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Abstract
In clinical practice, Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is usually evaluated by visual inspection of
grayscale maps of Fractional Anisotropy or mean diffusivity. However, the fact that those maps only contain part of the infor-
mation that is captured in DT-MRI implies a risk of missing signs of disease. In this work, we propose a visualization system
that supports a more comprehensive analysis with an anomaly score that accounts for the full diffusion tensor information. It is
computed by comparing the DT-MRI scan of a given patient to a control group of healthy subjects, after spatial coregistration.
Moreover, our system introduces an Anomaly Lens which visualizes how a user-specified region of interest deviates from the
controls, indicating which aspects of the tensor (norm, anisotropy, mode, rotation) differ most, whether they are elevated or
reduced, and whether their covariation matches the covariances within the control group. Applying our system to patients with
metachromatic leukodystrophy clearly indicates regions affected by the disease, and permits their detailed analysis.

CCS Concepts
• Visualization application domains → Visual analytics; • Life and medical sciences → Health informatics;

1. Introduction

Traditionally, medical images are evaluated by visual inspection:
A trained radiologist compares the images to their mental model of
healthy anatomy. However, without additional support, subtle signs
of disease can escape visual detection. Therefore, visualization sys-
tems have been proposed that use spatial coregistration to detect
and highlight differences from a normal cohort [HGF∗05,MBF15],
or in longitudinal data from the same subject [SBR∗22].

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI)
[PJB∗96] is widely used to characterize microstructural changes
in the brain. However, it is particularly challenging to evaluate,
since it yields a 3×3 symmetric matrix in each voxel, the diffusion
tensor. For visual inspection, the diffusion tensor is often reduced
to scalars such as mean diffusivity (MD) or Fractional Anisotropy
(FA), which however only contain part of its information [PB96].
Tensor glyphs [KW06] visually encode the full tensor information,
but are more suitable for a detailed investigation at specific loca-
tions than to obtain an overview of a full DT-MRI volume [SV19].

Our work presents the first visualization system for comparing a
DT-MRI scan from a given patient to a healthy control group, based
on a voxel-wise anomaly score that accounts for the full DT-MRI
information. Our system supports rapid navigation to slices with
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strong overall deviations from the control group, and an in-depth
investigation of those differences with a novel visual encoding, the
Anomaly Lens (Section 4). It is based on a novel decomposition of
the overall anomaly score into a sum of interpretable terms, which
we describe in Section 3. In Section 6, we demonstrate how our
system can be used to detect and analyze abnormalities in patients
with metachromatic leukodystrophy [MHS∗21].

2. Related Work

While visualization techniques have been proposed for comparing
pairs of tensor fields [ZSL∗16], or groups (ensembles) of tensor
fields [ZHC∗17, AWSW∗19], to the best of our knowledge, our
current system is the first to visualize anomalies by comparing an
individual tensor field to an ensemble that serves as a reference.

Outside medical imaging, the integration of automated anomaly
detection into interactive systems for visual exploration and inter-
pretation has a long history. Such systems have been proposed for
intrusion detection in computer networks [TMWJK04], for spa-
tiotemporal data, as it arises in maritime [RFZ08] or traffic surveil-
lance [CLZ∗18], as well as in social media [CTB∗12], and in event
sequences, which might reflect medical treatments in electronic
health records, or career paths in academia [GJC∗22].

A key part of our visualization system is the Anomaly Lens, an
interactive lens [BSP∗93, TGK∗16] that displays more detailed in-
formation about anomalies in a user-selected brain region. Even
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though the visual analytics system EnsembleLens [XXM∗19] also
addresses anomaly detection, it has an entirely different focus than
our work, comparing results from multiple anomaly detection al-
gorithms, and it uses the term “lens” in a more abstract way, since
it has been designed for data without an intrinsic spatial structure.

3. Theory

In our context, anomaly detection is the task of finding locations in
which the DT-MRI volume of a given patient differs significantly
from a set of DT-MRI volumes that have been taken from a match-
ing healthy control group. To enable a voxel-wise comparison, we
first bring all datasets into spatial alignment using a specialized
nonlinear registration algorithm that accounts for the required re-
orientation of diffusion tensors [ZAY∗07].

