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Figure 1: Number of markers detected by ARUco in video without using any image enhancement algorithm (black), and in videos enhanced
by CLAHE (magenta), debluring (yellow), white balancing (blue), and our MBUWWB algorithm (green), at different marker visibility levels
(gray). Combination of fast ARUco and our fast algorithm provides results comparable with more robust and much slower AprilTag2 (red).

Abstract
Underwater sites are a challenging environment for augmented reality. Images taken under water are degraded in several ways,
most importantly they are affected by unbalanced colors due to uneven absorption of light in each color channel, blurring and
desaturation caused by turbidity, or noise due to the presence of larger organisms, plants, or bubbles. In this paper, we introduce
a new method based on white balancing that enhances underwater images to improve the results of detection of markers. We
compare this method with several image enhancement methods, and evaluate their performance when applied to the problem
of detecting markers under water. Our results show that our method improves the detection in underwater environments while
keeping the computation time low.

CCS Concepts
•Computing methodologies → Mixed / augmented reality; Computer vision;

1. Introduction

Underwater cultural heritage assets are widely spread into the
Mediterranean. Unlike land archaeological sites, however, sub-
merged settlements, ancient ports and other coastal industrial in-
stallations, especially shipwrecks, are not accessible to the gen-
eral public nor all experts, due to their environment and depth.
On the other hand, underwater archaeological parks already exist

in Mediterranean allowing divers to explore ancient cities. Aug-
mented reality (AR) gives us an opportunity to enhance people’s
vision of the real world and is the perfect medium for exploiting
cultural heritage sites. One of the main technical requirements of
achieving effective AR applications is accurate tracking. Although
there has been a lot of research in the past few years in vision track-
ing, it is still almost unexplored in underwater environments and in
particular in the open sea.
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The first time that underwater AR was proposed was in 1999 by
Gallagher et al. [Gal99] where the development of a HMD for Navy
divers was presented. In 2009, Morales et al. [MKMK09] presented
an experimental AR system that provided visual aids to increase
commercial divers’ capability to detect, perceive, and understand
elements in underwater controlled environments. In the same year,
researchers developed the AREEF system which allowed people to
discover underwater word of corals, fish or fairy-tale wrecks in a
swimming pool in a comfortable and safe way [BBM09]. In 2013,
the AREEF system was improved in order to be used by more than
one person [OBLS13] and also by children [OBS16]. Also in 2013,
Brown et al. [BW13] presented a system for using augmented real-
ity under water to help divers with navigation and identification of
fish species.

Conditions in sea are different, however. The vision is degraded
by several factors, most importantly by turbidity, different atten-
uation of light in different wave lengths, and a presence of large
particles in water. This has a huge impact on a detection and recog-
nition of objects, which is an inherent part of each AR application.
To our knowledge, there was only one attempt to adopt AR tech-
nology directly in the submerged environment by using underwater
tablet. This device was equipped with an underwater positioning
and orientation system that guided the diver tourists during the div-
ing session while providing information about the archaeological
artifacts spotted during the visit [BLB∗16,BLM∗16]. However, this
solution was based on acoustic sensors and not vision.

The focus of this research is on improving videos taken in sea
environments before they are processed by marker detecting al-
gorithms to increase the performance of these algorithms at such
places. Although similar tests were already done in laboratory con-
ditions [dSCGF∗15], as a part of an evaluation of a single im-
age improving algorithm [AC14, GLW16], or in underwater pho-
togrammetry [SPOP16, ADGS17], to our best knowledge there is
no evaluation of real-time image enhancing algorithms focusing on
a detection of markers located in underwater marine environments
that can be used for AR.

This paper is based on work of Žuži et al. [ŽČB∗18], which eval-
uates off-line algorithms for dehazing. In contrast to it, this paper
focuses on real-time image enhancing algorithms. Our main con-
tribution is a new method for real-time improvement of underwater
images containing markers for AR, and comparison of its perfor-
mance with three state-of-the-art methods in four different under-
water open sea environments. This comparison is done based on the
number of markers detected in improved videos. We demonstrate
that applying online image enhancing algorithms improves the per-
formance of marker-based tracking. Our results exhibit a clear im-
provement of marker-based tracking, which indicates that it can be
used in the future for underwater vision tracking.

