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Figure 1: Our pebble mosaic algorithm renders details through variable tile sizes and textures that hint at the underlying image content.
Left: abbreviated algorithm pipeline showing source, pebble layout detail, and final result; right: additional result.

Abstract

Pebble mosaics convey images through an irregular tiling of rounded pebbles. Past work used relatively uniform tile sizes.
We show how to create detailed representations of input photographs in a pebble mosaic style; we first create pebble shapes
through a variant of k-means, then compute sub-pebble detail with textured, two-tone pebbles. We use a custom distance function
to ensure that pebble sizes adapt to local detail and orient to local feature directions, for an overall effect of high fidelity to the

input photograph despite the constraints of the pebble style.
CCS Concepts

o Computing methodologies — Non-photorealistic rendering; Image processing;

1. Introduction

Pebble mosaics are an artform with roots in the ancient world yet
still used today. Unlike tesselated mosaics, characterized by a uni-
formity and regularity of the tesserae used to construct them, peb-
ble mosaics use rounded stones with potentially a high degree of
variability in size and shape.

This paper seeks to create a digital version of a pebble mo-
saic from an input photograph. Previously existing specialized mo-
saic creation systems do not yet deal with highly heterogeneous
tile creation, and general stylization systems based on neural net-
works struggle with creating distinct tile boundaries, often yielding
blurred or malformed tiles. Two sample results, and a summary of
our process, are shown in Figure 1.

Our process has two main phases: pebble creation and pebble
detailing. First, we coarsely approximate the image with rounded
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regions generated with an algorithm akin to k-means. Second, we
add color and texture to each pebble to provide image detail at sub-
pebble resolution. Like recent work on pebble mosaics [DACMar],
this work bridges the gap between realistic and non-photorealistic
graphics, computing plausible-looking pebble shapes and textures
while abstracting an input photograph. This paper improves on its
predecessor in two main ways. First, it achieves greater irregularity
in the shape and size of pebbles, automatically adapting to local
image detail. Second, it improves on the fidelity of the mosaic to the
original image, incorporating sub-pebble detail by using two-tone
pebbles and selecting pebble texture with reference to the image
content in the pebble region. Both changes dramatically improve
the appeal of the final result.
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2. Previous Work

In their comprehensive survey, Battiato et al. [BDBFG] classify
digital mosaic algorithms into two distinct areas: tile mosaics and
multi-picture mosaics. Hitherto, these methods have taken separate
paths, with different objectives and technical contributions. Simply
put, the objective of a tile mosaic is to reproduce a target image as
a collection of small, colored tile primitives. In contrast, a multi-
picture mosaic employs a dataset of images that, when assembled,
each source image closely matches the part of the target that it cov-
ers. Our work draws on aspects of both areas and we highlight some
of the main contributions of previous work here.

Tile Mosaics. Haeberli’s technique [Hae90] of tiling the image
plane with a Voronoi diagram has been influential in both tile mo-
saic algorithms and digital stippling [Sec02]. However, simply col-
oring the Voronoi regions does not adequately emulate the look of
ancient mosaics. Hausner [HauO1] instead sought to align rectangu-
lar tiles with image edges. His method used hardware-accelerated
Centroidal Voronoi Diagrams that iteratively move away from im-
age edges and align with a direction field. A more precise look
can be seen in Elber and Wolberg [EWO03] where tiles are arranged
along B-spline feature curves. Their method is also able to ren-
der spatially varying tile sizes. Di Blasi and Gallo [DBGOS5] pro-
pose cutting tiles that intersect image edges. This method can ren-
der finer details and produces more consistent grout spacing with
irregular-shaped tile fragments. An alternate approach is taken by
Dalal et al. [DKLS06], who use Fast Fourier Transforms to effi-
ciently pack tiles for mosaics, both static and animated. While the
above methods are largely automatic, Abdrashitov et al. [AGYS14]
present an interactive system that simplifies the digital mosaic cre-
ation process.

