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Abstract

Uncertainty visualization is an important emerging research area. Being able to visualize data uncertainty can help scientists
improve trust in analysis and decision-making. However, visualizing uncertainty can add computational overhead, which can
hinder the efficiency of analysis. In this paper, we propose novel data-driven techniques to reduce the computational require-
ments of the probabilistic marching cubes (PMC) algorithm. PMC is an uncertainty visualization technique that studies how
uncertainty in data affects level-set positions. However, the algorithm relies on expensive Monte Carlo (MC) sampling for the
multivariate Gaussian uncertainty model because no closed-form solution exists for the integration of multivariate Gaussian. In
this work, we propose the eigenvalue decomposition and adaptive probability model techniques that reduce the amount of MC
sampling in the original PMC algorithm and hence speed up the computations. Our proposed methods produce results that show
negligible differences compared with the original PMC algorithm demonstrated through metrics, including root mean squared
error, maximum error, and difference images. We demonstrate the performance and accuracy evaluations of our data-driven
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methods through experiments on synthetic and real datasets.
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1. Introduction

Uncertainty visualization is one of the top research chal-
lenges [JS03,Joh04] that must be addressed to ensure reliability of
scientific analysis and decision-making. Although there have been
multiple advances in uncertainty visualization for scalar [ASE16,
PWB*(09, PWHI11, FFST19, LLBP12, AMS*21], vector [OGT11,
FBW 16,GHP* 16], and tensor data [Kin04,Jon02], they bear an ad-
ditional cost of computing uncertainty in visualization. Such com-
putational overhead can limit our ability to integrate uncertainty
analysis techniques into production visualization tools (e.g., Par-
aView [ABM*01], VisIt [Chill], VTK-m [Meal6]) for use by
scientists. Researching novel techniques that speed up computa-
tion of uncertainty in scientific visualizations is therefore critical
to make uncertainty usable in visualization tools. In this paper,
we propose novel data-driven techniques to increase the perfor-
mance of positional uncertainty computation of marching cubes
level-sets [LC87].

Probabilistic marching cubes (PMC) [PWHI11], devised by
Pothkow et al., is the first probabilistic method to understand how
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uncertainty in data is propagated into level-set positions. In partic-
ular, the authors modeled uncertainty in data as probability distri-
butions to derive the probability distribution of level-sets. In their
work, it was shown that uncertainty computations with the multi-
variate Gaussian distribution assumption are more accurate than in-
dependent uniform/Gaussian distribution models because they can
capture the correlation among dimensions. However, the higher ac-
curacy of the multivariate Gaussian model comes at the cost of
computational overhead resulting from the use of expensive Monte
Carlo (MC) sampling. MC sampling is required because multivari-
ate Gaussian cannot be integrated in closed form. For example, as
presented in the PMC paper, the computation of level-set uncer-
tainty takes 194 minutes for a data grid of size 432 x 219 x 68 with
eight MC samples per grid cell. Such high computational times can-
not be accommodated in visualization tools.

A few recent advances have investigated the fast computation
of PMC. Han et al. [HAPJ22] proposed a novel deep learning net-
work for fast prediction of level-set uncertainty for a multivariate
Gaussian noise model. This approach, however, is limited to time-
varying ensembles of 2D datasets and involves significant training
time specific to a dataset before efficiently predicting level-set un-
certainty. Wang et al. [WAM™23] recently developed a parallel fil-
ter FunMC? that can run on multicore CPUs and GPUs for fast
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computation of level-set uncertainty. The filter, however, still re-
sorts to traditional MC sampling per compute thread to account for
data correlation and compute uncertainty. In this work, we propose
new data-driven optimizations that can improve the speed of level-
set uncertainty computations on a single-core CPU. Our methods
produce results that have negligible differences compared with the
original PMC algorithm. Furthermore, we integrate our techniques
with the FunMC? filter to achieve further speedup on multicore de-
vices.

Contributions: We propose two novel data-driven techniques
for the efficient computation of level-set uncertainty.

e In our first technique, we extract low-rank structures of a multi-
variate Gaussian distribution to reduce the amount of MC sam-
pling, thereby speeding up computations. Specifically, we em-
ploy the eigenvalue decomposition to extract low-rank structures
that carry important information followed by their sampling.

e In our second technique, we leverage the Pearson’s correlation
coefficient [Kir08] to estimate the level of data correlation and
adaptively choose a probabilistic model. Such adaptive model
decision reduces the amount of MC sampling and subsequently
the time of uncertainty computation.

e We evaluate the performance vs. accuracy of our techniques
for uncertain 2D and 3D datasets. We observed the maximum
speedups up to 3.38x on synthetic dataset and 2.30x on real
datasets with negligible differences compared with the original
PMC [PWHI11] results.

