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Abstract

A visualization recommender supports the user through automatic visualization generation. While previous contributions pri-
marily concentrated on integrating visualization design knowledge either explicitly or implicitly, they mostly do not consider
the user’s individual preferences. In order to close this gap we explore online learning of visualization preferences through
dueling bandits. Additionally, we consider this challenge from a usability perspective. Through a user study (N = 15), we em-
pirically evaluate not only the bandit’s performance in terms of both effectively learning preferences and properly predicting
visualizations (satisfaction regarding the last prediction: u = 85%), but also the participants’ effort with respect to the learning
procedure (e.g., NASA-TLX = 24.26). While our findings affirm the applicability of dueling bandits, they further provide in-
sights on both the needed training time in order to achieve a usability-aligned procedure and the generalizability of the learned
preferences. Finally, we point out a potential integration into a recommender system.

CCS Concepts

e Human-centered computing — Visualization systems and tools; ¢ Computing methodologies — Reinforcement learning;

1. Introduction

The objectives of visualization recommenders not only include the
acceleration of the visual exploration process, but also the low-
ering of barriers for novice users. In order to achieve these ob-
jectives, visualization recommenders automatically generate visu-
alizations based on either explicit knowledge of visualization de-
signs given by effectiveness studies [LQT* 18, MHS07, WQM*17,
MWN*19] or implicit knowledge through end-to-end machine
learning [DD18, HBL*18]. Especially, effectiveness studies pro-
vide substantial empirical knowledge about the recommended
use of visualization designs in general (e.g., [Mac86]), or task-
dependent (e.g., [HYFC14,KH16, KH18]).

The effectiveness of visualization designs is further influenced
by the user’s characteristics [ZOC*12]. Green and Fisher [GF10]
show an effect of the user’s personality on the task completion time
in visual analytics. Furthermore, the user’s preferences on the vi-
sual mappings also has an effect on the performance in high and
low-level tasks [CCH*14]. Since preferences are generally chal-
lenging to quantify [BHM 18], Moritz et al. [MWN*19] suggest to
use pairwise comparisons in the visualization domain.

A recent promising methodology for learning preferences
through pairwise comparisons is the dueling bandit ap-
proach [YBKJI2], e.g., in human-robot interaction [SK17],
or massive open online courses [CZK16]. A dueling bandit is a
special case of the multi-armed bandit which aims to maximize a
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numerical criterion within a sequential decision process by choos-
ing from a set of actions (or items) at each time step [BHM18].
The bandit predominantly selects the item which is likely to be
preferred by the user. Additionally, it needs to explore potentially
better items, although the user’s preferences are uncertain in the
moment of the decision [BHM18]. In our case, the dueling bandit
shows two visualizations to the user each in accordance with its
exploration strategy. Based on the user’s decisions for preferred
visualizations, the bandit learns online the user’s individual
preferences.

As previous approaches use either offline learning [MWN™*19]
or need previously collected data [MVT16], we attack this prob-
lem from a new angle by using the reinforcement learning method
of dueling bandits. In order to properly learn the user’s preferences
but concurrently keep the user’s effort low, we propose an approach
(see Figure 1) to learn preferences within each visualization fea-
ture, e.g., whether the visual mapping (x:C,y:01,color:Q2)
is preferred to (x:Q1,y:02, color:C). Through a user study
(N = 15), we show the promising performance both over time (see
Figure 2) and in comparison to a rule-based approach (in 91% of all
cases, the visualizations given by the bandit were preferred). Addi-
tionally, the results indicate a manageable effort for the participants
to train the bandit in terms of time and workload (NASA Task Load
Index [HS88] of 24.26). Finally, the insights address the dueling
bandit’s effectiveness for learning visualization preferences.
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2. Related Work

First insights on automatic visualization generation are given by
Mackinlay [Mac86] by ranking visual variables based on their ef-
fectiveness. ShowMe [MHSO07] integrated this into Tableau Desk-
top later. As the intention of visualization recommenders is to
accelerate visual analysis, some approaches focus on generat-
ing visualizations for automatically discovered insights in the
data [VRM*15,DHPP17,SKL*16]. Voyager [NQM*17] addition-
ally shows alternative visualizations along with the recommended
ones. VizDeck [KHPA12] recommends visualizations based on both
data characteristics and chart type. It further organizes them in a
card deck, which the user can flick through.