The rest of the paper is structured as follows. Section 2 presents
related work done in improving images and marker-based tracking.
Section 3 illustrates the proposed methodology, Section 4 describes
the image enhancement algorithms that were tested, and Section 5
shows our method to estimate marker visibility. Section 6 demon-
strates our results obtained from tested videos, Section 7 results
of a cultural heritage use case, and Section 8 discussions. Finally,
Section 9 presents conclusions and future work.

2. Related work

This section presents related work and consists of three parts: im-
provement of images taken in standard conditions, improvement of
images taken under water, and marker-based tracking.

2.1. Improvement of images taken in standard conditions

Improvement of images is one of the most common problems
solved when preprocessing images. The most important prob-
lems that are solved are removing effects of noise and sharpen-
ing of the image, while preserving colors, edges, and overall per-
ception of objects in the image. The most common techniques
used for general image improvements are median and bilateral fil-
ters [Wei06, Tsi16], and unsharp filters [KCFK17]. Lee and Woo
[LW09] present white-balancing technique that improves colors of
an image using data from a detected marker, but unlike us, they fo-
cus on improving image appearance and not on improving marker
detection. Images taken outside of water are often degraded sim-
ilarly as images taken under water. There are several techniques
focusing on improving images damaged by fog or haze, some of
these techniques acquire additional data about the scene to ease de-
hazing. Treibitz et al. [TS09] discusses advantages and disadvan-
tages of using polarization filters to obtain several images of the
same scene with different polarization of the light to suppress the
effect of fog in final image. Kopf et al. [KNC∗08] uses depth in-
formation at each pixel to relight the scene or remove the effect of
haze.

Moreover, the problem of removing haze from single images
without any other additional information available is also becoming
more important topic of research. He et al. [HST11] discovers that
most regions of haze-free images have at least one color channel
(red, green, or blue) that contains very low values. They call this
channel a dark channel, and proposes a dark channel prior, which
is a method for dehazing images based on this information. Zhu et
al. [ZMS15] describes a similar method that is based on a differ-
ence between saturation and value channels of pixels represented
in HSV color space. In 2008, Fattal [Fat08] assumes the illumi-
nation of objects in the scene and depth of these objects are two
statistically uncorrelated functions, uses methods for independent
component analysis to separate these functions, and recovers the
image without haze. In 2014, Fattal [Fat14] describes another tech-
nique that is based on color lines, a method for representing colors
described by Omer et al. [OW04]. This technique processes small
patches in input images with colors that belong to the same color
line, and uses properties of this color line to estimate the amount of
haze in this patch.

In addition to this, Zhang et al. [ZH14] describes a method that
tests several possible solutions, and chooses the best solution for
each pixel of input image individually. He also provides an imple-
mentation for GPUs that runs real-time. Li et al. [LTT∗15] builds
on methods that compute the depth of image from a video se-
quence, and develops a method that simultaneously reconstructs
the scene and removes fog in the scene, using the depth cues from
scene reconstruction for removing the fog and vice versa. Ancuti
et al. [AC14] focuses especially at a detection of SIFT features for
matching two images, and proposes a method that enhances con-
trast in images to recover and match as many features as possible.
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In recent years, there has been a lot of attention in using neu-
ral networks. Cai et al. [CXJ∗16] was inspired by techniques based
on dark channel, enhancing contrast, attenuation of colors, and hue
disparity, and designed a convolutional neural network (CNN) that
consists of several convolving and max-pooling layers to obtain a
transmission map for further removal of fog. Ren et al. [RLZ∗16]
designs a CNN to obtain firstly an assumption of coarse transmis-
sion map, and than use this information as an input to another
CNN to obtain a precise transmission map. Both these CNN do not
depend on any assumptions or prior knowledge of input images,
however, they need a substantial amount of training images with
known ground truth to train them. This problem is tackled by Li et
al. [LGG18], who proposes a neural network for improving under-
water images without needing training images with known ground
truth.

