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Figure 1: Comparison of streamline results between our technique (b), ground truth (a) and the baseline (c) for tornado dataset, differences
highlighted in yellow.

Abstract
In this work we propose an integration-aware super-resolution approach for 3D vector fields. Recent work in flow field super-
resolution has achieved remarkable success using deep learning approaches. However, existing approaches fail to account for
how vector fields are used in practice, once an upsampled vector field is obtained. Specifically, a cornerstone of flow visual-
ization is the visual analysis of streamlines, or integral curves of the vector field. To this end, we study how to incorporate
streamlines as part of super-resolution in a deep learning context, such that upsampled vector fields are optimized to produce
streamlines that resemble the ground truth upon integration. We consider common factors of integration as part of our approach
– seeding, streamline length – and how these factors impact the resulting upsampled vector field. To demonstrate the effective-
ness of our approach, we evaluate our model both quantitatively and qualitatively on different flow field datasets and compare
our method against state of the art techniques.

CCS Concepts
• Computing methodologies → Neural networks; Reconstruction; • Human-centered computing → Scientific visualization;

1. Introduction

In the field of scientific computing, scientists generate high resolu-
tion flow-field data from large-scale numerical simulations for anal-
ysis and visualization purposes. High resolution vector fields pro-
vide highly-resolved structural details that enable complex analyses
of flow behavior. However, there remain challenges in the work-
flow from data generation to post-hoc analyses, namely, bottleneck
in file I/O in terms of space and network bandwidth for file transfer.
Thus, scientists end up either simplifying the flow data or visualiz-
ing only part of it at a time, leading to incomplete analyses.

To mitigate this problem, in recent years vector field super res-
olution has evolved as a mature technique. Vector field super reso-
lution refers to the task of recovering high resolution vector fields
from their low resolution counterparts. Traditionally, interpolation
techniques such as tri-linear interpolation or tri-cubic interpolation
have been used for the purpose of super-resolution. However, these

techniques lack the ability to capture the global flow behaviour
since up-sampling is based on local information only. In recent
years, deep learning based techniques have received significant at-
tention in the literature and have shown to outperform these more
traditional techniques. Yet a limitation common to existing methods
is that no consideration is made to how upsampled vector fields are
used in practice. Specifically, as part of a scientist’s visual analysis
workflow, it is extremely common to integrate the vector field to
obtain streamlines, in order to discover more global, structural flow
features. On the other hand, a key advantage to optimization-based
techniques for super-resolution, e.g. deep learning methods, is that
we may optimize for what we ultimately visualize, e.g. streamlines.

To this end, in this paper we propose an integration-aware ap-
proach to vector field super-resolution. Streamlines have a long his-
tory within visualization [SBGC20] , thus when considering how
to use streamlines for super-resolution, there are a number of fac-
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tors to consider, ranging from the seeding technique to the length
of integration. We show how to augment more traditional super-
resolution objectives with integration-aware losses, and study how
these factors impact the resulting optimization. Through experi-
mentation on a number of datasets, we quantitatively and qualita-
tively show that it is possible to guide super-resolution to better re-
flect streamlines in ground-truth flow fields. Our contributions can
be summarised as follows: (1) We introduce integration-aware op-
timization for vector field spatial super resolution using deep learn-
ing models. (2) We study the impact of factors common to stream-
lines as part of optimization. (3) We evaluate our approach on a
range of vector field datasets and demonstrate superior results com-
pared to existing methods, both quantitatively and qualitatively.

2. Related Work

Super resolution methods have received significant attention in the
literature. Conventional methods like interpolation-based [Duc79;
Key81] and reconstruction-based techniques [MO08; SXS08;
DHX*09; YXYN15] are simple but fail to generate perceptu-
ally accurate images. Dong et. al [DLHT15] introduced a deep
learning based pre-upsampling framework(SRCNN) outperform-
ing more traditional approaches. Other techniques akin to SRCNN
with varying network architecture and learning strategies [KKM16;
SCI18] have been studied. Post-upsampling networks [DLT16;
SCH*16] attempt to overcome the computational expense of
pre-sampling networks. Following its success, most recent work
uses this framework, varying the network architecture [LSK*17;
TYL17; TLLG17; HCL*18; ZTK*18; LHAY17]. Many loss func-
tions like content loss [JAF16], texture loss [SSH17] and adversar-
ial loss [LTH*17] have also been explored to generate photo realis-
tic image.