Multi-picture Mosaics. A popular form of the multi-picture mo-
saic is the photomosaic, as demonstrated by Silvers [Sil97] in his
early work. Some of the common questions that arise in this area
of research are: how to partition the image plane, what features and
search methods should be used, and should color shifts be allowed
on the tile images. Various authors [FR98, DBP06, OK08, PCK09,
MM12] have taken different positions on these issues. For example,
Finkelstein and Range [FR98] used a regular grid with wavelet-
based image matching, and scaled colors to match the source im-
ages to the target. Alternately, Pavi¢ et al. [PCK09] search a dataset
of over a million images, finding sources that can cover an adap-
tively tiled target image without color alterations. They use polyno-
mial image descriptors to obtain high accuracy over the entire tile.
Another technique is to consider offsets while aligning a source
with the target image. Orchard and Kaplan [OKO08] use Fourier
transforms to accelerate color alignment in irregularly shaped re-
gions. The puzzle image mosaic is a variant in this area. Here, ir-
regular shaped containers are populated with collections of shapes
or images without the need to represent interior detail. Kwan et
al. [KSH*16] and Saputra et al. [SKA18] demonstrate recent work
in this area.

Related to photomosaics is the area of hidden or camouflage im-
ages. The objective here is to hide foreground images within the
textures of a background image. Tong et al. [TZHM11] align edges
from the foreground image with the background and combine them
with a Poisson blending approach. Chu et al. [CHM™*10] recog-

nized that fast human recognition is aided by texture dissimilarity.
They mitigate this effect by exchanging foreground textures with
replacements from the background image.

Pebble Mosaics. Our current work extends Doyle et al.’s [DAC-
Mar] recent work on pebble mosaics. They use a modified
SLIC [ASS*12] to obtain elongated tiles which are then smoothed
in the frequency domain by means of a low-pass filter. They con-
struct 3D pebble geometry by solving a Laplace equation on the
region between two contours and then apply texture and lighting
effects. Their results have excessively uniform pebbles that rely on
color rather than shape to convey image content; also, they do not
have any mechanism for showing details at a scale smaller than the
pebbles.

3. Algorithm

The mosaic generation algorithm consists of two phases. First, we
generate the mosaic tiles, computing a content-aware irregular tes-
selation of the image plane; the resulting tiles are smoothed into
more rounded shapes resembling pebbles. This smoothing opera-
tion is implemented in the frequency domain and is identical to the
one described by Doyle et al. [DACMar]. Second, we add detail
to the pebbles, first creating two-tone pebbles that better match the
original image content, and also adding texture, where the texture
is selected to give the impression of the higher-frequency details
of the original image. An outline of our algorithm is illustrated in
Figure 2 and we discuss each of these phases in detail below.

3.1. Generating tiles
3.1.1. Distance function

Akin to SLIC, we use an iterative process of computing tiles as
Voronoi cells from a site distribution, moving the site to the cen-
troid of its region, and repeating. In SLIC, the distance function is
the Euclidean distance in a 5D color+image space. Here, we use a
more complex distance function that emphasizes color distance as
well as incorporating directly the tile distortion.

Our distance function computes a distance from a site s to a des-
tination d in the image plane. It has three essential elements: spatial
distance in the image plane, a color distance computed by integrat-
ing color differences along the ray from s to d, and an elongation
factor computed by measuring the deviation of the vector d — s from
the desired elongation direction. We take as input a 2D elongation
map E; image gradient directions are a good choice for E, and we
use the gradient for all our results, but other fields could be used
instead.

We compute a color distance D, as follows. First, we have the
incremental color distance at some point g along the path:

AC(s,q) = [11(s) = 1(q)][", M

where yis a constant determining the responsiveness of the distance
calculation to color differences; Since color variation is a variable
between 0 and 1, the lower values of v results in more emphasis on
color variation. For the results included in this paper, we used Yy =
0.55. Now, at a point g, we also have the maximum color distance
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Figure 3: Tile elongation is controlled by the z component of
Here we set z=1/m form=1,3,5,9.

Cmax seen so far:

Cmax (s,9) = sup{AC(s,x)|s <x < ¢} (2)
The full color distance is the integral of these maxima, divided by
the length of the path:

_ deax(S7x)
Dc(s,d) —/ de 3)

N

We take a similar approach to computing the elongation factor
Dg; small values of Dg extend the tile, and large values compress
it. The incremental elongation factor F is the cross product of the
3D elongation field E with the ray direction, giving a value that
is smaller when the ray aligns with the field. Note that the input
field was 2D; we introduce a z component to E to control how pro-
nounced the elongation will be. For the results shown in this pa-
per, we used z = 1/5. Larger z produces more compact tiles, with
smaller z producing more stretching in the image plane.