2.2. Improvement of underwater images

Restoration of underwater images represents a greater challenge
than restoration of images taken outside of water. This is due to
the fact that underwater images are degraded by much more phe-
nomena than other images, most importantly by turbidity, floating
particles, and an uneven absorption of different color channels of
light. Ancuti et al. [AAHB12] proposes a system based on a fusion
of multiple images that are derived from the input image using com-
mon image improving techniques like white-balancing and contrast
enhancement. Li et al. [LLZ∗14] creates a pipeline of several filters
to improve images degraded by uneven illumination, noise, turbid-
ity, and uneven absorption of colors. Chiang et al. [CC12] uses the
dark channel prior proposed by He et al. [HST11] to estimate the
depth of objects in the input image. This depth is then used to re-
duce uneven illumination caused by the scattering of artificial light,
and to reduce the effect of turbidity in the image. Although the dark
channel prior provides very good results in images taken outside of
water, it cannot be used for images taken in large depths under wa-
ter, due to the missing red and green channels.

Some algorithms were designed especially to overcome this is-
sue. Carlevaris-Bianco et al. [CBME10] uses a difference between
the maximum in red, green and blue channels to get a coarse ini-
tial estimate of the depth in the image. This initial estimate is re-
fined by using a natural image matting, similarly as in a work by
He et al. [HST11]. Drews et al. [DNBC16] suggests ignoring the
red channel at all, and use only green and blue channels to esti-
mate the depth in the image. Gao et al. [GLW16] presents a bright
channel prior, which operates with the original red channel and in-
verted green and blue channels. These methods try to estimate the
depth from the input image. However, the depth can be obtained
using other methods. Drews et al. [DNCE15] focuses on process-
ing a video instead of using individual images, and reconstructs the
scene from it using methods for scene reconstruction. Similarly to
other methods, this depth is used to reduce the effects of turbidity
in images. Babaee et al. [BN15] proposes using a sonar in environ-
ments with high turbidity to obtain 3D positions of objects in the
image. Cho et al. [CSK16] uses a depth precisely measured in a few
points in the input image, and uses incremental Gaussian process
to estimate the depth in the rest of the image.

2.3. Marker-based tracking

There are different algorithms for marker-based tracking. They use
different types of markers to achieve faster detection and recogni-
tion of markers, better robustness in uneven lighting conditions,
or better differentiation between individual markers when mul-
tiple markers are used. Square markers [KB99, GJnSMCMJ14,
WO16, Fia05] are well detectable, and their corners are sufficient
to compute marker’s position. The inner part of markers is used
to carry an information to distinguish between different markers.
ARToolKit [KB99] uses arbitrary images, making them very ver-
satile and user-friendly. Binary codes are also used, often in a
form of a two-dimensional matrix. This form is more robust, espe-
cially when it is augmented with Hamming error-correcting codes
[KB99, WO16, Fia05] or specifically created dictionaries [GJnSM-
CMJ14].

Markers in shapes of disks and ellipses are also used [KPS10,
NF02]. Instead of using only four points to compute the position of
the marker, as it is done in case of square markers, the whole bound-
ary is used to compute the position, making it more precise and
more robust to occlusions. On the other hand, spherical shape im-
poses difficulties when designing robust patters inside the marker.
Irregular shapes of markers are also used [BKJ05, BAC∗16], al-
lowing to design very precise markers, but usually at the price of
increased detection time. Performance of marker-based detectors
is usually evaluated in clean view, focusing only on the size and
orientation of the marker, occlusions, optics of the camera, and il-
lumination of the marker [TATM13, GJnSMCMJ14, NF02]. Cesar
et al. [dSCGF∗15] compares marker detectors in a simulated un-
derwater environment in different levels of turbidity, lighting con-
ditions, viewing distances, and viewing angles.

3. Methodology

In this paper, two marker detection libraries were used to detect
markers in our videos, ARUco [GJnSMCMJ14] and AprilTag2
[WO16]. These libraries were chosen for several reasons: their
source code is available as open source and is frequently updated,
they detect markers in real-time, and they are robust to different
lighting conditions. We refer to corresponding papers for detailed
information about these algorithms. Detectors detects markers in
gray-scale images so all images are converted to YUV color space,
and then markers are detected in Y channel. This color space was
chosen, because it is supported by most mobile devices. An im-
plementation of ARUco that is a part of OpenCV 3.2.0 was em-
ployed. For AprilTag2, we used source code available at the site
of the project, version 0.9.8. Both libraries are optimized to use
multiple threads; additionally, OpenCV is optimized to use SIMD
instructions.

