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Abstract

Recent advancements in multivariate data visualization have opened new research opportunities for the visualization com-
munity. In this paper, we propose an uncertain multivariate data visualization technique called feature confidence level-sets.
Conceptually, feature level-sets refer to level-sets of multivariate data. Our proposed technique extends the existing idea of uni-
variate confidence isosurfaces to multivariate feature level-sets. Feature confidence level-sets are computed by considering the
trait for a specific feature, a confidence interval, and the distribution of data at each grid point in the domain. Using uncertain
multivariate data sets, we demonstrate the utility of the technique to visualize regions with uncertainty in relation to the specific
trait or feature, and the ability of the technique to provide secondary feature structure visualization based on uncertainty.

CCS Concepts
¢ Human-centered computing — Scientific visualization;

1. Introduction

Uncertain and multivariate data visualizations were viewed as ma-
jor challenges during a visualization seminar at Daghstuhl in 2011,
leading to a book [HCJ*14] providing an overview of the domain.
Although scientific data extracted from computational simulations
are often both uncertain and multivariate in nature, efforts to de-
velop visualization techniques for these data types have been pur-
sued independently due to the challenges involved. In this paper, we
build upon a recent advancement in multivariate data visualization
and extend an existing univariate uncertain data visualization tech-
nique to propose the first uncertain multivariate data visualization
technique based on feature level-sets.

Recently, Jankowai and Hotz [JH20] proposed a technique for
surface-based visualization of complex features in multivariate data
called feature level-sets. They are the generalization of isosurfaces
to multivariate data. Feature level-sets are surfaces in the spatial
domain initialized by the distance field generated for a trait defined
in attribute space. The “zero” feature level-set corresponds to the
feature in the spatial domain that matches the trait exactly. In many
cases, this feature is visualized using a small threshold distance to
highlight the points in the domain that are closest to it.

In this paper, we extend confidence isosurfaces, an uncertain uni-
variate data visualization technique [ZWK10], to multivariate data
via feature level-sets. Specifically, we are interested in visualizing
the uncertainty of the zero level-set. We contribute feature con-
fidence level-sets, the generalization of confidence isosurfaces to
multivariate data. Whereas feature level-sets compute a distance
field based on the distribution of a function in the domain, fea-
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ture confidence level-sets additionally consider the uncertainty of
the function, represented in our study as a distribution at each grid
point in the domain. Similar to feature level-sets, feature confidence
level-sets can be defined using various distance metrics. To extract
the zero level-set and the corresponding feature confidence level-
sets, our approach utilizes distance fields computed in the spatial
domain. We demonstrate our technique using uncertain multivari-
ate synthetic, real, and simulation data sets.

2. Related Work

For comprehensive overviews, we refer readers to reports for uncer-
tainty visualization [BHI*14,JS03,PRJ11] and multivariate spatial
data visualization [HTWL19]. In this section, we restrict our dis-
cussion to works most relevant to this study.

Two notable multivariate spatial data visualization efforts of the
recent past are fiber surfaces and feature level-sets. Fiber surfaces,
proposed by Carr et al. [CGT*15], are the generalization of isosur-
faces to bivariate data and involve modifying the marching cubes
algorithm. Parallelized implementations [KTCG16], direct volume
rendering using higher-order interpolation schemes [WKI*17],
uncertainty visualization [ZS21], and extensions to multivariate
data [BRP*20] have been studied for fiber surfaces. Feature level-
sets, as previously mentioned, are the generalization of isosur-
faces to multivariate data and were proposed by Jankowai and
Hotz [JH20]. Further studies of feature level-sets have focused on
adapting the distance metric and smoothing of the distance field us-
ing Guassian kernels [NMC21], application to tensor data [JSJ*20],
and use within visualization frameworks [JSS*20]. Another recent
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work, Hazarika et al. [HDSC19], first performed lossy in situ re-
duction via copula-based distribution models. Next, in response to
bivariate data analysis queries, they visualized probability fields
generated by distribution sampling of the stored data summary.

