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Progressive Rendering of Transparent Integral Surfaces
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Figure 1: By composing progressively rendered integral curves into a dynamic per-pixel tree data structure, we can render large and
complicated integral surfaces without having to refine their vertex meshes. Here, applied from left to right: the flow past a WALL-MOUNTED

CYLINDER, the magnetic BORROMEAN RINGS vector field and the ABC FLOW.

Abstract
Integral surfaces are a useful method in illustrative and geometry-based flow visualization, as they convey shading, depth
and geometric information better than their line-based counterparts. However, they are not as frequently used as line-based
techniques due to the added complexity that arises from their computation. Frontline-based methods, such as stream surfaces
and path surfaces require an adaptive subdivision of the frontline, whereas advected surfaces, such as streak surfaces and time
surfaces, require refinement and possibly retriangulation of the entire surface after each time step. In this paper, we extend
an image-space surface rendering technique to support transparency, which enables the application of illustrative surface
rendering techniques without the need to adaptively refine frontlines or entire surfaces. We develop a pixel-based dynamic
tree data structure that is progressively filled with integral curves and compactly stores the transparent layers arising in the
rendering of the surfaces. We apply the method to the illustrative rendering of path surfaces and streak surfaces in a number of
time-dependent vector fields.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Rendering;

1. Introduction

Geometry-based flow visualization methods [MLP∗10], such as
streamline and pathline rendering, are among the most-commonly
used visualization tools, due to their simplicity and expressive-
ness. Among the geometry-based techniques, surface-based meth-
ods [ELC∗12] are able to convey shape information better than
lines. However, the robust computation of a well-behaved surface
mesh is quite challenging, as it requires an adaptive refinement that
has a potentially unbound memory consumption at long integration
duration, when obstacles are in the flow or when particles get stuck

on boundaries. For this reason, most algorithms employ heuristics
to terminate or split surfaces when the refinement becomes too
extreme [Sta98, SRWS10]. Since these issues already arise with
frontline algorithms, Machado et al. [MSE14] introduced an image-
based stream surface rendering algorithm that progressively raster-
izes many streamlines, which are composed in the backbuffer via
depth testing to yield an opaque stream surface. The approach can
conceptually be extended to streak surfaces, but it still has a major
limitation: the algorithm can only render opaque surfaces, which
hinders the applicability of illustrative techniques [BCP∗12].
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In this paper, we develop a progressive rendering algorithm that
computes transparent surfaces in image-space by iteratively insert-
ing lines into an image space data structure. Unfortunately, existing
order-independent transparency algorithms are not compatible with
progressive rendering, since they relate the pixel count to the frag-
ment opacity, resulting in opaque surfaces over time. To compose
the pixel fragments of each pixel in the correct depth order, we pro-
pose a pixel-wise dynamic tree data structure that is implemented
on the GPU. Each frame, we trace a fixed number of integral curves
from the seeding curve and construct a fragment linked list for ev-
ery covered pixel. This way, we stay each frame within a memory
budget rather than rendering all lines at once. The fragments are in-
serted into a dynamic tree data structure that represents the visible
surface layers in each pixel in order to properly count how often a
line has been rasterized per pixel per surface layer. Once the frag-
ments are inserted into the tree, both the lines and the fragments
are no longer needed, since the final image compositing is done
with our tree. Our algorithm can render transparent stream, path,
and streak surfaces without having to consider adaptive refinement
of the front line or surface. Thus, we can render complicated sur-
face geometry in turbulent flow without having to handle particles
getting stuck at boundaries, getting trapped behind obstacles, shear-
ing effects, or strong separations. Examples of complicated integral
surfaces are shown in Fig. 1.

2. Related Work

Surface-based Flow Visualization. In geometry-based flow vi-
sualization [MLP∗10], stream surfaces and path surfaces arise
when seeding streamlines or pathlines, respectively, from a con-
tinuous seeding curve [ELC∗12]. The integration of these sur-
faces requires adaptive refinement of the frontline. A number of
recursive [Hul92,Sta98,GTS∗04,SRWS10] and GPU-friendly sur-
face construction algorithms were developed [STWE07, GKT∗08,
SGRT12]. Streak surfaces and time surfaces require refinement of
the entire mesh. Point-based and triangle stream-based GPU imple-
mentations [BFTW09], geometric edge flip, collapse and split op-
erations [KGJ09], and quad-based CPU implementations [MLZ10]
have been proposed, along with the reformulation of streaklines
and timelines as tangent curves in a lifted flow [WHT12]. In prac-
tice, however, particles can get stuck at boundaries, obstacles or
critical points, resulting in an infinite amount of refinement. Fur-
ther, if the surface passes through a shear flow, the triangles de-
generate. Fig. 2 illustrates a few examples, in which the angle
between the front line (blue) and the tangent curves (black) van-
ishes, leading to thin needle triangles. Machado et al. [MSE14]
proposed an image-space stream surface rendering method that
progressively renders many streamlines into the backbuffer. Since
they use the depth buffer to determine the fragment order, their
approach is limited to opaque surfaces. In this paper, we extend
their method to transparent integral surfaces, which enables the
use of illustrative methods [BCP∗12] such as silhouette enhanc-
ing transparency [HGH∗10], emphasis of layer order by halo diffu-
sion [CFM∗12], and visibility optimization [GSE∗14, BRGG19].

