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Abstract
Monte Carlo path tracing techniques create stunning visualizations of volumetric data. However, a large number of computa-
tionally expensive light paths are required for each sample to produce a smooth and noise-free image, trading performance for
quality. High-quality interactive volume rendering is valuable in various fields, especially education, communication, and clini-
cal diagnosis. To accelerate the rendering process, we combine learning-based denoising techniques with direct volumetric ren-
dering. Our approach uses additional volumetric features that improve the performance of the denoiser in the post-processing
stage. We show that our method significantly improves the quality of Monte Carlo volume-rendered images for various datasets
through qualitative and quantitative evaluation. Our results show that we can achieve volume rendering quality comparable to
the state-of-the-art at a significantly faster rate using only one sample path per pixel.

CCS Concepts
• Computing methodologies → Ray tracing; Neural networks;

1. Introduction

Monte Carlo (MC) path tracing is one of the most widely accepted
methods to obtain physically-based volumetric visualizations. Cap-
turing indirect global illumination is necessary to achieve photo re-
alism. Cinematic [EDCNJ∗17, DHF∗16] or MC path tracing meth-
ods estimate light transport by sampling several paths per pixel
and computing the light contribution at each point along the ray
as it travels through the volume. Recent approaches [HMES20,
IGMM22] have shown stunning visualization of medical volumet-
ric content, such as CT scans. The perception and understanding of
these volumes can be greatly improved with photo-realistic render-
ing, especially for inexperienced users. However, MC path tracing
methods for volumes require nearly hundreds of rays per pixel to
converge to a good quality solution [ZOM∗22], which is computa-
tionally very expensive even with the latest graphics hardware.

Volume rendering involves solving the light transport inte-
gral [Kaj86]. The emission-absorption model is commonly used for
scientific visualizations. Estimating the volume rendering integral
involves casting a ray for each pixel and generating several samples
along the ray till it exits the volume. However, these models ignore
the scattering effects and lack realism. When scattering is also con-
sidered, the computations become even more expensive. Specifi-
cally, assume a single scattering model. A secondary ray is cast
for each sample point on the view ray to compute the in-scattered
light reaching the point. Samples are to be generated along this sec-
ondary ray to calculate the transmittance. As a result, many point

locations must be sampled in a volume to compute the light integral
along a single ray, limiting interactive and real-time performance.

Several efforts have been made to accelerate the volume ren-
dering process. Techniques such as importance sampling [ZZ19,
MMR∗19, VG95, SA07], adaptive raymarching [Mn14], null-
collision algorithms [KHLN17, NGHJ18], empty-space skip-
ping [EHKRS06,HAAB∗18] modify the path tracer in-process and
effectively select samples in the volume avoiding the regions with
less contribution to the final ray color. Alternatively, methods simi-
lar to irradiance caching [KVS∗14,JDZJ08,RCB11] reuse the light-
ing calculations. In contrast to these methods, image-space denois-
ing [ZJL∗15] is a post-processing method and is gaining popularity
in reducing noise in MC renderings. One can apply denoising in
addition to any of the accelerating strategies. However, most exist-
ing work in denoising MC noise has focused on surface models.
Its application to 3D volumes is challenging as there are no well-
defined boundaries in volumes. The success of the surface-based
MC denoising methods relies heavily on the smooth and noise-free
auxiliary geometry buffer information to preserve details in the im-
age. These buffers are generally either noisy or not well-defined for
volumes. As a result, designing such equivalent auxiliary buffers
for volumetric renderings is a challenging task.

This paper proposes a volumetric denoiser that efficiently re-
duces MC noise on images rendered at low sample rates. In par-
ticular, we use stochastic MC volumetric path tracing to render the
volume data using one sample path per pixel (spp), which is later
denoised using our volumetric denoising network. Our denoising
framework is based on the neural bilateral grid [MZV∗20]. We
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propose additional volumetric features, obtained as a by-product of
path tracing, that, when combined with the neural denoiser, achieve
interactive frame rates while maintaining high image quality. We
show the effectiveness of our proposed method through qualitative
and quantitative results on image quality and performance.

2. Neural Volume Denoiser

2.1. Volumetric Path Tracer

Following Salama [Sal07], we render a given volume in two passes,
from which the radiance is composited to output the final image.