As an anomaly score, we use the well-established Mahalanobis
distance [Mah36] between a multivariate distribution with mean µ
and covariance matrix Σ, and a point x. It is defined as

dM =

√
(x−µ)T

Σ−1 (x−µ). (1)

We compute dM voxel-wise by first embedding the diffusion ten-
sors T isometrically into R6 via

t = [T11,T22,T33,
√

2T12,
√

2T13,
√

2T23]
T , (2)

which yields the representation x of the patient’s diffusion tensor,
and permits computation of voxel-wise sample means µ ∈ R6 and
covariances Σ ∈ R6×6

Sym from the control group.

A high value of dM indicates dissimilarity from the healthy co-
hort. To interpret it, we would like to know how the patient differs:
Does a decrease of anisotropy, possibly going along with an in-
crease in overall diffusivity, suggest a loss of structural tissue orga-
nization? Does it go along with changes between planar and more
linear anisotropy in a region of crossing fibers?

To permit such an investigation, we express the difference x−µ
between the patient’s diffusion tensor and the control group mean
in a specific orthonormal basis, using a matrix Q. The coefficients
of the difference vector in that basis are given as

δ = Q(x−µ) = [δnorm,δFA,δmode,δr1 ,δr2 ,δr3 ]
T (3)

and can be interpreted as differences that relate to changes in
Frobenius norm (i.e., overall amount of diffusivity), Fractional
Anisotropy (FA), tensor mode (i.e., difference between linear and
planar anisotropy), and rotations around the three eigenvectors. Q
needs to be computed per-voxel, depending on the local value of
µ. Since it is derived from the gradients of tensor invariants and
the tangents of infinitesimal rotations, it is referred to as the IGRT
(“invariant gradient and rotation tangent”) basis [KEWW07].

While the IGRT basis has been used previously for tensor field
visualization [AWHS16, AWSW∗19], our current work is the first
to use it in the context of anomaly detection. In particular, we use
it to derive a novel decomposition of the squared Mahalanobis dis-
tance into a sum of interpretable terms. We first observe that, due
to orthogonality of Q, evaluating the Mahalanobis distance in the
IGRT basis with a suitably transformed covariance, S = QΣQT ,

yields the same result as Equation (1),

dM =
√

δT S−1δ =

√√√√ 6

∑
i=1

6

∑
j=1

S−1
i j δiδ j, (4)

where the coefficients of δ, whose names in Equation (3) reflected
their meaning, have now been numbered to simplify notation.

Next, we observe that, due to the use of the IGRT basis, the 36
terms in the double sum in Equation (4) can be interpreted as fol-
lows: The 6 diagonal terms (i = j) involve squared coefficients of
δ, normalized by the corresponding diagonal element of the preci-
sion matrix S−1. They attain high values if the deviation between
the patient’s diffusion tensor and the mean of the control group with
respect to norm, FA, mode, and the three rotations is large, relative
to the corresponding variability within the control group.

Due to symmetry, 15 of the 30 remaining terms are unique. They
involve products of two different coefficients of δ, multiplied by an
off-diagonal element of S−1. These terms decrease or increase the
value of dM depending on whether the covariation between differ-
ent aspects of the patient’s diffusion tensor matches the covariances
in the control group. For example, if norm and FA were negatively
correlated in the control group, a given absolute deviation in norm
and FA from the group mean will be considered less anomalous if
it matches this in that both measures deviate in opposite directions.

This interpretation is based on the relationship between the off-
diagonal elements of S−1 and partial correlations in the control
group. The partial correlation between δi and δ j (controlling for
the set R of all remaining indices) can be computed as

ρi j.R =−
S−1

i j√
S−1

ii S−1
j j

. (5)

Therefore, the negative partial correlation between norm and FA
in our example would amount to a positive sign of S−1

norm, FA. If a
patient has increased tensor norm, but decreased FA, the resulting
product S−1

norm, FA δnorm δFA will be negative.

We reduce the resulting 21 unique terms to a more manageable
number of 10 for visual encoding. This is achieved by combining
the rotational degrees of freedom, which would be difficult to inter-
pret individually. Therefore, we treat the partial sum that involves
the three diagonal terms related to rotation, and the corresponding
three unique off-diagonal terms, as a single value. Moreover, par-
tial sums of off-diagonal terms that relate each of the three shape
dimensions to the three rotational degrees of freedom are treated as
one value each for norm, FA, and mode.

