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Abstract
We present a progressive algorithm for the Uniform Manifold Approximation and Projection (UMAP), called the Progressive
UMAP. Based on the theory of Riemannian geometry and algebraic topology, UMAP is an emerging dimensionality reduction
technique that offers better versatility and stability than t-SNE. Although UMAP is also more efficient than t-SNE, it still suffers
from an initial delay of a few minutes to produce the first projection, which limits its use in interactive data exploration. To
tackle this problem, we improve the sequential computations in UMAP by making them progressive, which allows people to
incrementally append a batch of data points into the projection at the desired pace. In our experiment with the Fashion MNIST
dataset, we found that Progressive UMAP could generate the first approximate projection within a few seconds while also
sufficiently capturing the important structures of the high-dimensional dataset.

CCS Concepts
• Human-centered computing → Visual analytics;

1. Introduction

We bring the Uniform Manifold Approximation and Projection
(UMAP) [MHM18], a popular nonlinear dimensionality reduc-
tion technique, into Progressive Visual Analytics (PVA). For more
than a decade, t-Distributed Stochastic Neighbor Embedding (t-
SNE) [MH08] has been one of the most widely-used dimensional-
ity reduction techniques. However, UMAP, which is based on Rie-
mannian geometry and algebraic topology, has recently emerged
as an alternative to t-SNE, offering better efficiency and applica-
bility [EMK∗19]. UMAP stands out for its fast computation time.
It is approximately three times faster than the state-of-the-art t-
SNE implementation [LRH∗17] and has a better stability between
runs and support for non-metric distance measures, such as the
cosine distance and correlation distance. Since its introduction,
UMAP has been quickly adopted by diverse disciplines, such as
life sciences [BMH∗19], physics [MBW∗19], and computer sci-
ence [HPRC19], attesting to its usefulness. Although performance
benchmarks [MHM18] demonstrated that UMAP is much faster
than t-SNE, it still is too slow to be used in interactive analysis ef-
fectively; when tested on a Macbook Pro with a 3.1 GHz Intel Core
i7 and 8GB of RAM, UMAP took about 87 seconds to project the
MNIST dataset onto a 2D space, far exceeding the time window
of 10 seconds needed to keep the user’s attention [Mil68, Shn84].
The problem compounds as users often have to run the algorithm
several times to tune its hyperparameters. To address this issue, we
present a progressive algorithm for UMAP (Progressive UMAP).
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After briefly introducing UMAP in Section 3, we identify a number
of sequential computations in UMAP and explain how we improve
each one by making it (Section 4). Finally, we show that Progres-
sive UMAP can yield partial projections of data every few seconds
with a quality comparable to the original UMAP (Section 5).

2. Related Work

A series of studies have introduced and refined the concept of
PVA [SPG14, MPG∗14, FP16, FFNS19] to manage the computa-
tional delay caused by a large amount of data or the high complex-
ity of algorithms. Progressive computation is defined as a compu-
tation that reports intermediate outputs within a bounded latency
that converges towards the true result with an ability to control the
execution.

One of the popular applications of PVA is the progressive pro-
jection of high-dimensional data. Among the existing dimension-
ality reduction techniques, t-SNE [MH08] has received the most
attention from PVA researchers. Kim et al. [KCL∗17] introduced
a per-iteration visualization environment in which users can inter-
act in real time with algorithms that require complex computation,
such as multidimensional scaling, t-SNE and latent Dirichlet al-
location. Inspired by Ingram and Munzner’s Q-SNE [IM15], Pez-
zotti et al. [PLvdM∗16] presented a controllable t-SNE approxima-
tion, which enabled the interactive manipulation of t-SNE results,
such as adding, removing and modifying data points. Similarly, Jo
et al. [JSF18] proposed a progressive algorithm for indexing and
querying the approximated k-nearest neighbors. They also intro-
duced responsive t-SNE, an application of their algorithm, which
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further reduced the initial delay of t-SNE using progressive neigh-
bor computation. Motivated by these studies, we aim to develop a
progressive algorithm for a popular dimensionality reduction tech-
nique, UMAP [MHM18], which is more efficient and flexible than
t-SNE [EMK∗19].