Order-Independent Transparency. The rendering of transparent
surface geometry requires an order-dependent compositing either
from front-to-back or from back-to-front [MCTB11]. This is either

Figure 2: Parameterizations of integral surfaces quickly deterio-
rate when particles get stuck at boundaries (left), at obstacles (mid-
dle) or when the surface hits a saddle critical point (right).

done through multi-pass rendering methods, such as depth peel-
ing [Eve01, BM08] or by storing and sorting all fragments [Car84,
YHGT10]. The above methods can become slow and there-
fore approximations have been investigated, storing only k frag-
ments [BCL∗07], merging layers [SV14], computing a weighted
sum [Mes07], a weighted average [BM08], adding depth depen-
dence and proper background weighting [MB13], using moment
representations [MKKP18] or Fourier approximations [BRGG19].
See Kern et al. [KNM∗19] for a recent comparison on line data.

In a progressive renderer such as ours, more and more geometry
is rasterized over time, ultimately sampling the surfaces densely
and non-uniformly with an unbound number of transparent frag-
ments. Unfortunately, all the methods above are incompatible with
such a progressive rendering method, since they estimate trans-
parency based on the number of rasterized fragments. Even when
adding our merge heuristics to multi-layer methods [SV14], the
variable sampling density will cause biases in the bins, when the
surface layers in a bin were sampled at different rates. Linked-list
approaches [YHGT10] still have linear cost at construction when
searching for the bin and require atomic synchronization. Transmit-
tance approximations along view rays [MKKP18,BRGG19] would
need an additional representation of the line counter, which needs to
be accurate rather than approximate to give the correct color. In this
paper, we build a transparency approximation specifically to com-
pute the transparency of progressively rendered geometry. Note that
this is conceptually different to the rendering of many transparent
lines, for which many techniques are available [KNM∗19].

3. Progressive Rendering of Integral Surfaces

Geometry-based integral surface computation methods need to up-
date and refine the mesh topology whenever integral curves sepa-
rate, shear or contract. To avoid these issues, we compose the sur-
faces in image-space from a progressively rendered set of integral
curves. Since previous methods [MSE14] are limited to opaque sur-
faces, we build an image-space data structure on the GPU that al-
lows us to render transparent surfaces progressively. Our data struc-
ture merges fragments into layers, such that the memory consump-
tion is determined by the depth complexity of the scene and not by
the total number of integral curves that were rendered.

Progressive Surface Sampling. First, we sample a set of inte-
gral curves uniformly from the seeding curve using a Halton se-
quence [Hal60]. Machado et al. [MSE14] explored two other ap-
proaches for the sampling of the surface with streamlines: stream-
line placement and frontline placement, which would likewise be
applicable. Following Machado et al., we compute the normal by
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Figure 3: In the first step, we rasterize all integral curves to form
fragment linked lists for each pixel. Each fragment stores color,
depth, uv coordinate, a normal and a pointer to the next fragment.

advecting a ghost particle, which is reset to stay within a threshold
to the sampled particle. At the rasterization step, lines are rendered
into fragments that store both data (color, depth, uv coordinates
and normal) and a pointer to the next fragment. Fig. 3 illustrates
the fragment linked lists [YHGT10] for three pixels. Note that the
lists do not have to be sorted. The size of the line set is chosen such
that the fragment linked list stays within a memory budget.