In addition, machine learning models have been investigated
for visualization recommendations. Data2Vis [DD18] generates a
set of Vega-lite specifications [SMWHI17] from a given data set
by using an encoder-decoder neural network combined with long
short-term memory units. VizML [HBL*18] applies end-to-end
machine learning through deep neural networks. It learns design
choices based on a corpus of both existing visualizations (Plotly
gallery) and the associated data sets. Both DeepEye [LQT*18]
and VizRec [MVT16] use a rule-based approach for generating
visualizations as a first step. DeepEye then uses a decision tree
for classifying “good” visualizations in order to rank them af-
terwards. VizRec instead uses both collaborative filtering based
on crowdsourced visualization ratings and content-based filtering
based on crowdsourced tags associated with the visualizations.
Draco [MWN™*19] formalizes visualization design knowledge by
combining both hard and soft constraints. The soft constraints are
represented through weights of a RankSVM trained on the data of
two effectiveness studies.

Essentially, the discussed systems, except for VizRec [MVT16],
produce recommendations without taking into account the user’s
preferences. Compared to VizRec, we use qualitative feedback
through pairwise comparisons for learning visualization prefer-
ences instead of crowdsourced quantitative ratings. Furthermore,
collaborative filtering needs a large set of user histories in order to
work properly. Through pairwise comparisons, Draco [MWN*19]
essentially learns the preferences of the populations of its used ef-
fectiveness studies. Hence, it learns overall preferences, but not the
preferences of the user of the system. Furthermore, Draco takes
an offline learning approach, while we focus on online learning.
In comparison to the related work, our approach can individually
adapt its visualization recommendations to the user without requir-
ing any additional resources, like ratings of other users.

3. Dueling Bandit for Visualization Preferences

A dueling bandit with a set of k different items tries to approx-
imate the user’s preference distribution PX*% = [p; i =p(i = j),
where p(i > j) indicates the probability that the user prefers item i
to j [BHM18]. As a broad variety of different dueling bandit algo-
rithms exists [BHM 18], we pick an algorithm that fits our require-
ments.

The first requirement is the absence of a total order of the vi-
sualizations, since we assume that some users likely have multi-
ple equally preferred visualizations. In the dueling bandit terminol-

ogy, we primarily focus on algorithms with Copeland winner strat-
egy [ZKWdRI15] (a set of items can be equally preferred) instead
of Condorcet winners (only one item is preferred). The second re-
quirement relates to efficiency in terms of the number of needed
comparisons due to usability. As a user eventually has to tell the
system her or his preferences, we need an algorithm with a small
number of needed comparisons, but which smartly explores the set
of potential items in order to avoid local optima.

A suitable algorithm appears the Double Thompson Sampling
(D-TS) by Wu and Liu [WL16]. The D-TS is currently one of the
most comparison-efficient algorithms with an intelligible model. It
tracks the number of wins B = [bij] = #(i > j), where #(i - j)
indicates the number of duels in which i was preferred to j. How-
ever, the basis for choosing two items to compare are samples from
the posterior Beta distributions estimated on previous comparisons:

0;j ~ Beta(bij +1,bji+ 1), fori< j
0;i=1-0;

At each round, D-TS selects a candidate a by using the Relative
Upper Confidence Bound [ZKWdR15] while considering the sam-
pled Os. In order to estimate the opponent of a, D-TS again samples
from the Beta distributions but limited to the columns related to a.
After the user decides for a preferred item, B is updated. The more
comparisons are made for a specific pair, the more stable the ex-
pected value becomes for this pair.

3.1. Learning Detailed Visualization Preferences

D-TS already has an efficient exploration strategy for learning the
preferences within a set of k items, yet, the number of visualizations
(k) quickly increases when more design options (e.g., more color-
ing schemes) are given. Thus, more comparisons are needed. In
order to counterbalance this increasing number of needed compar-
isons, we learn the preferences for each visualization feature (e.g.,
visual mapping, coloring schema, etc.) separately, instead of learn-
ing the preferences between fully specified visualizations. This cir-
cumstance considerably reduces the number of comparisons and
potentially generates more detailed insights in the preferences. This
approach follows the divide-and-conquer paradigm.

Figure 1 illustrates the learning procedure. It starts by select-
ing a feature F to learn from the set of all visualization fea-
tures F based on a round robin scheme, i.e., we play a differ-
ent feature in each round, following a fixed order. Once F is se-
lected, the corresponding counting matrix is given to the D-TS.
Since the D-TS only chooses two values f; and f;, we still have
to compute two visualizations for the comparison. First, we use
the two visualization sets V; = {v | v=(...,F = f;,...)} and
Vi={v|v=_(...,F = fj,...)} with V;NV; = (). Based on these
sets, we compute a set of visualization pairs which are maximally
similar according to the computed Hamming similarity (penalizes
inequality): V/ = {(v;, v;) | Y* = sim(vi,v;) v; € Vi, vj € V;} with
Y = max{sim(v;,v;) | vi € V;, v; € V;}. Finally, we randomly se-
lect a pair for the comparison: (v;,v;) ~ U(V'). Since we know v;
and v; are similar but differ in F, the counting matrix of F will con-
sequently be updated with respect to the feature values represented
by the selected visualization. Continuing with this procedure, the
next feature is explored during the next learning step.
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Figure 1: At each step t, a visualization feature F € F is selected.
Based on both the corresponding counting matrix Br and “%ﬂ
D-TS selects two values fi, f; € F. Afterwards, two maximally sim-
ilar visualizations representing f; and f;, respectively, are shown to
the user. Based on the user’s decision, B is updated.