Several research studies have investigated quantification and vi-
sualization of uncertainty in univariate isosurfaces [GR04,PWH11,
AJ19] and topology [AMY*20, YWM*20, FFST19]. Relevant to
our work, Zehner et al. [ZWK10] proposed the confidence isosur-
faces visualization technique for uncertain univariate data. Confi-
dence isosurfaces are determined on the basis of a specific confi-
dence interval percentage and provide an intuitive understanding
by producing different shapes of isosurfaces due to uncertainty.

3. Our Method

We begin with a description of our uncertain multivariate data and
the corresponding attribute space, followed by a discussion of trait
specification, choice of distance metric, generation of feature level-
sets, and finally, generation of feature confidence level-sets. Lastly,
Figure 1 provides a notional example of the different steps involved
to generate the level-sets and is referenced in Sections 3.4 and 3.5.

3.1. Uncertain Multivariate Data

From [JH20], general multivariate data are a set of scalar, vector,
or tensor fields {F}, F, ..., Fr} in the domain D C R3, where r € N
and r > 2. Attribute space A is the combination of the field values
and can further include derived quantities. The dimensionality of
A is the combined dimensionality of all selected field values or
derived quantities. Considering this definition of attribute space,
multivariate data can be summarized as the mapping

f:D— ACR", (1)

where 7 is the number of dimensions used to form attribute space.
For uncertainty in each dimension i of attribute space, we assumed
the normal distribution of values at each grid point in D and repre-
sented it using mean y; and standard deviation G;.

3.2. Trait Specification

Traits can be defined generally as arbitrary geometries in attribute
space .A whose equivalent counterparts in the spatial domain D are
identified as features, i.e., T C .A. A trait can be of any dimension
and structure, including points, intervals, lines, and volumes. For
simplicity, we assume a limited definition of a trait 7 by consider-
ing intervals for each dimension i of attribute space A

T =Vi[L,Uj, L <U;, @

where L; is the lower bound, and U; is the upper bound of the in-
terval for each dimension. As an example, in a visualization of A
for n = 2 using a scatterplot, a trait by our definition would be a
rectangular selection.

3.3. Distance Metric

The feature and feature confidence level-sets are extracted from
distance fields. Our objective is to visualize the feature and fea-
ture confidence level-sets via the corresponding zero level-sets (see
Sections 3.4 and 3.5, respectively). To achieve this, we computed
distance fields using the Euclidean distance transformation (EDT)

algorithm by Saito et al. [ST94] in the spatial domain. The field
derived from the EDT algorithm is computed for each grid point
in the spatial domain and encodes the minimum distance from a
feature. A distance field computed in the spatial domain allows a
domain information-guided selection of small threshold distances,
whereas distance fields derived from attribute space can be harder
to interpret due to dynamic ranges among attributes. In [JH20], the
distance field is computed in attribute space to address empty fea-
tures. In the event that a trait 7" results in an empty feature, our
choice of distance metric would result in a constant distance field.

3.4. Feature Level-Sets

In general, a feature is defined as the pre-image of the trait 7" in the
spatial domain with

1) ={xeD| f(x) T} 3)

For our limited definition of a trait 7" and y; field of each dimension,
a feature is defined as

F7NT) = {x € D Viw(x) N[Li, U] # 0} )

To visualize the feature and its secondary structures, we per-
formed three steps: First, for trait 7, we computed a binary volume
bvolumer (Figure 1b) to represent the absence or existence of the
feature at a specific grid point

bvolumer (x) = {07 Vs (x) N, Uil #0 (5)
1, otherwise
Second, we performed EDT using bvolumer as input to produce a
distance field distancer (Figure 1c). As a final step, we computed
feature level-set F'LS7 k as the level-set of level K of the distance
field such that

distance;1 (K) = {x € D| distancer (x) = K} (6)