First pass The first pass deals with the first intersection of
the ray with the volumetric region based on the transfer func-
tion [LKG∗16,VPG11]. We compute diffuse lighting due to a point
light source placed above the volume. For each pixel p in the screen
space, we generate several rays Rp that originate from the cam-
era. The term samples per pixel (spp) corresponds to the number
of rays generated for each pixel. Along each ray Rpi (i ∈ [1,spp]),
we take samples at multiple locations x j, where j = 1...m, consid-
ered at equal interval spacing. The interval size is set to the size
of one voxel. At each sample location, we evaluate the opacity of
the voxel α(x j) using the transfer function. On encountering a non-
transparent voxel along the path, we compute the light contribution
at that location x j. We obtain the visibility at x j by casting a ray RLk

from the point light source to x j and sample along the ray at equal
intervals. If an opaque sample is encountered, the point is consid-
ered to be occluded. We model ambient occlusion by assuming a
spherical uniform light source at a large enough radius surrounding
the volume. To approximate the integral over the sphere, we ran-
domly sample a direction and calculate the light contribution from
a virtual point light source positioned in that direction.

Second pass The second pass in the volume rendering pipeline
models the scattering effects. We assume single scattering. Once
the sampled ray makes its first intersection with the volume, it is
then transmitted into the volume. We trace this ray and accumulate
the attenuation factor till the composited opacity exceeds a thresh-
old. The ray, at this point, scatters in a random direction over the
hemisphere centered around the gradient direction. The scattered
ray is traced till it leaves the volume, and the environment lighting
is composited. The final color is obtained by multiplying the voxel
color with the composited light, considering attenuation.
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Figure 1: The figure shows the auxiliary features representing the
color-coded position, depth in grayscale, and color-coded normals
corresponding to the two events on three datasets.

2.2. Auxiliary features

We propose using a set of volumetric features obtained as a by-
product in our rendering pipeline to guide our denoising network.
These features include the depths, positions, and normals corre-
sponding to the first surface-like interaction with the volume and
the first scattering event within the volume (Figure 1). The nor-
mals are estimated from the gradients of the scalar values. Unlike
surface-based models, where such auxiliary features can be easily
computed at the locations where the light intersects the scene, these
features are not well-defined for 3D volumes. We believe these fea-
tures provide additional information to the denoiser and preserve
the high-frequency details in the image.

2.3. Neural Denoiser

Our volumetric denoising network (VDN) is based on the Neu-
ral Bilateral Grid proposed by Meng et al. [MZV∗20]. The
noisy image r ∈ RH×W and the auxiliary features f from our
volumetric path tracer pass through a convolutional neural net-
work [AG17] (GuideNet) to predict a guide image g as shown
in Figure 2. A three-dimensional bilateral grid B with resolution
(⌊ H

nh
⌋,⌊W

nw
⌋,⌊ 256

nd
⌋) is created by projecting the noisy radiance val-

ues onto the grid based on the values from the guide image g. Here,
(nh,nw,nd) denotes the sampling factors across each dimension.
Multiple levels of bilateral grids can be created using different sam-
pling factors. The bilateral grid is then subjected to spatial filtering
to remove the MC noise. Similar to Meng et al. [MZV∗20], we
perform filtering by convolving the bilateral grid with a tent filter
T (x,y,z). The filtered bilateral grid B̂ can be obtained using Equa-
tion 1, where j = ( jx, jy) represent a pixel in the image, p ∈ R3

denotes a spatial location in B, and ĝ( j) = ( jx, jy,g( j)).

B̂(p) =
∑ j T (ĝ( j)− p) · r( j)

∑ j T (ĝ( j)− p)
(1)

In the last stage, the denoised image R̃ is reconstructed by slicing

Figure 2: The figure shows our volumetric denoising pipeline
using a single-level neural bilateral grid adapted from Meng et
al. [MZV∗20]. The GuideNet takes the noisy image and the aux-
iliary features as input and predicts the guide image, which guides
bilateral filtering to produce the denoised image.

the filtered bilateral grid using the same guide image g. The de-
noised image value at a pixel j is given by Equation 2. {p|B(p) ̸=
0} denotes the set of non-zero integer grid cells.

