the graph. At the end, the set of samples Sr corresponds
to the final distribution.
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The construction of the disks can be done using Dijkstra’s short-
est path algorithm [Dij59]. One attractive feature of our graph-
based structure is that it is very simple to model different metrics,
by simply modifying the weights associated to the edges E. For ex-
ample, if we choose as weights the distances between the points in
3D space, then the shortest path from a vertex to another one in the
graph represents the shortest path from a point to another point on
the surface.

Figure 4 shows a part of a maximal Poisson-disk sampling of
the model St Trophime, resulting from our graph-based dart throw-
ing. Observe that the construction of the disks is stopped when the
silhouette of an object has been reached, taking into account the
topology of the captured surface.

Figure 4: Maximal Poisson-disk sampling of one acquisition of St
Trophime, obtained with our graph-based dart throwing. From left
to right : front view and side view.

6.2. Resampling a set of 3D acquisitions

Using the local graph approach proposed, the generalization of
the Algorithm 1 is fairly elementary. Let us consider the set G =
{G1,G2,G3, ...,Gn} as the set of n local graphs constructed from n
acquisitions. For each graph Gi ∈ G :

• Algorithm 1 is applied on Gi, with the vertices V+
i as candidate

samples,
• for each other graph G j ∈ G, j 6= i, vertices V j fetch information

about the inclusion (or not) to a specific disk of their correspond-
ing vertices in Vi.

Thanks to the local aspect of the dart throwing, and by relying
on the construction and verification of disk intersections, only a part
of the total data needs to be considered for each potential sample.
As a consequence, only the graphs concerned have to be stored in
memory.

7. Experimental results

All the experimental results represent real-life scenes of different
historical monuments. The acquisitions of Ananda Oak Kyaung,
Eim Ya Kyaung, Khaymingha, St Trophime and Wat Phra Si San-
phet are courtesy of the CyArk/Google Open Heritage Program.

The acquisitions of Grand Palais are courtesy of Art Graphique et
Patrimoine.

All the results have been generated on the same computer [Intel
Core i7-5960X CPU @ 3.00GHz, NVIDIA Quadro M5000, 32GB
of RAM and 1TB SSD drive].

Figure 5 shows the difference of distributions obtained on the
model Grand Palais, with or without a curvature-aware metric.
This curvature-aware metric simply consists in weighting each
edge with respect to the curvature between the two vertices linked
by this edge. While keeping approximately the same number of
points, we can see that the detailed areas are further enhanced. This
result highlights the interest of taking into account the curvature
during the resampling, which is quite easy thanks to our graph-
based approach.

It is interesting to note that one could consider weigthing edges
with respect to other metrics, and thus sampling more densely some
areas instead of others, by considering for instance a weight de-
pending on the position of a point with respect to a region of inter-
est.

Figure 5: Part of the Grand Palais (2 billion points, 35 acquisitions)
resampled (0.15% of the original number of points) with a uniform
distribution (left), or with a curvature-aware distribution (right).

Figure 1 shows the site of Wat Phra Si Sanphet, Ayutthaya, in
Thailand, resampled with our graph-based approach. The original
data contains more than 5 billion points, divided in 156 acquisi-
tions. Our resampled model contains only 155 millions points. By
efficiently distributing the samples according to a curvature-aware
approach, we are able to preserve fine-scale details, such as bricks
in a wall, despite the expanse of the site.

Another convincing result is shown in Figure 6. It represents a
close-up view of a statue of the Eim Ya Kyaung temple. Even if this
site represents a really big area of 6,000m2, modeled by an orig-
inal point cloud composed of 1.7 billion points, our algorithm is
able to process it as a whole. We can see that the resulting samples
are well distributed and fit closely areas of high curvature, reduc-
ing drastically the number of points (0.6% of the original number
of points left) while preserving the shape of small scale elements
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present in the site. To have an idea of the error induced during the
sampling process, and of its impact on the quality of relevant ele-
ments of such a huge site, we also present a color-coded represen-
tation of the original point cloud, showing how the error is spread.
This error represents the distance from the points of the original
point cloud to the closest sample of the final distribution. Thanks to
the curvature-aware resampling, we can see that the highest errors
(biggest distances between original points and samples of the final
distribution) are concentrated in areas of low curvature.

Finally, to attest that the piecewise nature of our approach does
not introduce any distortion in terms of sampling quality, Figure 7
gives a close-up view of two overlapping acquisitions. We can see
that the graph correspondences enable to get a globally coherent
distribution, and that we cannot distinguish any distortion along
the borders.

In Table 1, we present the computing times of the proposed al-
gorithm on several gigantic data. The construction of the graphs is
the longest step, and represents the bottleneck of our algorithm for
the biggest acquisitions. However, for a given set of acquisitions,
this construction can be done once and for all, independently of
the resampling step. So, the graphs can be saved to be used sub-
sequently, for any further processing, which lowers the impact of
those computations. Concerning the resampling step itself, even if
the datasets are big and that our approach is working sequentially,
the algorithm is able to provide samplings in few hours (more than
500.000 points processed per second for points clouds around one
billion points and nearly 400.000 for point clouds around 5 billion
points).