3.2. Predicting Visualizations

For predicting visualizations based on the learned preferences, we
compute the best candidate for each visualization feature by apply-
ing the routine of D-TS for choosing the first candidate for a duel.
However, some visualization features influence the set of applica-
ble values of other features. For example, having a mapping that
includes a categorical attribute represented by the color, we cannot
apply a diverging coloring scheme. Therefore, we initially rank the
features based on their influence on other features. Following this
ranking in descending order, we determine a value for each feature
while considering potential restrictions imposed by previously se-
lected feature values. Once all feature values are set, we generate
the corresponding visualization.

4. Evaluation

To evaluate the presented approach we primarily focus on tri-
dimensional visualizations. Furthermore, we limit the visual map-
pings to the channels x, y, and color. Additionally, we include two
coloring schemes for both categorical (dark2 vs. set2) and quanti-
tative (blues vs. greenblues) as well as three different mark shapes
(circle, square, and point). As a result, we get 36 different visual-
izations and (326) unique pairwise comparisons.

As a testbed for the study, we implemented a technical proto-
type using a client-server architecture. While the frontend renders
the visualizations and handles user interactions, the backend com-
putes both the dueling bandit algorithm and the Vega-lite specifi-
cations [VGH"18]. Initially, we assume that all visualization are
equally preferred by the user (B;—g = 0K%k), i.e., we add no prior
knowledge to the bandit. Additionally, we use the setting originally
proposed in [ZKWdR15, WL16].

4.1. Study Procedure

The study is designed to last approximately 30 minutes, starting
with a standardized introduction to the procedure. For learning the
preferences, we use the well-known car data set [VGH" 18] re-
stricted to the attributes horsepower, miles per gallon, and origin.
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After the introduction, each participant completes a sequence of
210 pairwise comparisons. For each pair, the participants decide
which visualization they prefer. Although Wu and Liu [WL16] ne-
glect the influence of the items’ display order on the decision in a
duel, we decide for a random display order to prevent biased data.
In order to additionally evaluate the bandit’s learning progress dur-
ing training, a predicted visualization is given by the bandit after
every 21 comparisons. This prediction is then rated by the partici-
pant on an 11-point scale (very unsatisfying — very satisfying).

After completing the 210 pairwise comparisons as well as rat-
ing the overall 10 predicted visualization, a sequence of 4 pair-
wise comparisons is given to the participant. Each comparison con-
sists a visualization predicted by the bandit and a recommended
visualization according to [KHI18]. Additionally, each compari-
son bases on a different data attribute set from a weather data
set [VGH*18]. This construct provides insights on the generaliz-
ability of the learned preferences. The study ends with a question-
naire on the acceptability of the learning method, and on the par-
ticipant’s demographics as well as experience in information visu-
alization and statistics.

4.2. Participants

We recruited 15 participants (4 female, 11 male) with an average
age of 26.4 (¢ = 3.18) years. The participants’ self-reported knowl-
edge ranged from advanced beginners to competent users in both
information visualization and statistics. As they stated to design
their visualizations either with a dedicated tool (e.g., Tableau) (3),
MS Excel (4), or directly in Python or R (8), the majority (13) fur-
ther asserted to have an overall preferred visualization.

4.3. Results

Overall, the participants decided for a preferred visualization in
4.42 sec per comparison on average. In accordance with the partici-
pants’ feedback, the visualization features have varying importance
for a decision on a preferred visualization: mapping was regarded
as more important than type, which in turn was regarded as more
important than coloring.

Learning: In the beginning, the participants tended to not se-
lect the visualizations for which the bandit expected to win. This
circumstance continuously decreased during the use (see Figure
2(a)). This indicates that the bandit’s certainty about the par-
ticipant’s preferences gradually increased. Although interactively
teaching the bandit is a dull procedure, the majority of partici-
pants (11) stated that they would also conduct a similar proce-
dure with an entire visualization tool, when they assume to get
preference-aligned visualizations afterwards. Additionally, this in-
teractive learning procedure received a mean NASA-TLX score of
24.26 (o = 9.64), to which the mental demand mostly contributed
(score: u=32.66,6 = 12.79, weight: u = .24,6 = .08).