F(s,p) — w 4)

CE®IIp =9l

An example showing variable tile elongation appears in Figure 3.
From left to right we set z to 1/m form =1,3,5,9.

For each point along the ray, we find the maximum so far. The
final elongation factor is the integral of these maxima:
4 AF
Dp(s,)= [ BFLmar g, 5)
s lld=sl|

Finally, the full distance is the product of the spatial distance, the
color distance, and the elongation factor:

Dr(s,d) =||d —s||* (+ Dg(s,d)) * Dc(s,d). (6)
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Figure 4: Effects of changing constant parameters in distance func-
tion. From left to right: input, default variables, Y= 0.85, z =3,
a=1.5

The constant o > 0 used above provides a minimum contribution
of spatial distance even when elongation distance is near zero. We
typically use o = 0.15 for results shown in this paper.

3.1.2. Assignment

We use the above distance function to compute a k-means partition
of the image plane. However, the distance function is expensive,
and for a large number of regions, some sort of spatial partitioning
is required to make the computation tractable.

Figure 5: To determine the region for pixel P, we consider the six
sites at the corners of the four surrounding triangles.

Partitioning with a uniform grid is common, but will not be ef-
fective in our case since the region sizes are so variable. Instead, we
estimate the maximum region size before beginning: given a Delau-
nay triangulation over the region centres, a region will be bounded
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by the set of triangles surrounding its originating site. See Figure 5;
for pixels within a given triangle, we compute site-pixel distances
for the sites at the corners of the enclosing triangle (sites abc), plus
the sites on the face-adjacent triangles (sites ABC). This partition-
ing dramatically reduces the number of distance calculations, at the
cost of doing a Delaunay triangulation at each iteration. The De-
launay triangulation also helps us decide where to add and remove
regions in the next step.

3.1.3. Adding and Removing regions

As in stippling [Sec02], variable site density hinders convergence
speed, and it is not obvious how to get a reasonable starting dis-
tribution. Using a uniform initial density could require many itera-
tions to converge. Instead, we start with a larger density of regions
than we actually want, and allow regions to merge and split in order
to attain the desired local density.

During the assignment step, we also compute a confidence met-
ric T for each pixel p: T(p) = 1/Dr(p,Np), where Dr () is the dis-
tance from p to its nearest site Nj,. The pixels with least confidence
are furthest from any site and hence are primary candidates for
adding new sites. Of course, the confidence field is rather smooth,
and the pixel with least confidence will have neighbors with confi-
dence almost as low.

We sort the pixels by confidence and process the least confi-
dent pixels, seeking to determine whether they are suitable loca-
tions for new sites. For each pixel, we compute the distance to the
nearest site; if this distance is above a threshold, a site is added at
this pixel’s location. We chose a fairly forgiving threshold of half
the smallest distance between any two sites; this adds unnecessary
sites, but we need not be too strict in this phase, since the subse-
quent merging step can fix any problems introduced by adding too
many new regions.

To resolve site merging, we reuse the Delaunay tessellation over
the sites; we consider merging across each edge of the triangula-
tion. Two sites are merged if and only if their separation according
to our distance function is below a threshold Dyyjp:

(DT(S17S2)+DT(SZasl))/2 < Dpjin-

Notice that the distance formulation is not symmetric (in general,
Dr(a,b) # Dr(b,a)) so we average the distances in either direc-
tion.

This merging process might result in an unwanted reorganization
of the regions. For example, if during our checks for merging, we
repeatedly contract a region with another region to its right, an area
with lower than intended density will remain to the left. We noticed
this problem when we used a fixed traversal of the triangulation; if
we randomize the order of the checks, the problem disappeared.

3.2. Sub-pebble details

For larger pebble sizes, the pebble layouts alone are not quite ca-
pable of conveying the target image. Augmenting the tile image
with a layer of sub-pebble detail can help bring back some of this
lost information. Inspired by work in hidden images [CHM™ 10,

TZHM11], we seek to hide salient image details within pebble tex-
tures. Image content is subtly hinted at while at the same time not
so forcefully depicted as to look unnatural.