Performance of these two marker detection libraries was evalu-
ated in laboratory conditions in a work of Cesar et al. [dSCGF∗15].
Their results showed that AprilTag (the predecessor of AprilTag2)
provided better results than ARUco in highly turbid water envi-
ronments, and only a slightly better results in other environments.
However, the detection time of AprilTag was approximately three
times higher than that of ARUco, which can make the it unus-
able in real-time AR applications. We used 6 markers from ARUco
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DICT_6X6_50 dictionary. To distinguish between markers, this
dictionary uses labels with 36 bits of information in a form of a
binary matrix of 6 rows and 6 columns, and can correct up to 6
incorrectly detected bits. The markers were printed on a A4 pa-
per, formed in a grid of two rows and three columns. Each marker
measured 8 centimeters, and there was 1 centimeter space between
each row and column. The detection of markers was evaluated on
four set of videos from [SAB∗16], see Figure 2. These videos were
taken in Mediterranean sea; the locations were chosen by experts in
underwater archeology to represent the most typical environments
of archaeological sites. These videos were processed off-line on a
standard PC using different image enhancing algorithms. Also, the
detection of markers was performed off-line on each frame of these
processed videos.

4. Tested image enhancing algorithms

Four real-time image enhancing algorithms were tested including:
contrast limited adaptive histogram equalization (CLAHE), deblur-
ing (also known as unsharp mask), white balancing, and our newly
designed method based on white balancing adapted to detection of
markers that we call marker-based underwater white balancing –
MBUWWB.

Contrast limited adaptive histogram equalization

Contrast limited adaptive histogram equalization (CLAHE)
[PAA∗87] is a variation of ordinary histogram equalization. Un-
like ordinary histogram equalization, it works with a histogram of
a small neighbor window around each pixel, and reduces the con-
trast of output image by clipping the highest values of input image
histogram. CLAHE has a single parameter clip limit, which influ-
ences the amount of values clipped in the histogram. CLAHE was
applied to Y channel, leaving U and V channels unchanged. For
clip limit, we experimented with six values from 1 to 6.

Debluring

Deblur filter (or unsharp mask [KCFK17]) emphasizes high fre-
quencies in input image by subtracting its low frequencies from
itself. This filter is defined with the following equation:

Iout = (1+w) · Iin−w ·Gaussian(Iin,σ) (1)

where w represents the weight of subtracted low frequencies, and
Gaussian(Iin,σ) is a gaussian filter with standard deviation σ ap-
plied to the input image Iin. Deblur filter was also applied to Y
channel, leaving U and V channels unchanged. We experimented
with 16 combinations of values for σ and w: four values 1.0, 2.0,
3.0, and 4.0 for σ, and the same four values for w.

White balancing

White balancing (WB) transforms the colors in input image, so
that white objects appeared as white under different illuminations
(sun, clouded sky, or others). Although there are many sophisti-
cated methods for white balancing, we used a method presented by
Limare et al. [LLM∗11]. This method was chosen because of its
simplicity, processing speed, and universality.

foreach color channel do
compute histogram of this channel;
channelmin← black-th percentile of values in histogram;
channelmax ← white-th percentile of values in histogram;
linearly transform all pixel intensities so that

channelmin = 0 and channelmax = 255;
end

Algorithm 1: Pseudocode of white balancing algorithm

The algorithm is described by a pseudocode in Algorithm 1.

With values 0 for black and 100 for white, the algorithm trans-
forms colors of the input image in a way that the colors of each
color channel use the full range of possible values. This is simi-
lar to ordinary histogram equalization, but unlike histogram equal-
ization, this transformation is done linearly without equalization.
When choosing values higher than 0 for black and lower than 100
for white, the algorithm ignores the darkest and brightest pixels in
the input image, which makes it more robust to noise. It should be
noted that colors of restored images may not represent colors of
objects properly, due to the simplicity of the algorithm. This is not
a problem, however, since the restored image is not presented to
the user; it is only processed by marker detectors. The white bal-
ancing algorithm is applied to all channels of RGB image, and then
we convert the result into YUV space and use the Y channel for
marker detection. We experimented with 16 combinations of val-
ues for percentiles black and white: four values 0, 1, 2, and 3 for
percentile black, and four values 97, 98, 99, and 100 for percentile
white.

Marker-based underwater white balancing

Marker-based underwater white balancing (MBUWWB) algorithm
is our variation of the white balancing algorithm described in the
previous section adapted to the problem of marker-based tracking
in underwater environments. An intrinsic part of white balancing
algorithms is to find colors that are subsequently mapped to the
white and the black in the filtered image. White balancing algo-
rithm described in the previous section chooses these colors as per-
centiles of values in input image histogram.