Since we decomposed the squared Mahalanobis distance, we vi-
sualize the square roots of the resulting absolute values, preserving
their signs. This leaves the following 10 values for visual encoding:

V1 3 non-negative values indicating deviations with respect to
tensor shape, i.e., norm, FA, and mode

V2 1 non-negative value indicating overall deviations with re-
spect to rotation

V3 3 signed values indicating to which extent the covariation be-
tween tensor shape coefficients matches the control group

V4 3 signed values indicating to which extent the covariance be-
tween tensor shape and rotation matches the control group
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Figure 1: Key features of our visualization system are (A) a mech-
anism for fast navigation to slices in which a patient differs most
strongly from the control group, (B) an Anomaly Lens that con-
veys which aspects of the diffusion tensor differ most, and in which
direction, and (C) a Covariance View that indicates whether the
covariation of different aspects within the Anomaly Lens matches
the expectation from the control group.

4. Visual Encoding and Interaction

Traditional evaluation of DT-MRI involves visual inspection of MD
and FA maps, as they are shown in Figure 3 B and C, without spe-
cific guidance. It would not detect abnormalities that do not af-
fect MD or FA. Our visualization aims to make this process faster
and more comprehensive by supporting three tasks: First, guiding
the viewer towards regions of strongest deviations from the control
group. Second, finding out which aspects of the diffusion tensor,
such as norm or anisotropy, differ most within a given region, and
whether they are elevated or reduced. Third, finding out to which
extent the relative directions in which different aspects of the ten-
sor deviate from the group mean agree with the covariation that was
observed within that region in the control group.

Figure 1 shows an overview of our system. For the initial task of
guiding the user towards anomalous regions, we visualize the Ma-
halanobis distance dM by color coding it on slice views. To avoid
confusion with color schemes that are used later on, we use a ba-
sic grayscale mapping at this point, so that high values stand out as
bright. To permit rapid navigation to slices that contain strong over-
all anomalies, we additionally visualize the cumulative value of dM
for each slice below the slider that is to browse slices (Figure 1 A).

The Anomaly Lens (Figure 1 B) supports the second task, a more
detailed analysis of local anomalies. It covers a user-defined circu-
lar region of interest, and is placed by clicking on its desired center
and releasing the mouse button after moving to the desired radius.
The Anomaly Lens is shown as a ring that is subdivided into four
differently colored segments. Their relative sizes match the relative
magnitudes of the four values from V1 and V2, averaged over the

interior of the lens. Thus, they indicate the relative contributions of
norm (green), FA (orange), mode (purple), and rotation (pink) to
the overall anomaly scores within the lens region. Labels and exact
absolute and relative values can be shown as tooltips. For example,
the ring in Figure 1 indicates that the local anomaly is mostly due
to deviations in norm, followed by deviations in FA, while mode
and rotation had relatively little contribution.

Double clicking on one of the segments highlights it with a white
boundary, and reveals whether the corresponding attributes were
above or below the reference from the control group by color cod-
ing the respective voxel-wise values in the interior of the lens. Even
though the values in V1 and V2 are non-negative, we use a diverg-
ing color map, with blue indicating locally reduced values, red el-
evated ones, based on the sign of the corresponding coefficient δi
from Equation (3). The red interior of the lens in Figure 1 shows
that, within most of this region, norm has been higher than in the
controls; the blue interior in Figure 2 shows decreased FA.

A Covariance View supports the third task of analyzing whether
the covariation between different aspects of the tensor agree with
what was observed in the control group. It is linked to the Anomaly
Lens, but is rendered separately (Figure 1 C). It shows the values
from V3 and V4, again averaged over the lens region. Since they
reflect pairwise relationships, we visualize them as links between
nodes that represent norm, FA, mode, and rotation.

Signs are again encoded via a blue (negative) to red (positive)
colormap. As discussed in Section 4, they indicate whether or not
the relative directions in which the two measures differed from the
mean of the control group agree with the corresponding partial cor-
relations in the control group. Positive values, highlighted as red
edges, are the surprising findings in which the covariation in the
patient differs from the control group. An example is shown in Fig-
ure 3. The nodes in the Covariance View are colored so that they
serve as a color legend for the ring around the Anomaly Lens.

In Figure 1 C, the strongest edge is a negative one, between
norm and FA. Double-clicking on the respective segments of the
Anomaly Lens reveals that FA is reduced, while norm is increased.
The negative sign of the link between norm and FA in the Covari-
ance View indicates that a corresponding negative partial correla-
tion was observed in the same region in the control group.