2. Background
2.1. Marching Cubes

Marching cubes [LC87] is a workhorse algorithm used in many vi-
sualization tools for depiction of level-sets of 2D or 3D scalar func-
tions. If f: R? — R is a scalar function, then the level-set or isosur-
face L of a scalar field f for the isovalue k corresponds to a preim-
age of function value k. Mathematically, L(k) = {P : f(P) = k},
where P denotes the domain positions. Assuming that f is sam-
pled on a 3D uniform grid, the marching cubes extracts a triangular
mesh corresponding to an isosurface with isovalue k. Consider a
single grid cell with fixed data values at eight cell vertices denoted
by d = (dy, ..,d7)T. If dy > k (or < k) Vv, then the level-set is in-
ferred to not cross the cell; otherwise, the level-crossing takes place
(i.e., the level-set crosses a grid cell). If level-crossing takes place,
then the level-set topology within a cell is determined based on the
marching cubes topology cases [LC87].

2.2. Probabilistic Marching Cubes

Uncertain grid vertex data create ambiguity regarding the level-
crossing event. The PMC addresses such ambiguity by estimat-
ing the level-crossing probability (LCP) for a grid cell. In partic-
ular, LCP represents the probability of the level-set to cross a grid
cell for isovalue k. Although LCP computed with the multivari-
ate Gaussian model is more accurate than the independent uni-
form/Gaussian model because of its ability to capture data corre-
lation [PWHI11], there is no closed-form solution for the multi-
variate Gaussian model. Thus, MC sampling is the only practical
solution in the case of multivariate Gaussian to compute LCP. Let
D = (Dy, ..,D7)T denote a random variable representing uncertain

data at the 3D cell vertices. The random variable is assumed to
have a multivariate Gaussian distribution with the sample mean j1 =
(o, .., fi7)T and sample covariance matrix ¥, = E[(D — i) (D — )T ].
If S MC samples are then drawn from the distribution AV(i, }°) and
if the level-set with isovalue k crosses a cell for C number of sam-
ples then the LCP is estimated as %

3. Methods

In this paper, we propose efficient data-driven solutions to opti-
mize the PMC performance. Data-driven solutions (e.g., data his-
tograms) have been proposed in several prior works [BDL*21,
ZIW21,ZWZ*19] for feature preservation and optimization. Be-
low, we describe our eigenvalue decomposition and adaptive prob-
ability model techniques for performance optimization of the PMC
algorithm [PWH11] through a reduced level of MC sampling.

3.1. Eigenvalue Decomposition for Sampling

The original PMC technique (Sec. 2.2) samples 8D multivariate
distribution A/ (j1,}") space for computing the level-set uncertainty
(i.e., LCP) in 3D datasets. We leverage a low-dimensional equiv-
alent of a multivariate space for reducing the amount of MC sam-
pling and subsequently enhancing the efficiency of LCP computa-
tion. Specifically, we utilize the eigenvalue decomposition to ex-
tract low-dimensional structures and perform sampling.

In an n-dimensional grid cell, by diagonalizing the covariance
matrix ¥ into T' AT using the eigenvalue decomposition, uncertain
data D ~ N (f1,}) can be rewritten as D ~ ji+ A2 Z, where pu €
R" is the sample mean, I € R"*" denotes eigenvectors, A € R"*"
represents a diagonal matrix of eigenvalues, and Z ~ N(0,1,) rep-
resents the data with standard normal distribution. /,, denotes the n-
dimensional identity matrix. The matrix form of multivariate Gaus-
sian data can be expressed as follows:

- - 1
D M1 Vit ... Va 7\,12 0 Z
3 S R LR N ER O
Dy, n ‘71,1 Vnn 0 ké Zn

In the above form, each column of I'—that is, [\7,1\7,,,]T—
denotes the i" eigenvector. The eigenvectors are sorted by their
eigenvalues such that A; > Ay > --- > Ay, indicated as a diagonal
matrix. Thus, a random variable D; denoting uncertain data at the

j[h vertex can be represented as follows:

=n
Dj=p;+ Y, VihZi 2)
i=1
The key idea of this study is to use the significant eigenvalues in
Equation 2 to reduce the amount of MC sampling and enhance the
speed of uncertainty computations. For a given n-dimensional cell,
if only m dimensions have significant eigenvalues, then we can
rewrite Equation 2 with the following approximate equation be-
cause multiplication with small eigenvalues corresponds to a minor
contribution to the sum in Equation 2:
i=m
Dj~uj+ Z ‘71‘]'7\.?‘52,' 3)
i=1

i=

The original PMC algorithm involves drawing n MC samples of a
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Figure 1: The eigenvalue decomposition (top row) and adaptive probability model (bottom row) techniques provide speedup by factors 2.60 X
and 3.38x, respectively, for LCP computation. For the correlated ensemble (a), considering only the dominant eigenvalue (i.e., Ay ) for LCP
computation provides a speedup (eig_max denotes the maximum eigenvalue among all grid cells). For the independent ensemble (b), the
adaptive usage of the fast closed-form model provides speedup. Both techniques show minor differences with respect to the original PMC.