This behavior was adapted to a marker-based tracking. We as-
sume that the marker is black and white, and instead of computing
the histogram of the whole image, only the histogram of the part of
the image which contains markers is computed. More precisely, if
we detected any markers in the previous frame, we use this part of
this previous frame with markers for computation of the histogram.
If the previous frame did not contain any marker (or we process the
first frame of the video), we compute the histogram of the whole
image. This algorithm was applied to all channels of RGB image,
and then the result is converted into YUV space, similarly as with
ordinary white balancing algorithm. We also experimented with the
same 16 combinations of values for percentiles black and white.

5. Visibility conditions

In this paper the main focus is on the detection of markers in dif-
ferent underwater visibility conditions. These conditions are influ-
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Environment 1 Environment 2 Environment 3 Environment 4
High level of turbidity Moderate level of turbidity Moderate level of turbidity Low level of turbidity
Depth of 5 to 6 meters Depth of 7 to 9 meters Depth of 20 to 22 meters Depth of 7 to 9 meters
iPad Pro 9.7-inch tablet GoPro camera GARMIN VIRB XE camera NVIDIA SHIELD tablet
1920 × 1080, MPEG-2 1920 × 1080, MPEG-4 1920 × 1440, MPEG-4 1920 × 1080, MPEG-4

30 fps, 85 seconds 29.97 fps, 31 seconds 24 fps, 160 seconds 30 fps, 81 seconds

Figure 2: Four different environments used in evaluation.

enced mainly by turbidity of water, lighting conditions, presence of
caustics, presence of small objects floating in the water, and also
the size of the markers. All of these effects change the result of
marker detection in differently with different impact. To cover all
these effects, visibility in image is defined as follows. The compu-
tation of visibility is based on the number of detected markers. We
compute marker visibility of each frame of our videos as a weighted
average of the number of markers detected by all marker detectors
and all image enhancing techniques. This average is used to obtain
a value that is not biased towards any marker detector, any image
processor, and any factor influencing conditions under water. Value
of marker visibility can be expressed as:

marker visibility = avgdet,proc(wproc ∗markers(det,proc(frame)))
(2)

where avgdet,proc is an average took over all marker detectors det
and image processors proc, wproc is a weight of image processor
proc, and markers(det,proc(frame)) is a number of markers de-
tected by detector det in frame frame processed by image processor
proc. Weight wproc represents the weight of image processing algo-
rithm. This weight was used, because we experimented with differ-
ent number of parameter combinations for each image processing
algorithm, and we computed the average of the number of detected
markers of all parameter combinations. This weight equalizes all
image processing algorithms, and is defined as

wproc = 1/#parameter combinations(proc) (3)

where #parameter combinations(proc) is a number of combina-
tions of parameters of image processor proc. This weight is there-
fore 1 for the results of detecting markers in the original unpro-
cessed video, 1/6 for CLAHE, and 1/16 debluring, white balanc-
ing, and MBUWWB. Six markers are detected, so the value of
marker visibility for given frame ranges from 0 (no marker is de-
tected by any detector in the frame no matter what image processor
is used) to 6 (all markers are detected by all detectors in the frame
no matter what image processor is used). It is worth-mentioning
that marker visibility was not used directly. 30 visibility levels were
defined that represent 30 bins of values and have a range from 0 to
6 with an interval of 0.2. Each frame was assigned with one visibil-
ity level based on its marker visibility, and declare all frames with
the same visibility level as frames with comparable visibility. The
number of frames in each visibility level is shown in Figure 3.
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Figure 3: Number of video frames with given visibility level.
Frames without any markers (frames with zero marker visibility)
are not considered in this graph.

6. Results

Results are based on the number of correctly detected and identi-
fied markers in video frames enhanced by algorithms described in
Section 4. Since no marker was recognized incorrectly if detected
during tests, our comparisons do not examine false positives. All
image enhancing algorithms and marker detection algorithms were
compared to find the best parameters for each image enhancing al-
gorithm, and then compared the results of all algorithms using these
parameters. In addition to this, the processing and detection times
of each algorithm was also measured.