3. UMAP

Although UMAP [MHM18] is grounded in a complex mathemati-
cal foundation, its computation can be divided into two parts, graph
construction and layout optimization, a configuration similar to t-
SNE. In this section, we briefly explain the computation in an ab-
stract manner. For more details about UMAP, please consult the
original paper [MHM18].

Graph Construction: UMAP starts by generating a weighted
k-nearest neighbor graph that describes the distances between data
points in the high-dimensional space. Given an input dataset X =
{x1, . . . ,xN}, the number of neighbors to consider k and a distance
metric d : X×X→ [0,∞), UMAP first computesNi, the k-nearest
neighbors of xi with respect to d. Then, UMAP computes two pa-
rameters, ρi and σi, for each data point xi to identify its local metric
space. ρi is a nonzero distance from xi to its nearest neighbor:

ρi = min
j∈Ni
{d(xi,x j) | d(xi,x j)> 0}, (1)

and the σi that satisfies the condition below is found using binary
search:

∑
j∈Ni

exp(
−max(0,d(xi,x j)−ρi)

σi
) = log2(k). (2)

Using ρi and σi, UMAP computes v j|i, the weight of the edge
from a point xi to another point x j:

v j|i = exp(
−max(0,d(xi,x j)−ρi)

σi
). (3)

To make it symmetric, UMAP computes a single edge with com-
bined weight using v j|i and vi| j:

vi j = v j|i + vi| j− v j|i · vi| j. (4)

Note that vi j indicates the similarity between points xi and x j
in the original space. Let yi be the projection of xi in a low-
dimensional projection space. The similarity between two pro-
jected points yi and y j is:

wi j = (1+a||yi− y j||2b
2 )−1, (5)

where a and b are positive constants defined by the user. Setting
both a and b to 1 is identical to using Student’s t-distribution to
measure the similarity between two points in the projection space
as in t-SNE [MH08].

Layout Optimization: The goal of layout optimization is to find
the yi that minimizes the difference (or loss) between vi j and wi j. In
contrast to t-SNE where the Kullback-Leibler divergence between

Algorithm 1: Progressive UMAP

Procedure ProgressiveUMAP(X, num_iterations, ops)
KNNTable← new KNNTable(X), iterations← 0;
while iterations++< num_iterations do

if size(KNNTable) < size(X) then
Xnew, Xupdated = KNNTable.run(ops);
set initial yi for points in Xnew;
update ρi (Equation 1) and σi (Equation 2);
compute v j|i (Equation 3);
compute vi j (Equation 4);

compute CUMAP
yi

(Equation 7, Equation 8);
update yi;

end
return yi;

vi j and wi j is measured as the loss of the projection, UMAP mea-
sures the cross entropy between vi j and wi j:

CUMAP = ∑
i6= j

[vi j · log(
vi j

wi j
)− (1− vi j) · log(

1− vi j

1−wi j
)]. (6)

The authors of UMAP argued that UMAP returns clearer separa-
tion between clusters than t-SNE since CUMAP gives penalties for
forming both local and global structures.

yi is initialized through spectral embedding [BN02] and itera-
tively optimized to minimize CUMAP. Given the output weight wi j

as 1/(1+ad2b
i j ), the attractive gradient is:

CUMAP
yi

+

=
−2abd2(b−1)

i j

1+ad2b
i j

vi j(yi− y j), (7)

and repulsive gradient is:

CUMAP
yi

−
=

2b
(ε+d2

i j)(1+ad2b
i j )

(1− vi j)(yi− y j), (8)

where ε is a small value added to prevent division by zero and
di j is a Euclidean distance between yi and y j. For efficient opti-
mization, UMAP employs the negative sampling technique from
Word2Vec [MSC∗13]. It chooses a target point and the negative
samples of the point, where the former updates the position of the
target with the attractive gradient and the latter do so with the re-
pulsive gradient. Moreover, UMAP also employs edge sampling
[TQW∗15, TLZM16] to simplify and accelerate the optimization
process, which will be explained in Section 5 in detail.