Predicting: As Figure 2(b) highlights, the bandit’s predictions
became better over time. Since the preferences are initially un-
known, a higher chance for unsatisfying predictions exists in the
beginning (satisfaction scores of the first three predictions: yu =
72,6 = .22). However, the participant’s satisfaction with the pre-
dictions significantly improves over time (satisfaction scores of the
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(b) Participants’ satisfaction with the predicted visualizations

Figure 2: The visualizations illustrate the preference learning improvements of the dueling bandit. While (a) highlights how often the partici-
pants did not selected the visualization assumed by the bandit, (b) shows the satisfaction of the participants with the predicted visualizations.

last three predictions: u = .82,6 = .16), according to a Wilcoxon
Signed-Rank test, Z =92, p < .01. On average, each participant re-
ceived 3.4 (c = 0.87) different visualizations during these predic-
tion steps. Considering the last predicted visualization of each user
as an indicator of the participants’ preferences, we found an over-
all Hamming distance between them of y = .57,6 = .39 as well
as overall 10 unique visualizations. Furthermore, 14 participants
(strongly) agreed that the bandit actually learned their preferences.
Considering the comparison with the rule-based approach, the par-
ticipants preferred the visualizations given by the bandit in 91% of
all cases. In 20% of the comparisons both visualizations shared the
same visual mapping.

5. Discussion

The results underline not only the effectiveness of the dueling ban-
dit approach for learning the individual visualization preferences,
but also address the acceptance of the training procedure.

Training time reduction: We had initially little knowledge
about how many training steps the bandit would actually needed in
order to properly retrieve preference-aligned visualizations. As the
bandit’s performance stabilizes veritably after approximately the
fifth prediction (cf. Figure 2), the number of needed comparisons
can potentially be decreased. This insight helps to better estimate
the needed effort for the user.

Factorization for learning vs. feature combination effects: A
key choice of our methodology is to base preference learning on
individual visualization features, rather than on fully specified vi-
sualizations. This choice reduces the needed comparisons for the
bandit to learn the user’s preferences. However, there are presum-
ably dependencies between these visualization features (e.g., color-
ing scheme C might be preferred with mark shape A, but not with
mark shape B), which potentially influence the decisions. This ef-
fect might be even larger when the visualization types are consid-
erably different, e.g., bar chart vs. pie chart. However, the partici-
pants were very satisfied with the last predicted visualizations and
perceived the training effort as relatively low.

Generalizability of learned preferences: The bandit was
clearly preferred to the rule-based approach. Since each compar-
ison based on a unique set of data attributes, it appears that the
learned preferences are not necessarily bound to the data on which
the bandit was trained on. This implies both the user does not have

to retrain the model and the preferences matrices can be used for
adjusting current systems’ recommendations.

Enhancing visualization recommenders: In case the user’s
preferences are learned on the same visualization set used by the
recommender, the corresponding preference matrix can be concep-
tually seen as a weighting matrix for adjusting the ranking of the
visualizations. This preference matrix can further be persistently
stored in the recommender’s user model. A persistent preference
matrix can be used for predictions even after restarting the system.
Additionally, and most importantly, it can serve as prior knowledge
for new users, e.g., via the weighted average of known users’ pref-
erences.

6. Conclusion and Future Work

In this paper, we explored the challenge of online learning of
visualization preferences to enhance visualization recommender
systems. We particularly investigated the reinforcement learning
methodology of dueling bandits. For usability purposes, we envi-
sion a divide-and-conquer approach to accelerate the learning pro-
cess. The results of the user study provide insights into the needed
training time of the bandit, the performance of the approach, and
the user acceptance of the resulting recommendations. As knowl-
edge about the effectiveness of visualization designs are commonly
integrated into recommender systems, our results contribute to fur-
ther improve the performance of personalized recommenders.

We see particularly three areas for future work. First, as a vari-
ety of other dueling bandit algorithms with different constraints ex-
ist, a comparison between good candidates should be investigated.
The focus should further not only be on how accurately the prefer-
ences are learned, but also on the effort for the user. Second, in our
study, we initially considered three different visualization features,
but there are more. Investigating the effect of extending the fea-
ture space on both the learning procedure and the individual feature
importance scores is an interesting avenue for future work. Third,
since we provided insights on the generalizability from one data set
to another, a potential effect of the task, the domain, or the amount
of visualized data attributes on the preferences should be explored.
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