Parameters of image enhancing algorithms

The average number of markers detected in frames of the same
visibility level for each of 30 visibility levels was computed. This
average was calculated separately for each marker detector and
each combination of parameters of image enhancing algorithm. We
present the results in supplementary materials. Instead of using the
results for each visibility level, we compute an average of all these
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averages. This gives us overall number of detected markers that is
not affected by a number of frames with given level of visibility.
The results of this overall average for ARUco detector are in Ta-
ble 1, the results for AprilTag2 detector are in Table 2.

Comparison of algorithms

Our results show that image enhancement improves marker detec-
tion performed by ARUco detector. Using the overall average re-
sults, ARUco detector found 2.460 markers in frames without any
processing, and 2.679, 3.199, 3.133, and 3.429 markers in frames
processed by CLAHE, Debluring, WB, and MBUWWB, respec-
tively, when using the best combination of parameters. The results
of AprilTag2 detector do not show any significant improvement.
Without any image processing, AprilTag2 was able to find 3.278
markers. When the frames were processed by CLAHE, Debluring,
WB, and MBUWWB, AprilTag2 was able to find 3.267, 3.295,
3.246, and 3.263 markers. The numbers of AprilTag2 are higher
than most of the results of ARUco detector. This indicates that
AprilTag2 is a superior marker detector when compared to ARUco
(as was similarly observed by Cesar et al. [dSCGF∗15]). Despite
this, the highest number of detected markers was obtained by using
ARUco detector and enhancing images with our MBUWWB algo-
rithm. Based on these findings, we further compared the following
combination of algorithms and parameters:

ARUco + Original ARUco detector without using any image en-
hancing method;

ARUco + CLAHE ARUco detector and CLAHE with clip limit 2;
ARUco + Debluring ARUco detector and debluring with σ = 4.0

and w = 4.0;
ARUco + WB ARUco detector and white balancing with black = 2

and white = 99;
ARUco + MBUWWB ARUco detector and MBUWWB with

black = 2 and white = 99;
AprilTag2 + Debluring AprilTag2 detector and debluring with

σ = 4.0 and w = 1.0 (we use only one combination of image
enhancing algorithm and AprilTag2 detector, since other combi-
nations reported similar results);

Figure 4 provides a comparison of selected algorithms using the
average number of detected markers per visibility level. It is clearly
shown that the last four combinations (ARUco + Debluring, ARUco
+ WB, ARUco + MBUWWB, and AprilTag2 + Debluring) provide
the highest average number of detected markers, with ARUco +
MBUWWB providing the highest numbers at most visibility levels.
In this graph, we can also observe an unexpected drop in the num-
ber of detected markers of combinations ARUco + Original and
ARUco + CLAHE between visibility levels 4.0 and 5.0. We assume
that this behavior may be caused by lower number of evaluated
frames in these visibility levels (see Figure 3) or by nature of eval-
uated marker detecting algorithm that stops finding markers well at
this level of visibility.

Processing time

The time spent for detection of markers and for enhancing images
was also computed. For the evaluation, a desktop PC with processor
Intel Core i5 760, 8 GB of operating memory, and operating system
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Figure 4: Comparison of average number of detected markers per
visibility level of the best combinations of marker detectors and
image enhancing algorithms.

Windows 10 was used. The measurement was performed using one
video from Environment 2. To compare the performance of marker
detecting algorithms, the time necessary to detect markers in the
video without any image enhancement was measured. To compare
the performance of image enhancing algorithms, the time required
to enhance separate video frames, without performing any detec-
tion of markers was computed. As already mentioned, optimized
implementations of ARUco and AprilTag2 algorithms were used.
ARUco spent approximately 24.3 ms per frame, while AprilTag2
spent 246.9 ms per frame. It must be noted that the implementation
of AprilTag2 is not optimized to use SIMD instructions, although
we expect the computation time of an optimized version to be still
much higher than the computation time of ARUco.

An implementation of CLAHE and debluring using functions
available in OpenCV 3.2.0 was used. Since this library is optimized
for using SIMD instructions and multiple threads, we implemented
a similarly optimized version of white balancing and MBUWWB
algorithms. The processing times were as follows: CLAHE 6.8
ms, debluring 28.2 ms, WB 7.0 ms, and MBUWWB 7.0 ms. The
times were approximately the same for all parameters of these algo-
rithms. In case of ARUco, the computation time of the whole com-
bination with image pre-processing algorithms was also calculated.
The parameters mentioned in the previous section was used again,
and used the sum of the image preprocessing time and marker de-
tection time. These are the following: CLAHE 41.8 ms, debluring
77.2 ms, WB 40.6 ms, and MBUWWB 32.1 ms.