4. Progressive UMAP

We found that the current implementation of UMAP [MHM18]
could suffer a long initial delay depending on the size of the dataset,
because it only works on a fixed set of data points with no support
for adding new points progressively. In this section, we elaborate
on our novel algorithm, Progressive UMAP (Algorithm 1), which
allows users to feed small batches of data points into UMAP incre-
mentally to obtain the desired latency between intermediate pro-
jection outputs. To this end, we identify sequential procedures in
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Figure 1: Projection of the Fashion MNIST dataset using UMAP and Progressive UMAP. Seventy thousand data points (784 dimensions)
of the Fashion MNIST dataset have been projected onto a 2D space. UMAP took 27.7 s for initialization (i.e., neighbor computation and graph
construction) that can interrupt interactive data exploration. In contrast, Progressive UMAP allowed users to project a small fraction of the
points with shorter initialization time (2.9 s) and progressively append the remaining points to the projection. Although UMAP produced
a smaller average loss at the end of iterations, Progressive UMAP could project the data points in a reasonable time-bound, sufficiently
capturing the characteristics of the data.

the original UMAP algorithm and transform them into progressive
procedures.

Computing Ni: To build and maintain the k-nearest neighbor
graph, we leverage the KNN lookup table from PANENE [JSF18].
PANENE employs randomized k-d trees [ML09] to approximate
and update the k-nearest neighbors of an increasing number of data
points. PANENE accepts a parameter called ops that indicates the
allowed number of tasks per iteration that can be controlled to
find the balance between latency and accuracy. For example, set-
ting ops to a larger number will index more points per iteration,
which will yield a more accurate projection at the cost of longer la-
tency. Progressive UMAP starts with calling the update procedure
of the KNN lookup table which returns two sets of points: Xnew for
newly inserted points and Xupdated for points whose neighbors are
changed due to the insertion.

Computing ρi and σi: For every data point in Xupdated and
Xnew, we recompute ρi and σi according to Equation 1 and Equa-
tion 2. For space efficiency, UMAP used the coordinate list (COO)
that only stores row, column, and value information as a list of tu-
ples. Progressive UMAP updates the COO recalculating v j|i (Equa-
tion 3) for the selected points – Xupdated and Xnew – and chang-
ing the corresponding values if there is a change from the previous
ones. Last, we make the COO symmetric (Equation 4).

Layout Initialization: Although spectral embedding produces
an effective initial projection, its quadratic time-complexity causes
severe delay. Progressive UMAP initializes the positions of newly
inserted points in two stages. For the first batch of points, 1) we

run the algorithm with a large value of ops (e.g., 15,000), using
the same spectral embedding technique as UMAP. Since we start
with a relatively small number of points, this would take much less
time than the original UMAP’s spectral embedding. Hereafter, 2)
we lower the value of ops (e.g., 1,000) not to focus on the append-
ing process but to obtain an optimized projection output fast. Start-
ing with the second batch, we set the initial projected position of
each newly inserted point equal to its closest neighbor’s position
disturbed by a small Gaussian random noise to prevent collisions.

Layout Optimization: Analogously, we go through two stages
for layout optimization. As it affects the overall time for conver-
gence and increases the stability of the final output, it is very im-
portant to position the first batch of points well so that clusters are
unambiguously separated. To this end, 1) we run more iterations
(e.g., 40) in the first batch so each cluster can settle its position. Af-
terwards, 2) we run fewer iterations (e.g., 4) to focus on attaining
the projection result fast. However, users can control the number of
iterations for each stage; for example, if the size of data is small
enough, they can set the algorithm to use the same number of iter-
ations for both stages.

Based on the original UMAP implementation [MHM], our Pro-
gressive UMAP is written in Python. We leveraged PyNENE, a
Python binding of PANENE [JSF18], for the KNN lookup table
as well as Numba [LPS15] for parallel computation of distances,
graph weights and optimization. The source code is available at
https://www.github.com/hyungkwonko/progressive-umap.
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Figure 2: Average loss over time UMAP generated its first projec-
tion with an initial delay of 27.7 s (dotted line) while Progressive
UMAP minimized the delay to 2.9 s. The loss of Progressive UMAP
converged to 0.42 which was higher than that of UMAP (0.25). For
ease of comparison, the loss at 100, 200 and 500 iterations was
marked with grey vertical lines. After all points are added, the final
loss of Progressive UMAP was 0.38.