R̃( j) =
∑{p|B̂(p)̸=0} B̂(p) ·T (ĝ( j)− p)

∑{p|B̂(p)̸=0} T (ĝ( j)− p)
(2)

3. Experimental Setup

Our volume renderer is implemented in CUDA on a workstation
with Intel i5-6600 and NVIDIA Quadro RTX 5000 GPU. The de-
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1spp 1spp denoised (Ours) 4spp 8spp 16spp 256spp
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Figure 3: The figure visually compares images rendered with different sample paths per pixel using our volumetric path tracer. The second
column (1spp denoised) shows our result of using VDN to denoise the one sample per pixel Monte Carlo rendered images.

noising framework is implemented in Tensorflow using an NVIDIA
GeForce RTX 2080 Ti GPU. The noisy input images are rendered
using one spp, and the ground truth with 256 spp.

Datasets and transfer functions: We validate the performance
of our denoising method on a set of 3D volumes: CT scans of hu-
man head, stag beetle, and king snake. We define a custom trans-
fer function to map the 3D voxel scalar field V (x) to the color
C(x) ∈ [0,1]3 and the opacity α(x) ∈ [0,1] of the voxels x ∈ [0,1],

C(x), α(x) =
{

(1,1,0),0.7 t l
outer <V (x)< th

outer
(1,1,1),1.0 t l

inner <V (x)< th
inner

}
(3)

where 0 < t l
outer < th

outer < t l
inner < th

inner < 1 define the two events
where we evaluate the effect of light interactions. The voxels with
scalar values outside of these ranges are considered transparent.

4. Results

Quality comparison Our results are shown in Figure 3. The first
column shows the noisy input images, and the second shows the
corresponding denoised images. Columns three to six represent im-
ages rendered with 4-spp, 8-spp, 16-spp, and 256-spp for reference.
The second row shows the image quality of zoomed-in versions of
the two regions in the human head. We also validate the quality of
the denoised images using two image quality metrics - Structural
Similarity Index (SSIM) [WBSS04] and Peak Signal-to-Noise Ra-
tio (PSNR) in Table 1. We observe both qualitatively and quantita-
tively that the denoised one-spp images have a quality higher than
the 8-spp images and comparable to 16-spp images.

Metric 1spp 1spp 4spp 8spp 16spp 64spp 256spp
denoise

Human Head
PSNR↑ 20.19 30.52 25.97 29.00 32.11 39.05 +inf
SSIM↑ 0.796 0.966 0.873 0.910 0.942 0.984 1.0
Time (ms)↓ 55.14 72.74 210.64 416.86 833.04 3.3k 13.2k

Stag Beetle
PSNR↑ 27.80 35.91 33.55 36.62 39.69 46.52 +inf
SSIM↑ 0.951 0.992 0.977 0.987 0.993 0.998 1.0
Time (ms)↓ 46.34 63.84 198.98 422.06 892.25 3.8k 15.5k

King Snake
PSNR↑ 22.77 35.30 28.75 31.81 34.95 41.89 +inf
SSIM↑ 0.832 0.974 0.909 0.943 0.967 0.992 1.0
Time (ms)↓ 111.00 128.80 482.36 969.70 1.9k 7.7k 31.0k

Table 1: Quantitative metrics on image quality and the overall ren-
dering time per frame, compared to 256-spp images. Our one spp
three-level neural bilateral grid denoiser (1spp denoise) achieves
high-quality results at interactive frame rates.

Rendering time Our method significantly reduces the end-to-
end rendering time while maintaining superior image quality. The
overall time depends on the time to render the volumetric path
traced image and the time to denoise the generated noisy image.
Moreover, the rendering time depends on the volume and the trans-
fer function. In contrast, the denoising time depends only on the
resolution of the image once the network is trained. Our three-level
neural bilateral grid takes 17 milliseconds to denoise a 1024×1024
resolution image while maintaining a quality higher than the im-
age rendered at 8spp. This improves the rendering time by nearly
seven times. When a bilateral grid at a single resolution is used
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in our denoising network, the run-time further reduces to 13 mil-
liseconds with a slight drop in image quality. We provide a scatter
plot visualization of the run times in Figure 4. In comparison, the
single autoencoder volumetric denoising network by Hoffman et
al. [HMES20] takes nearly 63 milliseconds on the same GPU to
denoise a 1024 × 1024 image. We use our volumetric auxiliary
features described in Section 2.2 to train the autoencoder. Our ex-
periments show that we can obtain comparable image quality at
a 3.5× faster run-time compared to autoencoder-based volumetric
denoiser [HMES20] as shown in table 2.
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Figure 4: Our method (VDN) obtains an image quality close to
the 16-spp image while maintaining a run-time between one-spp
and two-spp images.