7. Augmented reality reconstruction at Baiae

To assess the effectiveness of our results, a pilot underwater test-
ing was performed in the sunken city called Baiae, which is located
in Italy. Baiae contains buildings from ancient Rome, which sub-
merged during the last 2000 years due to volcanic activity in this
area. The focus of the testing was limited to one building, Villa a
Protiro, with a characteristic mosaic in one of the rooms. Using the
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Video without
avg 2.460

enhancing

CLAHE
clip limit 1 2 3 4 5 6

avg 2.658 2.679 2.645 2.583 2.501 2.418

Debluring

σ 1.0 2.0
w 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

avg 2.528 2.539 2.532 2.504 2.630 2.747 2.821 2.877
σ 3.0 4.0
w 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

avg 2.681 2.847 2.946 3.053 2.730 2.933 3.082 3.199

WB

black 0 1
white 97 98 99 100 97 98 99 100
avg 2.996 2.998 3.006 2.975 3.100 3.097 3.105 3.052

black 2 3
white 97 98 99 100 97 98 99 100
avg 3.128 3.120 3.133 3.086 3.106 3.109 3.113 3.080

MBUWWB

black 0 1
white 97 98 99 100 97 98 99 100
avg 3.380 3.391 3.401 3.376 3.404 3.412 3.417 3.395

black 2 3
white 97 98 99 100 97 98 99 100
avg 3.405 3.412 3.429 3.388 3.409 3.420 3.420 3.391

Table 1: Overall average number of markers avg detected by ARUco for each parameter of each image enhancing algorithm. This average is
taken over averages per visibility level, so they are not affected by the number of frames with given level. The best result for each algorithm
is emphasized.

Video without
avg 3.278

enhancing

CLAHE
clip limit 1 2 3 4 5 6

avg 3.267 3.141 2.961 2.801 2.667 2.553

Debluring

σ 1.0 2.0
w 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

avg 3.141 2.980 2.806 2.640 3.200 3.067 2.928 2.768
σ 3.0 4.0
w 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

avg 3.264 3.205 3.131 3.064 3.295 3.276 3.225 3.170

WB

black 0 1
white 97 98 99 100 97 98 99 100
avg 3.203 3.208 3.198 3.246 3.184 3.182 3.182 3.229

black 2 3
white 97 98 99 100 97 98 99 100
avg 3.145 3.148 3.148 3.200 3.070 3.079 3.079 3.143

MBUWWB

black 0 1
white 97 98 99 100 97 98 99 100
avg 3.228 3.241 3.244 3.263 3.217 3.239 3.231 3.248

black 2 3
white 97 98 99 100 97 98 99 100
avg 3.209 3.217 3.216 3.223 3.194 3.190 3.187 3.198

Table 2: Overall average number of markers avg detected by AprilTag2 for each parameter of each image enhancing algorithm. This average
is taken over averages per visibility level, so they are not affected by the number of frames with given level. The best result for each algorithm
is emphasized.
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Figure 5: Experiment performed at Baiae. In the left figure, we see markers placed at the location of the room with mosaic of Villa a Protiro.
In the right figure, we see the reconstructed room in AR. With prefiltered image, we were able to detect more markers in more frames.

Combination
# of frames with # total number of
detected markers detected markers

ARUco + Original 2888 15259
ARUco + CLAHE 3132 18865

ARUco + Debluring 3130 18864
ARUco + WB 3126 19041

ARUco + MBUWWB 3136 19407
AprilTag2 + Debluring 3141 19812

Table 3: Results of the experiment conducted in Baiae, showing
number of frames with at least one marker detected, and number of
detected markers.

improved approach, divers were able to perceive a 3D reconstruc-
tion of Villa a Protiro in AR. We used 9 markers from the same
ARUco DICT_6X6_50 dictionary, forming a grid of 3×3 markers.
Size of each marker was 19 cm, and the space between markers
was approximately 5 cm. A single video was recorded using Sam-
sung S8 with resolution of 1920 × 1080 and length 141 seconds at
30 fps. Uncompressed images in NV21 format were stored as ob-
tained from the camera. The setup and the application is illustrated
in Figure 5.