5. Implementation

Our system is implemented in Python, using PyQt for the graph-
ical user interface. The Anomaly Lens is a custom widget. Diffu-
sion tensors have been estimated with FSL [JBB∗12]. We slightly
eroded FSL’s brain mask to ignore artifacts that often arise close to
the outer boundary of the brain. Registration has been performed
using the Diffusion Tensor Imaging ToolKit (DTI-TK) [ZAY∗07].

The remaining pre-processing (computing voxel-wise means,
covariances, and IGRT matrices for the control group, computing
the Mahalanobis distance and the values V1–V4) can be conducted
within our tool. All results are stored as files, so that the same data
can be analyzed in subsequent sessions without any delay. For a
control group of 19 subjects, pre-processing on a standard worksta-
tion took almost 8 minutes. The subsequent pre-processing of each
patient took 50 seconds.
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Figure 2: The anomaly lens indicates that, in the genu of this pa-
tient’s corpus callosum, a decrease in FA is the strongest single
factor of the overall anomaly.

6. Results

We used our system to analyze abnormalities in DT-MRI data of pa-
tients suffering from late-infantile metachromatic leukodystrophy
(MLD), a genetic affliction in which an accumulation of sulfatides
damages the myelin sheets around neural fibers in the central and
peripheral nervous system, leading to progressive motor and cog-
nitive deficiency [SCS∗20]. The study was approved by the ethical
committee of the University of Tübingen, Germany.

Our DT-MRI data had 30 diffusion-weighted volumes at b =
700s/mm2 and three reference volumes at b = 0. Each volume had
96× 96× 50 voxels with 2 mm isotropic resolution. We will dis-
cuss exemplary findings from three patients, who were compared
to an age-matched control group of 19 healthy children.

In the white matter of all three patients, our anomaly scores indi-
cate extensive regions of demyelination, with decreased Fractional
Anisotropy (FA) and increased overall diffusivity. An example for
the first patient is shown in Figure 1. These changes agree with
previously reported findings in another MLD cohort [vRKS∗18].
We note that our system uses the Frobenius norm instead of mean
diffusivity (MD), which is more widely reported in the clinical lit-
erature. This is because our derivation in Section 3 relies on orthog-
onality of the matrix Q, which would be violated when replacing
norm with MD [KEWW07]. Both values quantify overall diffusiv-
ity, and they are strongly correlated. In terms of the diffusion tensor

eigenvalues, the Frobenius norm is given as
√

λ2
1 +λ2

2 +λ2
3, while

MD is given as (λ1 +λ2 +λ3)/3.

Even though the general pattern of decreased FA and increased
overall diffusivity was present in all anomalies, the relative magni-
tude of those two factors varied. While norm dominated in the pre-
vious example, Figure 2 shows an example in which the Anomaly
Lens reveals that FA is the strongest single factor in another patient,
and a different anatomical region, the genu of the corpus callosum.

Finally, in a coronal slice of the third patient, Figure 3 A shows
an example in which the Covariance View (presented as an inset)
reveals a remarkable insight: The interaction between FA and mode
contributed about as much to the anomaly score as the deviation in
mode itself. In this case, FA correlated positively with more lin-

Figure 3: In this example, the red color for mode in the interior of
the anomaly lens (A) indicates a slightly more-linear-than-average
tensor shape. Even though this deviation is so subtle that it con-
tributed little to the overall anomaly score, the fact that it co-
occured with decreased FA is remarkable, as indicated by the red
edge in the Covariance View (inset). This would remain undetected
when inspecting maps of MD (B) and FA (C).

ear diffusion tensors in the control group, while the Anomaly Lens
shows that the patient had slightly higher-than-average linearity de-
spite decreased FA. This might be explained by one of two crossing
fiber bundles being affected more strongly by demyelination. While
a radiologist would be able to detect the anomaly in terms of ele-
vated MD (Figure 3 B) and decreased FA (C) by visual inspection,
a traditional analysis would not account for changes in mode.

7. Conclusions

We presented an interactive visualization system for the detection
and investigation of pathological abnormalities in diffusion tensor
imaging. It is based on computing the Mahalanobis distance as an
anomaly score that accounts for the multivariate nature of the diffu-
sion tensors, and on decomposing it into individual terms that can
be interpreted as being related to tensor norm, FA, mode, rotation,
as well as covariations between them. The resulting quantities are
encoded in an overview visualization, an Anomaly Lens that re-
veals the dominant factors in a region of interest, and a Covariance
View. In future work, we hope to extend our approach towards even
more complex variants of diffusion imaging, such as diffusional
kurtosis [JHR∗05] or NODDI [ZSWKA12].
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