3.2.1. Texture matching

‘We match texture swatches from an external library to the underly-
ing target image. A small sample of which are shown in Figure 6.
These swatches will later be blended with a characteristic color,
or pair of colors, for each tile region. There are two steps in this
matching process. First, we query the library for the best texture
swatch to use for a given tile region. Then we determine the best
offset that will align the chosen swatch with the edge features in
the target image.

Figure 6: Example textures used in our method.

Texture queries are executed with Law’s texture descrip-
tors [Law80] which describe four basic filter types:

L5=1] 1 4 6 4 1] (Level)
E5=[-1 -2 0 2 1](Edge)
S5=[-1 0 2 0 —1](Spor)
RS=[1 —4 6 —4 1](Ripple).

We use these four types to construct nine 2D filters comprising the
combinations LSES/E5SLS, L5SR5/R5L5, E5S5/S5ES, S5S5, R5RS,
L5S5/S5LS, ESES, ESR5/RSES, and S5R5/RSS5 as described in
Shapiro and Stockman [SSO1]. Filtering the luminosity channel of
a texture swatch with the above filters, obtains images F; for j =
1 to 9. We then construct f, a global texture-energy feature vector,
for each swatch as follows:

1= 11 L 51 )
J1 x€F;

Feature vectors for a query are computed similarly from the tar-
get image. The exception is that the sum is constrained to locations
under a mask representing the pebble region. We carry out texture
queries in our small library of 50 samples through linear search
while retaining the k-nearest neighbors in a priority queue. For
larger libraries, using accelerated data structures for kNN search
would reduce runtimes. Finally, one of the k options is selected
randomly in order to avoid excessive repetition in uniform areas.
We set k to 6 in our examples.

Now that we have found the texture image that will be used for
rendering a given pebble, we conduct a second search that aims to
align edges from the target and texture images. We obtain an edge
map for each library texture by thresholding the gradient magni-
tude at the 90th percentile of the computed values. The edge map
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for the target image is computed with a cropped section equal to
the dimensions of the selected texture centered under the pebble.
We then use Orchard and Kaplan’s spectral method [OKO08] for
finding the minimum sum-of-squared-difference (SSD) between a
target and offset source image under a given mask. Formally we
minimize:

Clab) =Y IS —aj=b)=TEHIPWi), @
i,

with respect to the offsets a and b. Here, S and T are the edge maps
from the texture and target images, respectively. The mask image,
W, is constructed by setting a 1 in areas corresponding to the pebble
region and setting a 0 otherwise. This offset search is carried out on
four 90°rotations of the texture swatch and selecting the minimum
SSD result. This selected texture will not only be used for blending
with the pebble colors, but will be used for computing the colors
themselves as we show in the next section.

3.2.2. Two-color pebbles

In nature, pebbles often exhibit more than a single color — they are
often speckled, or streaked with mineral veins. Mimicking this phe-
nomenon, we compute two-color pebbles by segmenting the under-
lying image content into two clusters using SLIC [ASS*12] with
one small modification: we augment the colors in the target im-
age with a percentage (50% in our examples) of the texture colour.
This effectively distorts the boundaries so that they capture some of
the texture characteristics. We also note that we histogram equal-
ize both the target image and the texture swatch as a prepossessing
normalization step.

Each of the two clusters are then colored with the average of
their corresponding regions in the unaltered target image. Finally,
the texture swatch is blended with the two-colored pebble region
in the luminosity channel. An illustration of this process is given
in Figure 7 on a contrived example showing diverse image content
within a single region.

Figure 7: Sub-pebble detail is suggested by rendering a pebble
with two colors. Left to right: target image, aligned texture swatch,
two-color clustering, blending with texture swatch.