Application to surface reconstruction

To definitively show the interest of our approach in the domain
of cultural heritage, Figures 8 and 9 show reconstructions gener-
ated with the method of [BL17] from points obtained with our re-
sampling technique. We used [BL17] because it is able to recon-
struct efficiently detailed surfaces, and that the vertices of the re-
constructed mesh are exactly the input points. The resulting recon-
structions are quite remarkable, thanks to the surface-aware behav-
ior of our resampling operation (highlighted by the quality of the
final triangulation).

8. Discussion

Even if this paper focused on terrestrial LiDARs acquisitions, it
is important to note that the proposed local graph structure can
be used on a broader range of acquisition systems, such as aerial
LiDARs or Kinect-like acquisitions. Though care should be taken
when dealing with the noise generated by Kinect-like systems,
since this one can be quite different from the one present in ter-
restrial LiDAR acquisitions.

In undersampled areas, the assumption made about depth dispar-
ity to link vertices in the graphs might not hold anymore. In such
areas, two problems can occur :

• when the scanner is too far from a region, the distance between
two neighboring samples in the depth map might be more impor-
tant than the size of a hole between two different regions. Thus
this would result in a false-negative contour.

• when the laser hits some areas at obtuse angles, the depth be-
tween two samples might vary strongly, while still belonging to
the same element. This would result in a false-positive contour.

Though, such particularities do not pose problems in practice, be-
cause undersampled regions are generally covered by other acqui-
sitions having a higher density.

When creating a graph from an acquisition, different connectiv-
ities could be considered. The choice of connectivity gives some
compromise between speed (with a low number of edges per ver-
tex) and accuracy (with a higher number of vertices connected to-
gether) of the distances computed. In our experiments, we noticed
that the 8-connectivity was giving good results, both in terms of
speed and accuracy.

For now, we have no guarantee that the resulting distributions
will keep all the information present in the original point clouds.
This is because the cutting frequency (the radius of the disks) has
to be related to the maximal frequency appearing in the spectrum
of the point cloud. But to our knowledge, none method is able to
compute "frequencies" over massive point clouds like the one pre-
sented in this paper. An interesting work would be to study the use
of the Laplace-Beltrami operator for such particular data. Though,
the provided sampling algorithm gives the guarantee that the er-
ror between the point cloud - considered as input of the sampling
algorithm - and the final distribution is bounded and will always
be proportional the disk radius. Further processes generally pre-
condition the maximum number of points that should be kept from
the original point clouds (since it influences the computing time).
Thus we think that giving the control on the radius of the disks is
something essential, even if it might result in a loss of information
(undersampling the original point clouds).

9. Conclusion

In this paper we mainly presented two contributions.

Firstly, we introduced a new structure for processing point
clouds generated from a set of terrestrial LiDARs. By taking ad-
vantage of the structure of depth maps created by LiDARs, local
graphs are constructed - describing the local behavior of the surface
acquired - and linked together to process the point cloud globally.

Secondly, we presented an efficient resampling method for gi-
gantic point clouds, based on our local graph structure. Our objec-
tive was to reduce the number of points without altering the visual
quality of large and complex sites. Sampling each graph using a
maximal Poisson disk sampling ensures a good local quality of the
distribution. Correspondences between those graphs enable an ef-
ficient resampling of overlapping regions, ensuring a good quality
of the distribution globally.

Experimental results have shown that our algorithm is able to
take into account the behavior and the local details of the cap-
tured surfaces efficiently. In particular we showed that our method
generates good curvature-aware resamplings even on gigantic point
clouds, and enables surface reconstructions of high quality.

This work has promising perspectives. We are convinced that
using a set of connected graphs taking advantage of the topology of
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Figure 6: Close-up view of a statue inside the Eim Ya Kyaung temple. Despite the size and complexity of the scene (1.7 billion of points, 58
acquisitions spread over 6,000 m2), our resampling preserves very fine details with only 0.6% of the original number of samples. Maximum
error: 6.3cm (between the legs of the statue); Mean error: 0.8cm. Left: original data; middle: our curvature-aware resampling; right: color-
coded difference between the original point cloud and the resulting distribution (blue: low error; red: big error). It is interesting to note that
the adaptive resampling strategy concentrates the highest errors in the areas of low absolute curvature, where few details are present.

Model In Acquisitions Construction (h:m) Out Sampling (h:m)
Khaymingha

1,383M 74 00:59
44.8M 00:39

Bagan, Myanmar 21.2M 00:39
9.2M 00:46

Ananda Oak Kyaung
1,703M 126 02:14

41.9M 00:56
Bagan, Myanmar 21.9M 00:55

11.6M 01:01
Wat Phra Si Sanphet

5,313M 156 11:56
148.2M 03:49

Ayutthaya, Thailand 76.3M 03:44
37.9M 03:50

Table 1: Performances of our resampling algorithm on real-life acquisitions. In represents the number of points of the original point cloud.
Out the number of points of the resulting distributions. Construction represents the time to construct the local graphs structure. Sampling
represents the time to sample each graph and to transmit information between graphs. All timings include reading/writing time from/to the
disks.

the acquisitions is a relevant structure for many other point cloud
processings. For instance, we are currently working on a surface
reconstruction algorithm based on the proposed structure.
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Figure 9: Surfaces reconstructed using [BL17] from the pro-
posed curvature-aware resampling. Top : Statues inside the Eim
Ya Kyaung temple and close-up view of the details of the cape.
Bottom : Statue inside the Khaymingha temple and close-up view
of the quality of the triangulation produced, a direct consequence
of the good distribution of samples.
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