5. Evaluation and Discussion

To measure the loss of our method and UMAP at run-time we em-
ploy the objective function suggested by Tang et al. [TQW∗15].
In their study, the authors proposed an objective function that sub-
sumes all the edges (both observed and unobserved) to optimize
a graph layout. As summing up all the edges in a complete graph
is computationally expensive, they further suggested a fast method
based on edge sampling, described as follows. We randomly sample
edges with a probability proportional to their weights. We subse-
quently treat the selected ones as binary edges. The objective func-
tion is:

O = ∑
(i, j)∈E

vi j(log(wi j)+
M

∑
k=1

E jk∼Pn( j)γ log(1−wi jk )). (9)

Here, vi j and wi j are the similarities in the high and low-
dimensional spaces respectively, M is the number of negative sam-
ples and E jk∼Pn( j) indicates that jk is sampled according to a noisy
distribution, Pn( j), from Word2Vec [MSC∗13]. However, apply-
ing the objective function directly to both algorithms induces bias
since the total numbers of edges in UMAP and Progressive UMAP
are different when data points are being inserted progressively in
Progressive UMAP. To make the calculations comparable, we di-
vide the loss by the number of sampled edges, a quantity which we
will call unbiased loss or average loss.

For the evaluation, we ran both UMAP and Progressive UMAP
on the Fashion MNIST dataset [XRV17] which has 70,000 rows of
784 dimensions (28 × 28), each row describing an item from 10
classes (e.g., t-shirt, trouser, etc.). As a baseline, we used the origi-
nal UMAP implementation [MHM]. Both algorithms were tested
on a machine equipped with an Intel Core i7-4790K CPU (4.0
GHz) and 16 GB of main memory.

UMAP has several important hyperparameters: k (the number of
neighbors to consider), min_dist (the minimum distance between
points in the low-dimensional space) and metric (a metric to com-

pute the distance between points in the high-dimensional space).
We set k to 5, min_dist to 0.1, and metric to the Euclidean distance.

Figure 1 shows intermediate 2D projection outputs generated by
each algorithm over time. Each point denotes a single row of 784
dimensions in the high-dimensional space, color-coded by class.
The initialization process of UMAP took 27.7 seconds as it con-
sidered all the data points at the beginning. In contrast, Progressive
UMAP took 2.9 seconds to initialize because it could incrementally
append data points in later iterations. Similarly, the time required
to reach the same average loss was faster in Progressive UMAP;
Progressive UMAP took 11.1 seconds to obtain the average loss
of 0.5, while the original UMAP took 52.8 seconds (Figure 2). Al-
though Progressive UMAP produced a bigger average loss at the
end, it located points much faster than UMAP and converged in a
reasonable time-bound, sufficiently capturing the important char-
acteristics of the dataset; for example, the intermediate outputs of
Progressive UMAP at the 200th iteration (Figure 1) manifest a clear
separation of data points between clusters.

Next, we tested the effect of ops (i.e., the parameter passed to
the KNN lookup table) and the number of iterations on optimizing
the first projection. We gradually changed ops from 300 to 1,000
with an interval of 100. We found it is possible to control the com-
putation time of an iteration by changing ops. However, if ops is
too small, it can harm the stability of the projection result since, if
we insert too few points at a time, it is impossible to choose the
nearest neighbors that capture the local manifold robustly. We also
examined the effect of the number of iterations on optimizing the
projection (yi) for the first batch by changing it from 20 to 60 with
an interval of 10. As expected, keeping the number of iterations
small in the first batch worsened the convergence speed and sta-
bility of the projection result. On the other hand, having a large
number of iterations in the first batch helped achieve better projec-
tion quality but also slowed down convergence. The results of these
experiments are also available in our repository.

To sum up, we found that Progressive UMAP is able to not only
generate intermediate projection outputs whose quality is compara-
ble to the original UMAP within a reasonable time-bound but also
provides an ability to control the trade-off between computation
time and the quality of projection.

6. Conclusion and Future Work

We present a progressive algorithm for the Uniform Manifold
Approximation and Projection (Progressive UMAP). Through our
quantitative evaluation, we found that Progressive UMAP can gen-
erate the approximate projection and update it every few seconds.
But, in the current implementation, not all computation steps are
bounded (e.g., the matrix multiplication) in time. For this reason,
the algorithm might not be able to handle a dataset that is too large.
In future work, we plan to identify such problematic computational
steps and speed them up using, for example, hardware acceleration.
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