3.3. Rendering

Our rendering method is identical to Doyle et al.’s [DACMar]. We
set gradient and value constraints on two contour boundaries — the
outer pebble boundary and an inner boundary set at 85% of the
maximum in the region’s distance transform. The pebble height-
field is constructed by solving a Laplace equation and the resulting
geometry is rendered using Phong shading.
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4. Results and Discussion

Example results from our algorithm applied to various subject mat-
ter can be seen in Figure 8 with their original sources shown in
Figure 15. We recommend looking at these images both close up,
to examine individual pebbles and textures, and also at a medium
distance, say 70-100 cm from the display.

Our tile-generation method demonstrates the advantages of using
variable pebble sizes. It adds smaller pebbles where needed in high-
gradient regions and allows less-varied spaces to be filled by larger
pebbles. Hence, fine details can be rendered, but there is still an
overall reduction in tile count compared to previous methods. The
tree on the middle left reveals this quality as the small pebbles that
represent the high-frequency leaves give way to the low-frequency
tree trunk, which is rendered in much larger pebbles. The advan-
tage of rendering sub-pebble detail in textured two-colored pebbles
is shown in the sheep image on the top left. Here, the texture of the
sheep’s fleece is emphasized in the pebble details. Another example
is visible in the leaf image on the middle right. Some of the pointy
tips of the leaves are too fine to be segmented into individual peb-
bles, and instead these small details are rendered with two colors,
combining the dark foreground and the bright background within
the same tile.

In the portrait on the bottom left, we can observe several qual-
ities of our method at once. Pebble sizes range from large, in the
featureless background, to small, in the highly textured areas on
the hat. Sub-pebble textures also hint at the woven textures that are
present in the original image seen in Figure 15. Hard color breaks
are present within select pebbles, particularly on the eye and the hat
brim, which help reaffirm edges where the tile segmentation fails
to capture them.

Looking at the black and white pebble outlines, and the final ren-
dering, in Figure 1 further confirms how tile size helps the viewer
visually segment the image. Previous methods [HauO1, DACMar]
relied on tile color and alignment with edges to indicate image con-
tent. Here, we show that the extra dimension of size separates the
smooth, curved sides of the engine structure from the detailed front-
facing area. This distinction is clearly made even without the di-
mension of color. Earlier methods allowed a user to specify regions
that should be rendered with more detail, but here we can get tile
size variation with no manual intervention.

4.1. Comparisons with previous work

In Figure 9 we compare our results against Hausner [Hau0O1] and
Doyle et al. [DACMar]. Both the previous methods, as well as our
result on the bottom left, use 2000 pebbles. On the bottom right
we use 1000. We render our images without lighting effects and
use two solid colors on each pebble to enable a more direct com-
parison. Our method and Doyle et al.’s are both able to character-
ize finer levels of detail through irregular tile shapes that conform
to image boundaries. However, our method also has the advantage
that higher-frequency regions, such as the figure’s face, are ren-
dered with smaller tiles. Indeed, even with the smaller tile count
on the bottom right we can show comparable detail with the larger
tile count in Doyle et al.’s result on the top right. Using textured
pebbles also contributes to the advantage of our method.
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Figure 8: Some results.

In Figure 10 we compare our result with Doyle et al.’s. While
we use their method to construct the pebble geometry, our irregular
segmentation is better able to represent image content. In our result
on the right, the uniform background is rendered in large pebbles.
This contrasts with higher density on the rough, scaly iguana. Ad-
ditionally, using variable pebble size has allowed the lizard’s pupil

to be clearly depicted. In Doyle et al.’s result (center) this detail is
lost.

Varying tile size has also been experimented with in previous
work — mostly as a result of manual segmentation [HauO1, DAC-
Mar]. Some examples are shown in Figure 11. On the top right, El-
ber and Wolberg [EW03] present a method for increasing tile sizes
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Figure 9: Comparison with Hausner [HauOl | (top left) and Doyle
et al. [DACMar] (top right) using 2000 tiles. Our results are shown
using 2000 and 1000 tiles on the bottom left and right.

Figure 10: Comparison with Doyle et al. [DACMar]. From left to
right: original, Doyle et al., ours.

as they move away from user-defined feature lines; an abstraction
emerges that emphases the user-imposed structure rather than im-
age content. Our result on the bottom shows a greater variability
than Hausner’s [Hau01] manual segmentation on the top left. Ad-
ditionally, it is more economical, as small tiles are only used where
necessary, such as the regions around the eyes.