Deep learning for scientific visualization has gained significant
attention in the recent years. Techniques have been developed for
modeling volume rendering [BLL18; HWG*19], visualizing com-
plex volumetric structures [CCJ*18], and viewpoint estimation
within volume visualization [ST19]. Zhou et al. [ZHW*17] intro-
duced volume upscaling using a CNN based model, while Xie et
al. [XFCT18] proposed tempoGAN for temporally coherent super-
resolution of volumetric flow fields. Han et al. [HW19] developed
a generative network for temporal super-resolution of time vary-
ing volumetric data. Han et al. [HTW18] introduced FlowNet for
interactive streamline clustering and selection using deep learning.
Han et al. [HTZ*19] proposed a two-stage deep learning frame-
work for high-quality flow field reconstruction using streamlines.
Our work is related to the vector field super-resolution work of Guo
et. al [GYH*20] where they optimize for the magnitude and angle
of target vectors. We extend this method to target the optimization
of integral curves in upsampled vector fields.

3. Methodology

3.1. Overview

In this work, our goal is to estimate a high-resolution vector
field, denoted Vh ∈ Rw×h×d×3 of spatial resolution (w× h×
d), given its corresponding low-resolution counterpart, denoted
Vl ∈ Rw′×h′×d′×3. We assume a subsampling factor r, a posi-
tive integer such that w = r · w′, h = r · h′, and d = r · d′. Our

approach to super-resolution is to learn a mapping that we de-
note as f : Rw′×h′×d′×3 → Rw×h×d×3, where f is parameter-
ized as a volumetric convolutional neural network, following prior
work [GYH*20]. We depart from Guo et al. in what we optimize:
we would like the mapping f to upsample vector fields in such
a manner that integral curves of Vh are preserved. Namely, inte-
grating f (Vl) produces streamlines that are as close as possible to
streamlines of Vh.

3.2. Integration-Aware Upsampling Loss

Loss functions used in super-resolution tend to focus on con-
tent given in the high-resolution target, e.g. pixels in a high-
resolution image, or in our case, vectors in a high-resolution vector
field [GYH*20]. This can be expressed as follows:

LM =
1
|P| ∑

p∈P
‖ f (Vl))[p]−Vh[p]‖2 , (1)

where P indexes over vertices of a (w×h×d) grid.
To ensure that our network can preserve streamlines, we intro-

duce a loss function that is based on integral curves of, both, Vh and
upsampled vector field f (Vl), please see Fig. 2. Specifically, we de-
note S = {s1,s2, . . . ,sn} as a set of integral curves derived from Vh,
where si = (pi,1,pi,2, . . . ,pi,m) is a set of points on curve si. Given
the upsampled vector field f (Vl), we also form integral curves, tak-
ing the seed points from ground truth for integration. Specifically
for streamline si, we integrate f (Vl) starting at position pi,1 to ob-
tain streamline s′i = (p′i,1,p

′
i,2, . . . ,p

′
i,m), where p′i,1 = pi,1. Our loss

function is designed to ensure that the two curves remain close at
all integrated positions:

LS =
1

n×m

n

∑
i=1

m

∑
j=1

∥∥pi, j−p′i, j
∥∥

2 . (2)

In practice, we combine the two loss terms, ensuring a balance
between vector content (LM) and flow structure (LS):

LT = λLS +(1−λ)LM (3)

where λ is a hyper-parameter which determines the relative impor-
tance of integration-based loss – a high λ places large importance
on integration. We optimize the loss via stochastic gradient de-
scent, which requires backpropagating over the integration method
of choice. However, integration schemes like Euler integration and
Runge-Kutta, can be expressed as a differentiable function with re-
spect to the vector field, assuming a differentiable form of interpo-
lation for accessing vectors at arbitrary positions. In practice, we
use trilinear interpolation, thus we may optimize the loss function
LT end-to-end.

What remains is a way to form the streamline set P . We would
like to ensure the streamlines are representative of predominant
flow features. To this end, we consider seeding and integration
length, studied further in Sec. 4.3.