Here, the distance at each grid point is the minimum spatial dis-
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Figure 1: A notional example showing the steps involved in gener-
ating the “zero” feature level-set ZLSt (top row) and feature con-
fidence level-set FCLSt ¢ (bottom row) for an uncertain univariate
field represented using u (a) and G (e). For this example, we use
trait T = [2.5,3.5] and confidence C = 68%, i.e., Z=1. FCLStc
is computed using the distancer c (not shown) field. Assuming a
unit distance between adjacent grid points, distancer c would be
computed using bvolumer c (g) as input and would appear equiv-
alent for this example.
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Figure 2: Visualization of the analytical tangle function [KHK*09] with a focus on uncertainty in linking regions between multiple blobs. We
used T = [0,62]. We use the “+” symbol to indicate augmentation to ZLSy. For this data set, we found FCLSy ¢ (visualized as 25% opacity
level-sets) are visible in the linking regions and form wider envelopes as the confidence interval increases from 50% (c) to 95% (e).
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Figure 3: Visualization of EF-5 tornado vortices [Orf19] using vorticity, prespert and streamvort attributes. As in Figure 2, FCLSt ¢ formed
wider envelopes as C increased. Importantly, FCLSt ¢ visualized vortical structures of interest in the vicinity of the primary tornado vortex.

tance from Vi y;(x) N [L;,U;] # 0. For K = €, i.e., a small threshold
value near zero, we refer to FLSt ¢ as ZLS7 (Figure 1d).

3.5. Feature Confidence Level-Sets

Uncertainty in multivariate data can result in different shapes of
ZLSt. To assess the uncertainty, we visualized within which enve-
lope the ZLS7 will lie for a certain confidence interval C. Similar to
the steps we used to compute ZLS7, to extract feature confidence
level-sets FCLS7 ¢, we first identified all the grid points that sat-
isfy the trait T for confidence interval C. To achieve this, we used
the method by Zehner et al. [ZWK10]. We used the Z-score, or the
number of standard deviations from the mean a value would be,
for a given confidence interval C, and then, for each dimension 7,
calculated bounds; ¢ (Figure 1f) as

bounds; ¢ (x) = Vi [uj(x) — Z*0;(x), pi(x)+Z*oci(x)] (7)
Using bounds; c and T, we computed bvolumer ¢ (Figure 1g)

0, if Vi bounds;c(x) N[L;,U;] # 0

1, otherwise

bvolumer c(x) = { (8)
Following the extraction of bvolumer c, we performed EDT to
compute distancer c. Finally, we extracted the feature confidence
level-set FCLSt c g as the level-set of level K of the distance field

dislance;_lc(K) = {xeD|distancerc(x) =K} 9

Here, the distance at each grid point is the minimum spatial dis-
tance from Vi bounds; ¢ (x) N [L;,U;] # 0. Given our objective of vi-
sualizing a single level-set extracted from distancer ¢ with K = &,
i.e., a small threshold value near zero, we refer to FCLS7 c e as
simply FCLSt ¢ (Figure 1h).
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4. Experimental Results

We demonstrated the use of feature confidence level-sets using five
data sets. Specifically, we considered an analytical tangle func-
tion [KHK*09], an EF-5 Tornado [Orf19], an ethanediol molecule
from a chemistry simulation, Red Sea and Gulf of Aden (RSGOA)
eddy ensemble [STZ*20], and Earth’s mantel convection [SYP17]
data (see additional material). We defined between one to four traits
per data set based on features of interest. In this study, each attribute
was represented using a u and ¢ field. For the RSGOA data set, we
computed y and ¢ fields using 20 ensemble members. For other
data sets, we synthetically estimated ¢ for each scalar field of the
multivariate data at each grid point by sampling the local neighbor-
hood. To evaluate our technique, we visualized the ZLSt both in
isolation and augmented with FCLS7 c. When visualized together,
the ZLS7 is shown using an opaque level-set, and the FCLSt ¢ is
shown using a level-set colored with the same hue and 25% opacity.
We used Vislt [CBW™12] to extract and render smooth level-sets
using the pseudocolor plot and isosurface operator.