random variable Z (Equation 2), whereas the proposed eigenvalue-
based approach (Equation 3) requires drawing m MC samples per
cell. If m < n, then Equation 3 can provide a significant speed-up
while producing solution close to the original PMC. For the guid-
ance and results for significant eigenvalue decisions, please refer
to the supplementary material. Note that choosing only nonzero
eigenvalues provides the same solution as the original PMC method
except for the errors from random number generation.

3.2. Adaptive Probability Model

The multivariate Gaussian model ([PWHI11] and Sec. 3.1) can lead
to unnecessary computations if the underlying data are indepen-
dent or have a weak correlation. We therefore propose an adap-
tive strategy that selects between the multivariate Gaussian and
independent models for higher efficiency of uncertainty compu-
tations. In our adaptive strategy, we compute the Pearson’s cor-
relation coefficient [Kir08] to test the level of data independence
within a grid cell. In particular, for an n-dimensional grid cell, we
compute the Pearson’s correlation coefficient for each pair of di-
mensions followed by the maximum among computed correlation
values, pmax. If pmax attains smaller values, then we predict data
to be independent and use the closed-form independent Gaussian
model [PH11, ASJ21]; otherwise, we use our proposed eigenvalue-
based model (Sec. 3.1) for LCP computation. The utilization of the
closed-form independent model avoids MC sampling, thereby pro-
viding a speedup. We note that computing pairwise correlation can
quickly become expensive with an increase in n. For example, for
2D data, the number of pairwise correlations per grid cell is 6, but
for 3D data, it is 28. Thus, we compute the pjqy array offline, which
is independent of the isovalue. This precomputed pqx array is then
used for adaptive model decisions.

4. Results

First, we demonstrate efficient computation of level-set uncer-
tainty (i.e., LCP) through experiments on a synthetic Ackley func-
tion [Ack87] using our proposed techniques (Sec. 3.1 and 3.2).

© 2024 The Authors.
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For our experiments, we generate two ensemble datasets by adding
independent and correlated noise to the Ackley function. For the
independent noise model, we randomly generate samples r ~
[—0.1,0.1] and add them to the Ackley function. For the correlated
noise model, we draw a random number r ~ [0.9,1.1] and generate
an ensemble member by multiplying the Ackley function by r.

Figure la visualizes the results of the proposed eigenvalue de-
composition technique (Sec. 3.1) applied to the correlated ensem-
ble dataset and their comparison with the original PMC [PWH11]
results. For both eigenvalue-based and PMC techniques, 2,000 MC
samples are drawn per grid cell. As expected for the correlated en-
semble, only one eigenvalue (A;) is dominant, and the maximum
Pearson’s correlation coefficient (pmax) is strong (yellow regions in
the correlation map). The A; value in Figure la denotes the sum
of the top eigenvalues across all grid cells. All other eigenvalues
are calculated in a similar fashion for all results in the paper. For
computing LCP, we utilize the nonzero eigenvalues (Equation 3)
per grid cell, which provides a speedup of 2.60x. The root mean
squared error (RMSE) and maximum error (Max_error) between
the results of our eigenvalue-based method and the original PMC
are 0.007 and 0.048, respectively. These errors are about the same
as the RMSE and Max_error between the two runs of MC sam-
pling in the original PMC. Thus, the errors are within the tolerance
of random number generation, which confirms that our eigenvalue-
based method produces the same solution as the original PMC. The
speedup of 2.60x is observed because only one dimension (with
the largest eigenvalue A;) is sampled for most grid cells as opposed
to MC sampling of all four dimensions in the original PMC.

Figure 1b visualizes the results for the adaptive probability
model technique (Sec. 3.2) applied to the independent ensemble
dataset. The data independence test is performed using the pmax
test. The precomputation time for the pmax is 0.56 seconds on a se-
rial i7 Intel processor, which is fast because of the low-resolution
2D grid. As observed in Figure 1b, pmax attains smaller values for
each grid cell because of the independence among members. For
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the results shown, if pmax < 0.2, then we predict that the data are
independent. We chose this threshold 0.2 based on a few previous
studies [Ako18, SBS18], but we show variation in speed and accu-
racy with a change in the threshold in the supplementary material.
If the independence test is satisfied, then we use the fast closed-
form model for LCP computation [PH11, ASJ21]; otherwise, we
utilize our eigenvalue-based approach with MC sampling of dimen-
sions with nonzero eigenvalues (Sec. 3.1). We observe a speedup
of 3.38x with negligible differences (i.e., RMSE, maximum error,
and difference visualization) with respect to the original PMC. This
speedup is attributed to the adaptive usage of the fast independent
model that eliminates the need for sampling of a distribution.