Per-Pixel Tree Construction. The unsorted fragment-linked lists
are then passed to the second step to construct a tree per pixel that
maintains the surface layers visible in the pixel. In this step, a full-
screen quad is rendered such that each pixel is managed by only one
thread. We iterate all fragments in the fragment linked list, and tra-
verse the tree to find their closest nodes for insertion into the tree.
Distance is measured as the view space squared depth difference
between the fragment to insert and the respective tree node. If we
have found a tree node that is close enough to the fragment, i.e., the
fragment belongs to a surface layer that has already been rasterized
into the pixel, we merge the fragment into the node by averaging
its data (color, depth, uv and normal) and update the node with the
average. Note that the running average per layer entails a supersam-
pling if multiple lines are rasterized into the same pixel. Unlike the
fragment linked lists of the first step, we keep the tree nodes across
frames unless the scene or the view is changed. Therefore, the tree
data structure is growing over time until every visible surface layer
has been represented by at least one fragment. Note that all tree el-
ements are drawn from a single memory pool that is shared by all
pixels, which supports a dynamic allocation of deep trees.

Compositing of Transparent Tree Nodes. The per-pixel tree
nodes store the average properties of the fragments that have been
merged into surface layers. To compose the final transparent image,
we apply the front-to-back blending equation [HLSR09]:

C =
n

∑
i=1

Ciαi

i−1

∏
j=1

(1−α j)︸ ︷︷ ︸
Csrc

+Cbg

n

∏
i=1

(1−αi) (1)

where C is the final blended color, Ci and αi are the color and opac-
ity at fragment i, and Cbg is the background color. In this equation,
the fragments are sorted from front to back, and Ci’s are not pre-
multiplied by the αi’s. Similar to the previous step, this last part of
the pipeline is also initiated by rendering a full-screen quad. Since
our binary trees are constructed based on the view space depth, a
traversal from the left most tree node in the depth-first order intrin-
sically obtains a sorted list of layers.
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Figure 4: Visualizations of path surfaces (top row) and streak sur-
faces (bottom row) rendered with our progressive algorithm in a
number of unsteady vector fields. Colors are either mapped by tex-
ture coordinates (time and the seeding curve parameterization), or
are distinguished between front and back faces.

4. Implementation

The rendering of a continuous surface potentially requires a large
number of integral curves to fill the gaps. Since our rendering al-
gorithm is progressive, users can see in real-time how the surface
is formed from the lines, which provides an interactive feedback
for the parameter adjustment. For numerical integration, we use a
fourth-order Runge-Kutta integration. When rendering streak sur-
faces, we trace the streaklines with adaptive refinement, where we
reseed in time more vertices and trace them to the desired time
step. To determine the alpha value, we apply the mapping of Hum-
mel et al. [HGH∗10], which adjusts the transparency based on the
angle between the normal and the viewer, such that silhouettes are
emphasized. Our transparency rendering method is implemented
on the GPU with Direct3D 11, and uses default rasterization rules,
i.e., diamond tests. Each frame, we need one geometry rendering
pass for the first step, and a full-screen pass for the second and
third step. In the HLSL code, we use a customized stack to per-
form tree traversal and compositing. Thereby, the maximum depth
of the tree must be specified, which we conservatively set to 200,
which is well beyond what was needed in our examples. If the max-
imum tree depth is exceeded, fragments are blended into the closest
tree node, which would then be similar to multi-layer alpha blend-
ing [SV14], but with a different merge criterion. We refer to the
additional material for schematric illustrations and pseudocode of
the algorithm.

5. Results

Examples. We applied our image-based renderer to visualize path
and streak surfaces in unsteady vector fields, see Fig. 4. The first
example shows integral surfaces in the Arnold-Beltrami-Childress
(ABC) flow [GKT16]. This vector field is a worst-case scenario
for most surface integrators, since the domain is filled with sepa-
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ABC Square Cylinder Borromean Rings W. Cylinder
Lines Op. Path Streak Path Streak Path Streak Path Streak

10
I 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.1
II 0.6 0.8 0.6 4.2 0.6 3.2 0.5 0.6
III 55.1 56.4 16.2 119.8 37.7 94.0 4.5 18.5

100
I 0.2 1.3 1.3 1.1 0.2 1.2 0.1 0.2
II 1.8 2.4 1.6 14.7 2.1 11.6 0.7 2.5
III 55.0 56.5 16.1 119.7 37.6 94.3 4.6 18.5

1000
I 0.5 12.8 0.6 12.3 10.7 8.9 0.4 0.6
II 11.3 34.9 12.9 35.8 11.5 88.4 2.5 16.1
III 55.2 56.5 16.2 119.9 37.8 94.1 4.5 18.7

Table 1: Computation time in ms of our pipeline steps: linked list
creation (I), tree construction (II) and compositing (III). Timings
are listed for all scenes for a varying number of integral curves
rasterized per iteration, for both path surfaces and streak surfaces.