Across all data sets, the shape of FCLSt ¢ corresponded to the
uncertainty of the data in the spatial domain. For example, for the
analytical tangle function where uncertainty is higher near the links
between the blobs for the trait specified, we found, comparing Fig-
ures 2¢ and 2d, the FCLSt ¢ envelope expanded between the links
in response to increasing the value of C, but not significantly on the
exterior of the blob surface. For the Tornado data set, we specify
a trait using three attributes related to vorticity, including negative
pressure pertubation (prespert) values that are associated with the
updraft rotational mechanics of an evolving tornado to extract the
primary vortex. FCLSy ¢ visualize weaker vortices in proximity to
the primary vortex in Figure 3e. Such visualizations could be use-
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(a) 2D scatterplot of A and traits. We
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Figure 4: Visualization of anticyclonic (Ty, red) and cyclonic (T, blue) eddies in the Gulf of Aden and part of the Red Sea using the derived
attributes of vorticity magnitude and the z-component of curl. For this ensemble data set [STZ*20], the uncertainty resulted in FCLSt ¢
visualizing additional tracks and regions with eddies. The orange boxes in 4c and 4d highlight one such example.
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Figure 5: The covalent bonds (Ty, blue), non-covalent bond (Tp, green), oxygen atoms (T¢, red), and carbon atoms (Tp, yellow) of an ethane-
diol molecule are visualized using the electron density (Rho) and reduced gradient (s) attributes. These attributes are related exponentially in
regions where no chemical interaction occurs and we selected our traits accordingly. In this case, we found FCLSt c collectively visualized

elements of the topological structure of the molecule.

ful in visualizing vortex merges during the formation of a multiple
vortex tornado [Orf19].

For the RSGOA data, we visualized anticyclonic (red isosur-
faces) and cyclonic (blue isosurfaces) eddies in Figure 4. Using
the u field to compute ZLST for the two specified traits (Figure 4a)
reveals regions where large eddies in the Gulf of Aden and eddy
tracks in the Red Sea exist, as well as the type of eddy in Fig-
ure 4b. To investigate the uncertainty of outcomes across ensemble
members, the u and ¢ fields are utilized to compute FCLSt ¢ for
50% and 68% confidence intervals. Besides showing larger regions
of eddys in the Gulf of Aden, FCLSt ¢ visualizes the possible ex-
istence of additional eddy tracks in the Red Sea across ensemble
members for the specific trait selection, which is not seen in the
ZLS7 derived from the mean fields. Figures 4c and 4d are anno-
tated to highlight an example of possible eddy tracks.

In the ethanediol data set, electron density and reduced gradi-
ent are related exponentially in regions where no chemical interac-
tions occur (main separating axis of the scatterplot in Figure 5a).
Our trait selections in attribute space are off this axis and corre-
spond to regions with significant chemical interactions. In this case,
we found FCLSt ¢ of individual traits visualized the boundaries
of non-chemical interactivity for each feature. Figures 5c and 5d
show FCLST ¢ for the covalent and non-covalent bond form enclos-
ing structures primarily around the respective features. Similarly, in
Figures Se and 5f, FCLSt ¢ of each trait are observed in regions of
influence of each atom, conveying the proximity of the traits in at-
tribute space and the uncertainty in the data. Figure 5e contains oc-
cluded FCLS7, ¢ on the inside of each carbon atom (yellow). Over-
all, by leveraging the information pertaining to field distribution (,

6), FCLS ¢ provided secondary structure visualization based on
uncertainty.

5. Future Work and Conclusion

In this paper, we proposed feature confidence level-sets and demon-
strated their use for uncertain multivariate data visualization. Sev-
eral opportunities, however, remain for future work in this direc-
tion. Similar to feature level-sets [JH20], addressing discernibility
and intuitive trait specification interfaces for high-dimensional data
with uncertainty are challenges for feature confidence level-sets.
Considering the impact of the source of uncertainty and represen-
tation of the multivariate data, we plan to investigate the use of fea-
ture confidence level-sets on scientific data from lossy compressors
such as ZFP [Lin14], as well as parametric and non-parametric den-
sity models. Further, we aim to pursue visualization of interquartile
ranges for uncertain multivariate data and performance optimiza-
tions that can be introduced to render implicit feature and feature
confidence level-sets.

Overall, we contributed a technique to visualize uncertain multi-
variate data based on confidence isosurfaces and feature level-sets.
Our study demonstrated the ability of the approach to visualize re-
gions of uncertainty in relation to a specific trait or feature, and
visualize secondary feature structures based on uncertainty.
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