Seeding: The starting positions from which to integrate are im-
portant for ensuring flow features are preserved [SBGC20]. To cap-
ture flow features, we use the entropy-based seeding technique of
Xu et al. [XLS10]. We normalize the resulting entropy scalar field
and treat it as a probability distribution from which to sample po-
sitions. In order to not starve low-entropy regions of the flow field,
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Table 1: The dimensions and number of timesteps of each dataset.

datasets dimensions (x× y× z) timesteps (t)
tornado 128×128×128 50
square cylinder 192×64×48 100
tangaroa 300×180×120 200

Content Loss

Streamline Loss

+

Back-propagate

Generate Streamlines Generate Streamlines

HIGH RESOLUTION VECTOR FIELD LOW RESOLUTION VECTOR FIELD SUPER RESOLUTION VECTOR FIELD

 Downsample

Figure 2: Overview of our approach. The network takes in the low-
resolution vector field as input and outputs a super-resolution vec-
tor field. A content loss, alongside a streamline-based loss, between
super-resolution and ground truth vector fields are used to optimize
the network parameters. The use of 2d vector fields in the figure is
for illustrative purpose only.

we modify the distribution to interpolate between a uniform distri-
bution, one that is a function of the entropy field:

s(x) = x
ex + e−x

e−x−αex , (4)

where α ∈ [−1,0] interpolates between distributions.

Integration Length: The length of the streamlines further has
an impact on flow features. Specifically, we use Euler Integration
with sufficiently small step size and consequently, identify stream-
line length with the number of steps m taken during integration.
The streamline length with which we train can have an impact on
the network’s ability to generalize, e.g. by training on small-length
streamlines, will the network produce vector fields that faithfully
reflect long streamlines? Similarly, training on long streamlines
may sacrifice the ability to preserve small streamlines.

3.3. Implementation Details

Our network architecture for f closely follows Guo et
al. [GYH*20], the only exception that we replace their voxel shuffle
layers with nearest-neighbor upsampling for simplicity. Through
experimentation, we found training the model using Eq. 3 from
scratch posed challenges for optimization. Hence, we first train the
model using the content loss (Eq. 1) for 25k iterations, and then
fine-tune the model using the total loss (Eq. 3) for another 10k iter-
ations. We found Euler Integration with sufficiently small step size
and 4th order Runge-Kutta integration give similar results. How-
ever, the former trains significantly faster, making it our choice of
integration scheme for all the experiments. We use the Adam op-
timizer [KB14], with a starting learning rate of 10−4, we reduce
it by a factor of 0.8 every 1000 iterations until the model fails to
improve on withheld validation data. While training, for all the ex-

periments we used a subsampling factor r = 4, batch size of 1 and
2,000 streamlines within a batch to form the loss function (LS).

4. Results

4.1. Dataset and Training Details

All our experiments were carried on the datasets listed in Table 1,
where x,y,z represents the spatial dimensions and t represents the
number of timesteps in the dataset. To assess generalization of IA-
VFS, we include every 4th timestep of a given dataset in the training
set and randomly select t = (t̂ mod 10) timesteps for validation,
where t̂ represents the timesteps not being used for training. All the
remaining timesteps are then used for testing purposes. All the ex-
periments were carried out on NVIDIA TESLA V100 GPU.

Baseline We use the following 2 baselines to compare with our
technique. (1) Trilinear Interpolation (TI): We use trilinear in-
terpolation to upsample the low-resolution vector field to high-
resolution vector field. (2) Content Loss (CL): Using the same
network architecture described in Sec. 3.3, we optimize only for
the content loss in Eq. 1. Note, this represents Guo et al. [GYH*20],
without using an angle-based loss, which we experimentally found
to produce similar streamline results.

Evaluation Metric We use two different evaluation metrics to
quantitatively evaluate IA-VFS. We use PSNR to evaluate the qual-
ity of the super-resolution vector field. PSNR is defined as follows:

PSNR(Vh, f (Vl)) = 20log10 R−10log10 MSE(Vh, f (Vl)), (5)

R represents the difference between the minimum and maximum
value of the vector fields across all the timesteps for a given dataset
and MSE(Vh, f (Vl)) represents the mean square error between the
vector fields Vh and f (Vl).
Since errors accumulate quite easily when calculating streamlines,
the position of the last point on a given streamline of f (Vl) can indi-
cate how much it deviated from the last point position of streamline
of Vh. To this end, we define ALP (Average last position loss) to
evaluate the quality of streamlines as follows:

ALP =
1
n

n

∑
i=1

∥∥pi,m−p′i,m
∥∥

2 (6)

where n represents the number of streamlines, pi,m represents the
last point’s position of ith streamline of Vh and p′i,m represents the
last point’s position of ith streamline of the f (Vl).