Next, we present the results for real datasets. Figure 2a—e visual-
izes the results for the velocity magnitude fields of the wind ensem-
ble [Vitl17] with 15 members each with a 68 x 68 grid resolution.
The proposed eigenvalue decomposition approach with nonzero
eigenvalues (Figure 2b) provides a 2.30x speedup compared with
the original PMC (Figure 2a), and minor differences (RMSE, max-
imum error, and difference visualization) in the LCP computation
arise from the random number generation, similar to the Ackley
dataset. The postanalysis of the ensemble recovers a significant cor-
relation among members, as evident through one dominant eigen-
value (A1) and strong pmax values in Figure 2d—e. The presence of
only one dominant eigenvalue significantly reduces the amount of
MC sampling (with m = 1 for Equation 3 in most cases) compared
with the original PMC. The adaptive method in Figure 2c with an
independence prediction based on pmuqx < 0.2 provides about the
same speedup as the eigenvalue-based method because the fast in-
dependent model is rarely used due to a weak independence in data.
The precomputation of a pmax is fast (0.96 seconds) because of the
low-resolution 2D grid. We present further analysis regarding the
sensitivity of results to thresholds for significant eigenvalues and
Pmax in the supplementary material.

Figure 2f—j depicts the results for the beetle dataset [GGKOS5].
Specifically, we partition the original data with spatial resolution
832 x 832 x 494 into blocks of size 4 x 4 x 4 and summarize the
block uncertainty by using a multivariate Gaussian [TLB*11]. Be-
cause this dataset is large, we utilize the FunMC? filter implemen-
tation with the VTK-m library [WAM*23, Meal6] for accelerating
the performance. In particular, we run the original PMC and our
proposed methods on Oak Ridge National Laboratory’s Frontier su-
percomputer, which is equipped with AMD GPUs [Fro]. The pro-
posed eigenvalue-based approach with nonzero eigenvalues took
16.72 seconds (Figure 2g), whereas the original PMC (Figure 2f)
took 27.18 seconds for 500 MC samples. A 1.61x speedup is ob-
served because the existence of four dominant eigenvalues (A;..A4)
reduces the amount of MC sampling (with m = 4 for Equation 3
in most cases) compared with the original PMC that samples all
eight dimensions. There are again minor differences (RMSE, max-
imum error, and difference visualization) in the LCP computation
with respect to the original PMC that arise from the random number
generation, similar to the Ackley and wind datasets.

The adaptive method in Figure 2h provides about the same
speedup as the eigenvalue-based method because the data exhibit
weak independence (similar to the wind dataset). The precompu-
tation time for the correlation map is 94.6 minutes on a serial
i7 Intel processor because of the 28 correlation computations per
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Figure 2: Proposed techniques (b, c; and g, h) vs. the original PMC
(a, f) for LCP computations in the wind and beetle datasets, respec-
tively. The proposed techniques provide a significant speedup at a
comparable quality with respect to the original PMC. Both datasets
exhibit a strong correlation and have few dominant eigenvalues.

grid cell (see Sec. 3.2). Although amenable to the GPU acceler-
ation, the expensive precomputation of a correlation map is the
limitation of the adaptive method, especially on serial processors
and for grids with higher dimensions and resolutions. The adaptive
method results in a slightly larger Max_error than the eigenvalue-
based method because the independence threshold pmax = 0.2
(see [Ako18, SBS18]) can produce some inconsistencies between
the two methods. Nonetheless, at the threshold pmax = 0.2, we re-
ceive overall high accuracy in the LCP computations.

5. Conclusion and Future Work

In this paper, we propose novel data-driven solutions to help reduce
computational overhead caused by visualizing level-set uncertainty
with the PMC algorithm [PWH11]. We propose the eigenvalue de-
composition technique, which produces nearly the same solution
as the original PMC but in much less time using important eigen-
vectors. We also propose the adaptive probability model technique
that utilizes data correlation for optimizing the PMC performance.
In the future, we plan to research more data-driven optimizations
(e.g., mutual information, entropy) to accelerate uncertainty com-
putations for level-sets and other topological features (e.g., critical
points [FFST19], Morse complexes [AMY *22]).
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