Our method shares a goal with Orchard and Kaplan’s [OKO0S8]
photomosaic paper. Namely, we desire sub-tile details to align with
image edges. Orchard and Kaplan search a large dataset of images
to find offsets, or rotations, that match a target image. A resultis de-
picted in Figure 12 on the top left where we can see the tile image
aligned with the architectural structure. Owing to their large search
space they measure runtimes in hours. In our approach, we do not
seek such accurate texture matches since they are used principally

© 2019 The Author(s)
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Figure 11: Methods for varying tile size. Top left: Manual segmen-
tation [HauOl]; top right: Elber and Wolberg’s method [EW03];
bottom: ours.

to augment the clustering procedure in Section 3.2.2. Looking at
the zoomed section of the cat image on the bottom left, one can
see how pebble texture details align with the lower edge of the eye.
Our reduced matching requirements enables us to query our texture
dataset with low dimensional texture-energy features. The final off-
set search is only performed on four rotations of a single image,
with the entire search process taking 2 minutes on a 1900 x 1300,
4000 tile image.

4.2. Limitations

Our method has difficulty handling low-contrast images. The image
of the statue in Figure 13 is barely recognizable in our rendering.
Adding to these difficulties are the monochrome palette and similar
texture energy between foreground and background. These quali-
ties prevent any real distinction between pebble colors or sizes.

Inherent in any mosaic style is the tension between scale of im-
age detail and scale of the pebbles. We have to some degree ad-
dressed the challenge of showing details smaller than the pebble
sizes, but the pebbles are still the most prominent aspect of the
result. More investigation into sub-pebble detail is warranted, per-
haps using more prominent textures without compromising believ-
ability.

Figure 14 contrasts our synthetic pebbles against a real mo-
saic example. While real pebbles are sometimes slightly concave,
our artificial pebbles have far more pronounced concavities. More
problematic still are the pointy tips of some of our pebble shapes.
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Figure 12: Sub-tile edge alignment compared with Orchard and
Kaplan [OKO8] (top left). Our result is a zoomed version of Fig-
ure 8, bottom right. On the bottom left we see two-color tiles which
render sub-tile edges. The result on the bottom right uses a single
tile color. The original zoomed image is shown on the top right.

Figure 13: Results on angel image; the forms in the image have
become difficult to see.

Our Fourier-based smoothing method is not able to remove these
structures that originate in the initial segmentation. However, it is
likely that subsequent morphological operations would be able to
remove these artifacts.

We also note that our segmentation process is sensitive to noise.
In the landscape on the top right of Figure 8, one would expect the
variable cloud texture to be rendered in smaller pebbles than the
sky. However, we witness the opposite effect here; low-level noise
in the sky, visible when the image is zoomed in, causes our method

Figure 14: Comparison with real pebble samples. Left: synthetic
pebbles, right: real pebbles.

to split the pebbles. Pre-processing with a smoothing filter would
be helpful in these situations.

5. Conclusions

In this work, we have presented an automated pebble mosaic
image-stylization algorithm. It extends previous work on pebble
mosaics in two ways. First, we generate irregular sized tiles that are
better able to describe image features. Though an adaptive splitting
and merging process, our method places more tiles in higher-energy
regions and less where the image content is uniform. Second, we
create sub-pebble texture details that are able to suggest content
from the underlying target image. We query a dataset of texture
swatches and use matching samples to guide a tile coloring pro-
cess. This is especially helpful for rendering fine features that are
too small to be adequately captured by tile boundaries. Our mosaics
are more detailed than was possible with previous methods using
the same number of tiles.

In the future, we would like to extend this work to animated peb-
ble mosaic movies. This will present new challenges, such as en-
suring the coherent movement and shape of tiles between frames.
Another area for improvement is in salience estimation for back-
ground removal. While photographs provide good a starting point
for a mosaic algorithm, real examples display abstract patterns as
well as figures. Similarly, we could automatically incorporate non-
photographic elements into non-salient image regions. On the other
hand, semantic information could also be used to emphasize impor-
tant areas — either by increasing the pebble count to draw the eye,
or to re-enforce boundaries at weak edges.
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Figure 15: Source images used in this paper.
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