The results of this experiment are shown in Table 3 and illus-
trate that AprilTag2 and ARUco with prefiltered input provides
more images where at least one marker is detected, and there-
fore more images where the position of the camera can be cal-
culated. Another interesting point is that ARUco detects the most
markers when combined with MBUWWB, which provides us with
more data for further processing, e.g., to calculate position of the
camera more precisely. AprilTag2 provided slightly better results
than ARUco combined with MBUWWB; however, the computa-
tion time is much larger, as mentioned in Section 6.

8. Discussion

Results indicate that proper choice of marker detection algorithm,
which consists of steps like image preprocessing, thresholding,
contour detection, and other, is very important for detecting mark-
ers in underwater environments. These environments heavily affect

visibility, and thus they also affect the result of marker detection. It
is not clear to us how exactly these conditions influence each detec-
tion step, but it was shown that the whole detection can be improved
by adding another image preprocessing step. The combination of
two fast algorithms, ARUco detector and our MBUWWB image
enhancing algorithm, provided better results in less time when com-
pared to more robust and much slower AprilTag2 in terms of the
number of detected markers. This shows that proper image enhanc-
ing algorithm can replace complex preprocessing and thresholding
methods in AprilTag2, and still obtain comparable results, as can
also be seen in Figure 1.

Processing times showed us that different image enhancing al-
gorithms influence the detection in different ways. Although de-
bluring provided results comparable with our MBUWWB, images
sharpened with debluring contain much more contours that must
be rejected, which increases the detection time. Our combination
of algorithms provided the result in a much smaller computation
time than more robust solution. Also, when more markers creating
a single multi marker are detected, we can compute a position of
this multi marker with higher precision. Our experiment did not in-
clude any test to compare this precision, however, because in our
experience, it is too difficult to obtain precise location of the marker
in underwater environments to have a ground truth to which results
could be compared.

Table 1 indicates that in case of the combination of ARUco and
debluring algorithm, higher values of σ and w may lead to a higher
number of detected markers. We performed additional tests with
higher values of σ and w, and found that the highest overall aver-
age number of markers 3.550 was reached at σ = 8.0 and w = 9.0,
which is comparable with our MBUWWB. However, the computa-
tion time also increased, due to larger gaussian kernel size that in-
creases with σ and higher sharpness of features that increases with
w. Processing time increased to 52.5 ms (image processing only)
and 140.7 ms (image processing and marker detection), which
makes it less usable for real-time applications when compared to
MBUWWB.

Using more sophisticated algorithms for image enhancement is
disputable, due to the time necessary to enhance images before
detecting markers. Although some of these algorithms (especially
those based on neural networks) provide results in very small time
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on PC, the processing power of mobile devices designed for aug-
mented reality is lower, which reduces the number of usable al-
gorithms. The results of white balancing methods indicate an im-
portant characteristic of computer vision performed in underwater
environments. Luminance channel I, which is used in computer vi-
sion algorithms, is computed as a weighted sum of individual color
channels R, G, and B:

I = wrR+wgG+wbB

where wr, wg, and wb are weights of these colors. However, since
white balancing methods apply an affine transformation to each
color channel individually, the white-balanced image can be ob-
tain by using different weights to the original color channels. This
indicates that a simple modification of the weights can improve
the performance of computer vision algorithms in underwater en-
vironments, which can be done for free as a part of ordinal white
balancing performed in digital cameras.

9. Conclusion

In this paper, we focused on the real-time detection of markers in
underwater open sea environments that can be used for AR. We
developed a method for enhancing images that is specialized to un-
derwater environments and detection of markers. We compared this
method with three methods for enhancing images on four sets of
videos, each taken in a different environment. The results showed
that our method combined with a fast marker detector gives bet-
ter results than more sophisticated marker detector that runs much
slower. In the future, a hybrid approach will be employed based on
data generated by the visual tracking techniques illustrated in this
paper and data from an acoustic modem. The solution will be in-
tegrated with a customized underwater tablet, which will estimate
the position of the receiver by computing the distance from at least
three fixed beacons placed on the seabed. The incoming position-
ing data from the various sensors will be finally processed through
data fusion and error estimation algorithms.
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