Method Time PSNR
Human Head Stag Beetle King Snake

NDPT [HMES20] 63 msec 31.51 37.16 36.23
VDN (Ours) 17 msec 30.52 35.91 35.30

Table 2: The table shows that VDN produces images with a quality
comparable to NDPT [HMES20] but at 3.5× faster rates.

Generalization To analyze the generalizability of our denoiser
on datasets not seen during training, we train three different net-
works that take training images from two volumes and test on the
third one. Our results in Table 3 show that the denoiser is general-
izable and produces images with a quality close to the independent
models where the training and test images come from the same vol-
ume. Since the denoiser is trained on cropped patches, the network
is not limited to the training dataset alone and can generalize well
to remove MC noise from similarly rendered images.

Training data Testing data PSNR SSIM
King Snake and Stag Beetle Human Head 30.06 0.96

Human Head and King Snake Stag Beetle 35.26 0.99
Human Head and Stag Beetle King Snake 34.50 0.97

Table 3: The table shows the performance of our denoiser when
the training and the test images come from different 3D volumes.
The high image quality depicts the generalizability of our method.

Effect of Auxiliary features We compare our approach to a de-
noiser trained purely on noisy color images to analyze the effect
of using the proposed volumetric auxiliary features. Table 4 shows
the image quality obtained with and without these volumetric aux-
iliary features. We report the mean image quality over 50 test views
for each dataset from a network trained on 128× 128 sized image
patches. The results show that the denoiser guided by defined addi-
tional features improves the quality of the rendered images.

Data Only Color x3 Only Color Color+Aux
PSNR SSIM PSNR SSIM PSNR SSIM

Human Head 29.90 0.956 30.09 0.957 30.31 0.966
Stag Beetle 34.97 0.990 35.56 0.993 35.69 0.992
King Snake 33.72 0.961 34.06 0.964 35.11 0.973

Table 4: The effect of using volumetric auxiliary features in our
denoiser. Only Color does not use any auxiliary features in the de-
noiser. x3 Only color has network parameters comparable to the
network with auxiliary features. We observe that additional feature
information consistently improves the image quality.

5. Discussion and Conclusion

Discussion While several image-space denoisers [BVM∗17,
GLA∗19,CKS∗17, IMF∗21] have been proposed for surface-based
models, we choose the neural bilateral grid in our work. The neural
bilateral grid has fast run-time performance along with excellent
edge-preserving characteristics, which is essential when visualiz-
ing medical data such as CT scans. Another recent approach for
denoising [FWHB21] based on kernel prediction architecture also
shows an improved run-time and reconstruction quality. It would
be interesting to study the effect of the proposed auxiliary features
with such denoisers.

Geometric features such as depth and surface normals have
shown improved performance in denoising surface-based data us-
ing neural networks [BVM∗17, KBS15]. In this work, we extract
similar features from our volume rendering framework at various
light interaction events. Our experiments show that coupling these
volumetric features with the denoiser improves the quality of the
reconstructions. However, our method is limited to medical vol-
umetric content, where discernible layers are encountered, and a
single scattering is sufficient [Sal07]. For phenomena like smoke,
fire, and other translucent materials like wax and human skin that
need more complex transfer functions, additional volumetric fea-
tures might be required to effectively guide the denoiser. Integrating
advanced automatic feature selection methods [ZOM∗22] can steer
further studies in this direction. We believe our work will inspire fu-
ture research to experiment with different features that effectively
guide volume denoisers in real time.

Conclusion In this work, we integrate a deep-learning-based
denoising method with volume rendering that replaces the heavy
pipeline of MC volume rendering to achieve high-quality render-
ings at interactive rates. Our method first renders a noisy image
using only one spp through volumetric path tracing. The noisy im-
age and the proposed volumetric auxiliary features are then passed
through the neural bilateral grid denoiser to obtain a high-quality
result. Our results show that an image quality higher than 8-spp
renderings can be obtained by denoising a one-spp rendered image,
achieving a speed-up factor of nearly seven times, thus enabling in-
teractive high-quality volumetric rendering.
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