rating structures that prompt the frontline to expand and refine in
a space-filling manner. Since we do not need refinement, our sur-
face is without artifacts. The SQUARE CYLINDER flow [CSBI05] is
a classic test bed for geometry-based visualization techniques, due
to its low Reynolds number. Path surfaces are mostly well-behaved,
except for the recirculation area [WRT19] behind the obstacle, in
which vortices are formed before shedding. In this region, particles
can get trapped while others escape, causing a significant amount of
refinement. The BORROMEAN RINGS data set [CB11] describes a
turbulent magnetic field, in which interlocked rings undergo a topo-
logical reconnection. In our visualizations, the front face and back
face are mapped to different colors. An example with a continu-
ous color map, encoding the seeding curve parameterization, was
shown in Fig. 1 (middle). Our last unsteady vector field contains
the turbulent flow around a WALLMOUNTED CYLINDER [FWT08],
see Fig. 1 (left). We deliberately place our seeding curve such that
the streak surface hits the obstacle. Note that the obstacle geome-
try is omitted in the visualization, as it would cause occlusion. Due
to the permanent trapping of particles in the wake of the obstacles
and the high degree of turbulence, this would lead to an unlimited
degree of refinement with traditional surface integrators.

Performance. Finally, we report the time taken for each individual
pipeline steps for all the data sets used in this paper. For the mea-
surements, we used an Intel(R) Core(TM) i7-4770 CPU with 3.40
GHZ and 32 GB RAM, and an Nvidia GeForce GTX 680 GPU
with 2 GB VRAM. All images were rendered at a resolution of
960× 720 pixels. The runtime per frame of each rendering pass
for both converged path surfaces and streak surfaces is listed in Ta-
ble 1. Suppose M fragments are added to a binary tree of depth N,
the time for creating the linked lists (O(M)) and inserting into the
tree (M ·O(logN)) scales with the number of fragments. Once the
tree converges, the number of nodes is fixed, and hence the com-
position time is the same for all three cases in the table. This time,
however, is the current bottleneck of the system. For the future, it is
imaginable to parallelize the computation with a parallel reduction.
Fig. 5 shows the memory consumption of our per-pixel tree over
time. For each pixel, we pre-allocate an expected number of 16
nodes, which in total sums up to 530MB for our 960×720 image.
As the number of tree nodes converges, the memory required also
converges to a constant, which is the upper bound for each scene
configuration and is dependent on the depth complexity of the cur-
rent view. Note that the node memory pool is shared among pixels.
Since the number of tree nodes converges to a constant, the time to
perform the blending of the transparent surfaces also converges.

Figure 5: Convergence of number of tree nodes over time.

Further Results. We refer to the additional material for further
evaluations of our method, including:

• A comparison with existing surface integrators, including no re-
finement, frontline refinement and the Hultquist [Hul92] algo-
rithm, showing that our method matches the ground truth.
• A comparison with existing approximating OIT algorithms, in-

cluding weighted sum [Mes07], weighted average [BM08], its
extension for a correct background blending [MB13], a binning
approach [BCL∗07], and the ground truth [YHGT10].
• A parameter study of the depth threshold ε for merging layers.
• Intermediate frames of the progressive computation.

6. Discussion

CPU Tracing. We traced the integral curves on the CPU on a sin-
gle machine. The parallel and distributed tracing of trajectories in
large data sets is an interesting, but orthogonal problem [BPNC19].
Our CPU implementation is a proof of concept mainly suited for
the rendering of still images. Interactive rendering of closed sur-
faces would require GPU tracing and adaptive seeding [MSE14].

View Dependence. Due to the view dependence, the memory con-
sumption can be small even for potentially large scenes. Data struc-
tures, however, are rebuilt when the camera moves. The supplemen-
tal material contains a video that shows user interaction and an an-
imation of a camera rotation, in which each frame was rendered to
convergence. Reprojection methods from real-time rendering could
be used to reuse screen-space information from a previous frame.

7. Conclusion

In geometry-based flow visualization, the calculation of integral
surfaces usually requires adaptive refinement and retriangulation of
front lines or full surfaces, which often needs heuristics to handle
boundaries or obstacles. A previous image-based approach avoided
these issues by composing the surface with many integral curves.
However, the method only supported opaque surface geometry. In
this work, we extended this image-based rendering approach to also
support the depiction of transparent integral surfaces, which opens
the possibility to apply illustrative rendering methods. For this, we
developed a per-pixel tree data structure that maintains a represen-
tation of surface elements by merging the rasterized fragments of
progressively generated integral curves. In the future, we would
like to move the computation of integral curves to the GPU, and
we would like to apply a parallel gathering approach to the final
blending step in order to improve the performance further.
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