4.2. Quantitative and Qualitative Results

In Table 2, we summarize the quantitative evaluation of IA-VFS
against TI and CL by averaging the PSNR (Eq. 5) and ALP (Eq. 6)
values across all the test timesteps. We observe that IA-VFS outper-
forms TI and CL in ALP, indicating that our method more faithfully
preserves streamlines. In case of tornado dataset, CL has the high-
est PSNR but it comes at the cost of lower ALP - this can be seen
in Figure 1 where, IA-VFS (b) produces more faithful streamlines
as compared to CL (c) which fails to capture the helix like pattern
at the eye of the tornado. In Figure 3 we can see the streamline
errors made by CL and TI in all the datasets. In square cylinder
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(a) GT (b) IA-VFS (c) CL (d) TI

Figure 3: Comparision of the differences in streamlines of vector fields generated by different models with respect to the ground truth
highlighted in yellow. Top to bottom: square cylinder, tangaroa.

Table 2: Average last position loss (Eq. 6) and PSNR for all the
datasets.

Dataset Method PSNR ALP
TI 47.33 0.233

Tornado CL 51.69 0.092
IA-VFS 50.84 0.058
TI 32.53 0.791

Square cylinder CL 48.85 0.268
IA-VFS 48.86 0.245
TI 49.68 1.222

Tangaroa CL 51.96 1.025
IA-VFS 52.21 0.914

Table 3: Average PSNR and
ALP values for various α val-
ues for tornado dataset.

α PSNR ALP
-1 50.93 0.0372
-0.01 50.88 0.0333
-0.001 50.78 0.0356
-0.0001 50.73 0.0378
0 51.47 0.0513

Table 4: Average PSNR
and ALP values for differ-
ent λ values for tornado
dataset.

λ PSNR ALP
0 51.69 0.0521
0.001 52.04 0.0465
0.1 51.76 0.0379
0.3 51.22 0.0359
0.5 50.88 0.0333
0.7 50.65 0.0356
1 50.33 0.0374

dataset we can see that IA-VFS captures the highlighted stream-
line whereas CL and TI fails to do so. We can also observe that the
spiral flow is more accurate in (b) as compared to (c) and (d).

4.3. Hyperparameter Study

In this section, we analyze how various streamline hyperparame-
ters affect the training process and justify our choices. We experi-
mented with the following hyperparameter settings: the choice of λ

(c.f. Eq. 3), streamline seeding, and number of integration steps.
Study of α parameter From Eq 4, we may bias seeds towards

high entropy or uniformly-distributed positions via the parameter
α. Here we study the influence of α, where α = −1 gives us the
normalized entropy scalar field back, and increasing α increases
the chances of high entropy regions to be selected as seeds.

In Table 3, we observe that there is a trade-off between PSNR
and ALP for the tornado dataset based on the value of α. Heav-

Table 5: Average last position loss of streamlines (Eq. 6) for models
trained and evaluated on different streamline lengths.

Train
Eval

150 200 250 300 350 400

150 0.0262 0.0357 0.0454 0.0552 0.0657 0.0764
250 0.0260 0.0347 0.0438 0.0531 0.0630 0.0732
300 0.0262 0.0343 0.0427 0.0514 0.0605 0.0699
350 0.0261 0.0337 0.0419 0.0501 0.0588 0.0678
400 0.0264 0.0342 0.0424 0.0508 0.0596 0.0686

ily biasing towards the high entropy regions (α = [−0.0001,0])
leads to high ALP values. Since the network receives few impor-
tant streamlines it fails to capture them accurately during evalua-
tion. Meanwhile, a more spread out selection of seed points in and
around high entropy regions with α =−0.01 gives us the best ALP
value and with acceptable PSNR.

Study of λ hyperparameter We can see in Equation 3 that λ

controls the weight on the content loss and streamline loss. From
Table 4 we observe that as we increase the value of λ we see a de-
crease in both PSNR and ALP. We found that a λ = 0.3 provides a
good balance between PSNR and ALP.

Study of streamline length Streamline length determines the
maximum number of steps to be taken while integrating the stream-
line. From Table 5 we can see that models trained on longer stream-
lines e.g. 300, 350 and 400 outperform models trained on smaller
streamlines e.g. 150, 250 in terms of average ALP values. We found
that model trained on streamline length of 350 provides good gen-
eralization when evaluated across different streamline lengths.

5. Conclusion and Future Work

In this work, we proposed an integration-aware super resolution
technique for 3d vector fields. We think our approach is an im-
portant steps towards incorporating visualization aspects of vector
fields in the optimization process. We show the benefits of using
our technique and how various factors of vector visualization via
streamlines affects the training process. There are several directions
we would like to explore for our future work. In this work we ex-
perimented with a downsampling factor of 4, and we intend to try
our framework on larger scaling factor. We have thus far, only con-
sidered spatial super-resolution of vector fields, and we intend to
take into account the temporal coherence of unsteady vector fields.
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